不同污渍在棉织物上的吸附及脱附研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于各种化学纤维用量不断增长,新型去污剂也不断改进,纺织品上污垢的去除还需要更进一步研究。小天鹅公司作为国内知名洗衣机生产商,研究洗衣机最基本的洗涤机理可以直接为产品开发人员提供程序优化方面的支持,提高洗衣机的洗涤效果,不断满足用户的需求。此项研究是和小天鹅公司合作的项目,为公司新产品的研发提供了一定的理论支持。本论文主要通过探索棉织物和几种典型油污的结构成分,研究其吸附/脱附热力学,动力学行为。
     分子模拟结果表明,油类分子在棉纤维上的吸附性能与温度,压力,分子极性,链数目,官能团的种类,吸附构型等许多因素有关。随着压力增大,吸附量也随之增大,油类分子在100KPa时达到平衡,水溶性分子在400KPa才趋于平衡。升高温度,吸附量先增加,然后到达一点再下降,然后趋于平衡。磷脂酰胆碱和蓖麻油酸甘油脂在308K达最大值,其他分子在328K达到最大值。根据吸附热分布曲线,L-阿拉伯糖和棉纤维的吸附作用较单一,其他分子吸附作用较复杂。油类分子和棉纤维的吸附构型均为平铺方式,并且磷脂酰胆碱和棉纤维的吸附能绝对值最大,吸附最稳定。链结构和官能团的不同对吸附量的影响也很大。范德华力和静电力对结合能的贡献较多,吸附量越大,结合能越大。
     通过棉织物对液体石蜡,磷脂,蓖麻油,羊毛脂,阿拉伯树胶等污渍的吸附实验研究,表明各类污渍的吸附量随着污渍浓度的增大而增大,在200mg/ml之后逐渐平缓。各种污渍的吸附均可用Freundlich等温式拟合,属于非单层,异质性吸附。吸附量由大到小的顺序为:阿拉伯树胶,磷脂,蓖麻油,羊毛脂,液体石蜡。各种污渍的吸附均符合准二级动力学方程,液体石蜡的吸附速率最快,阿拉伯树胶最慢。
     棉织物对污渍的脱附等温线表明污渍浓度越高,脱附量越大,羊毛脂最难脱附。随着时间的增大,脱附量增大,到20min时不再变化。各种污渍的脱附均符合准二级脱附动力学方程。阿拉伯树胶的脱附速率最快。
     通过SEM和IR光谱分析,可以观察到纤维表面污渍的附着形态,纤维上官能团的变化。洗涤后纤维的红外光谱图分析得出有些污渍和纤维之间还有化学吸附产生。
     通过测定纤维表面上水和乙醇接触角大小,计算未沾染污渍的纤维,沾染污渍后的纤维和清除污渍后纤维表面的自由能大小,结果表明棉纤维沾染上污渍后,水和乙醇的接触角均增大,表面自由能均减小。沾染了污渍的棉纤维在洗涤后接触角均减小,表面自由能增大。
     最后,关于此项研究的进一步工作做了讨论。
In recent years, with growing of a variety of chemical fiber consumption,a new detergent has been improved, we also need further study for removal of dirt on textiles. The little swan company as a well-known domestic washing machine manufacturer,they will do some research on basic washing mechanism to provide developers with program optimization supports, enhance the effect of washing machines, and continuously meet the needs of users. We had a cooperation with little Swan company for this research project,we provided a certain amount of theoretical support for new product. This paper mainly through explored the structure of several typical oil and cotton fabrics, studied the Thermodynamics and dynamic behavior of adsorption/desorption.
     Molecular simulation results showed that the adsorption properties of oil onto the cotton fiber is related with temperature, pressure, molecular polarity, the number of chain, type of functional group, adsorption geometry and many other factors. As the pressure increases, adsorption capacity also increased, the oil molecules was balanced in 100KPa, the water soluble molecules was balanced in 400KPa. When increased the temperature,the adsorption first increased at one point , and then with the at the temperature reduced, became balanced. Phosphatidylcholine and Castor oil acid glycerides was up to the maximum value in 308K, other molecules reaches its maximum value in 328K. The adsorption heat distribution curve told us the adsorption of l-arabinose and cotton fibers is single interaction, the adsorption of other moleculars were more complex. The adsorption configuration of Oil molecules on cotton fiber was tiled. The absolute valueof adsorption energy for phosphatidylcholine was the most, it was the most stable adsorption. Chains and functional groups had a great effect on the amount of adsorption. The Van der Waals forces and static power had a strong contribution to the binding energy,the bigger the adsorption capacity was,the larger the binding energy was.
     The experimental study of Liquid paraffin, phospholipids, castor oil, lanolin, Gum Arabic adsorption on the cotton fabric showed that with all kinds of concentration of stains increased, the amount of absorption increased, gradually subdued after the 200mg/ml. belonging to a monolayer, heterogeneity of adsorption,various stains were fitted to Freundlich isotherm adsorption. The Adsorption order from largest to smallest was: Gum Arabic, phospholipids, castor oil, lanolin, liquid paraffin. Various stains were agreed with quasi-second dynamic equation of adsorption, the adsorption rate of liquid paraffin was the fastest, Gum Arabic was the slowest.
     Desorption isotherms of the stains showed that with higher stain concentration the desorption rate was higher,the lanolin was the hardest to desorpt. As time increased, desorption rate increased, it would no longer be changed in 20min. Various stains were agreed with quasi-second dynamic equation of desorption. The desorption rate of gum Arabic was the fastest. From the SEM and IR spectroscopy, attachment patterns and functional groups of fiber surface can be observed. From IR spectrum analysis of fiber after washing we knew that there was chemical adsorption between the stains and fibers.
     By measuring the contact angle of water and ethanol on fiber surface,we evaluated surface free energy of a contaminated dirt fibers, fibers and fiber after cleaned. Results showed that after contaminated, the contact angle of water and ethanol were all increased, the surface free energy were all decreased.When the contaminated fibers were after cleaned, the the contact angle of water and ethanol were all reduced, the surface free energy were all increased.
     Finally, further works on this study were discussed.
引文
[1]James F, Matthews, Cathy E, et al. Computer simulation studies of microcrystalline cellulose Iβ[J]. Carbohydr Res, 2006, 341 : 138–152
    [2]高洁,汤烈贵主编.纤维素科学[M].北京:科学出版社. 1999:1-3
    [3]徐萌.基于天然高分子吸油材料的制备与表征[D].兰州:兰州大学,2007:25-38
    [4]闫军.秸秆连续挤出蒸汽爆破处理的机理研究[D].北京:北京化工大学,2009:25-29
    [5]Harold W H C, Anatole S. The double-helical molecular structure of crystalline a-amylose[J]. Carbohydr Res, 1978, 61(1): 27-40
    [6]王川行.离子液体的合成及在纤维素功能化中的应用[D].合肥:合肥工业大学,2010:16-29
    [7]张艳.龙须草纤维的性能研究[D].青岛:青岛大学,2008:23-29
    [8]Kulshreshtha A K, Khan A H, Madan G L. X-ray diffraction study of solvent-induced crystallization in polyester filaments[J]. Polymer, 1978, 19(7): 819-82
    [9]Paul R, Ellefsen, Louis G. Kinetics and mechanism of the reaction between biacetyl and hydroxylamine in acid solution [J]. Talanta, 1967, 14(4), April: 443-456
    [10]刘迪.莲纤维的形态结构及物质组成初探[D].青岛:青岛大学,2008:42-46
    [11]王磊磊.罗布麻纤维结构及成分初探[D].青岛:青岛大学,2008:30-37
    [12]赵仲丽.纤维素—聚苯胺导电复合材料的非均相制备及其导电性能研究[D].兰州:西北师范大学, 2009:15-25
    [13]李金花.纤维素酶降解纤维素的热动力学研究[D].曲阜:曲阜师范大学,2005:15-29
    [14]Kurt H, Meyer. The State of Aggregation of Rubber and of Substances with Rubberlike Extensibility[J]. Chem Rev, 1939, 25 (2): 137–149
    [15]张勇.纳米纤维素/聚氨酯复合防毡缩剂的制备及其应用技术研究[D].上海:东华大学,2011:24-39
    [16]Hermans P H, Weidinger A. Recrystallization of A morphous Cellulose[J]. J Am Chem Soc, 1946, 68 (6):1138–1138
    [17]陈明凤.纤维素的去结晶[D].上海:华南理工大学,2011:16-38
    [18]王超凯.编码草菇中性内切葡聚糖酶Ⅰ基因的克隆与表达研究[D].无锡:江南大学,2008:15-28
    [19]Blackwell J, Gardner K H, Kollpak F J,et al. Refinement of Cellulose and Chitin Structures[J]. Fiber Diff Meth, 1980, 19: 315-334
    [20]Blackwell J, Gardner K H, Kollpak F J,et al. Structures of Native and Regenerated Celluloses[J]. Cell Chem and Technol, 1977 ,4: 42-55
    [21]Anatole S, Peter Z.Crystal Structures of Amylose and Its Derivatives[J]. Fiber Diff Meth, 1980,28: 459-482
    [22]梁生龙.γ射线检测在箕斗卸载中的应用研究[D].太原:太原理工大学,2007:20-38
    [23]凌云.细菌纤维素产生菌的筛选、初步鉴定、培养基的优化及GDH基因缺失体的研究[D].广西:广西大学,2006:18-47
    [24]冯玉红.微生物纤维素及其氧化衍生物的合成与性能研究[D].昆明:昆明理工大学,2007:18-3
    [25]刘美娜.罗布麻纤维抑菌性能研究[D].青岛:青岛大学,2008:35-48?
    [26] Gábor I C, Alfred D F, Glenn P J. Evaluation of Density Functionals and Basis Sets for Carbohydrates[J]. J Chem Theory Comput, 2009, 5 (4): 679–692
    [27]Yoshiharu N, Glenn P J, Alfred D F. Neutron Crystallography, Molecular Dynamics, and Quantum Mechanics Studies of the Nature of Hydrogen Bonding in Cellulose Iβ[J]. Biomacromolecules, 2008, 9 (11): 3133–3140
    [28]Vadim V S, Mark J G, Deborah P D. Sucrose synthase localizes to cellulose synthesis sites in tracheary elements[J]. Phytochemistry, 2001, 57(6): 823-833
    [29]M J希克主编.纤维和纺织品的表面性能(下)[M].杨建生译.北京纺织工业出版社,1982. 37-38
    [30]Yamanaka T, Mizushima H, Hamako K, et al. Comparison of three yeast cytochrome C's purified from Saccharomyces cerevisiae, Kloeckera sp. And Candida krusei Biochimica et Biophysica Acta (BBA) - Specialized Section on Enzymological Subjects, 1964, 85(1): 11-17
    [31]William P, Utermohlen J R, Mary E R. Evaluation of Detergents for Textile Cleaniig [J]. Ind eng chem, 1949, 41(12): 288
    [32]Arthur L, Meader J R, Bernard A. Adsorption in the Detergent Process[J]. Calif Res Corp, 1952, 44(7): 1636-1648
    [33]Arthur L S, Bradley T. Jones Determination of Sr in soil by tungsten coil atomic emission spectrometry [J]. Microchem J, 2012, 101: 1-4
    [34]Andersen R A, Vaughn T H. Micro determination of scopoletin in Nicotiana tabacum[J]. Phytochemistry, 1972, 11(8): 2593-2595
    [35]Vaughn T H, Andersen R A. Micro determination of esculetin in Nicotiana tabacum[J]. Anal Biochem, 1973,56(2): 626-629
    [36]William P C, Clyde R S. Treatment of reflex sympathetic dystrophy with topical capsaicin[J]. Pain, 1990, 42(3): 307-311
    [37]Williams E F, Woodberry N T, Dixon J K. Purification and surface tension properties of alkyl sodium sulfosuccinates. J Colloid Sci, 1957, 12(5): 452-459
    [38]Corrin M L, Harkins W D. Critical concentrations for micelle formation in mixtures of anionic soaps[J]. J Colloid Sci, 1946,1(5): 469-472
    [39]章燕豪.吸附作用[M].上海:科学技术文献出版社,1989: 46-48
    [40]马立新,有毒有机污染物在土壤中吸附/脱附的研究[D],博士学位论文,大连:中国科学院大连物理化学研究所,2004
    [41]Gregg S J, Sing K S W. Adosprtion, suarfce area and porosity[M].NewYork:Academic press Inc, 1982: 218-257
    [42]Jiang S, Rhykerd C L, Balbuena P B, et al. Adsorption and Diffusion of Methane in Carbon Pores at Low Temperatures[J]. Stud Surf Sci Catal, 1993,80:301-308
    [43]Horvath G ,Kawazeo K J. Method for the calculation of effective Pore size distrtibution in Molecular sieve carbon[J]. Chem End Japan, 1983, 16(8):470-475
    [44]李克斌,许中坚,刘维屏.农药在土壤上吸着/解吸及其对生物利用率影响的研究进展[J].环境污染治理技术与设备,2002,3(4):18-24.
    [45]J J T I Boesten, L J T Van Der Pas. Modeling adsorption/desorption kinetics of pesticides in a soil suspension[J]. Soil Sci, 1988, 46(1): 221-231
    [46]徐田军,冯玉红,庞素娟.分子模拟在纤维素研究中的应用进展[J].纤维素科学与技术,2009(17): 54-56
    [47]Andreas P H, Junji S, Olle T. Crystalline cellulose Iαand Iβstudied by molecular dynamics simulation[J]. Carbohydrate Research,1995, 273: 207-223
    [48]Remco J V, Karim M, Miles L, et al. A priori crystal structure prediction of native celluloses[J]. Biopolymers, 2000, 54: 342-354
    [49]Toshifumi Y, Sachio H. Molecular dynamics simulations of solvated crystal models of cellulose Iαand IIII[J]. Biomacromolecules, 2007, 8: 817-824
    [50]Mark S B, John D H, Antoinette O S, et al. An insight into the mechanism of the cellulose dyeing process: Molecular modelling and simulations of cellulose and its interactions with water,urea,aromatic azo-dyes and aryl ammonium compounds[J]. Dyes Pigments, 2008, 76: 406-416
    [51]李伟,刘方方,张浩.接触角法在测定固体表面洁净度方面的应用[M].日用化学工业,2006(36):34-36
    [52]Tavana H, Simon F, Grundke K, et al. Interpretation of contact angle measurements on two different fluoropolymers for the determination of solid surface tension[J]. J Colloid Interf Sci, 2005, 291(2): 497-506
    [53]赵振国.接触角及其在表面化学研究中的应用[J].化学研究与应用,2000(12): 370-372?
    [54]赵国玺,朱瑶.表面活性剂作用原理[M].北京:中国轻工业出版社, 2003: 497
    [55] Rosen M J, Surface and inter facial phenomena [M]. New York : Wiley - Interscience , 1986: 77
    [56]罗晓斌,朱定一,石丽敏.基于接触角法计算固体表面张力的研究进展[J].科学技术与工程,2007(7): 4998-5001
    [57]Zisman A W,Contact angle,wettability and adhesion[C]. In: Advances in Chemistry Series. Washington DC: American Chemical Society, 1964. 43
    [58]Fox H W, Zisman W A. The spreading of liquids on low-energy surfaces. II. Modified tetrafluoroethylene polymers[J]. J Colloid Sci, 1952,7(2): 109-121
    [59]Dann J R. Forces involved in the adhesive process: I. Critical surface tensions of polymeric solids as determined with polar liquids[J]. J Colloid Interf Sci, 1970, 32(2): 302-320
    [60]Siboni S, Volpe C D, Maniglio D, et al. The solid surface free energy calculation: II. The limits of the Zisman and of the“equation-of-state”approaches[J]. J Colloid Interf Sci, 2004,271(2): 454-472
    [61]Duncan D, Li D, Gaydos J, et al. Correlation of Line Tension and Solid-Liquid Interfacial Tension from the Measurement of Drop Size Dependence of Contact Angles[J]. J Colloid Interf Sci, 1995, 169(2): 256-261
    [62]Neumann A W.Contact angles and their temperature dependence: thermodynamic status, measurement, interpretation and application[J]. Adv Colloid Interface Sci, 1974,4(2-3): 105-191
    [63]Tavana H , Neumann A W. Recent progress in the determination of solid surface tensions from contact angles[J]. Adv Colloid Interface Sci, 2007, 132(1): 1-32
    [64]Fowkes F M. Determination of interfacial tensions.contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in syrfaces[J]. J Phys Chem,1962, 66(2): 382-382
    [65]Spelt J K. Solid surface tension: The use of thermodynamic models to verify its determination from contact angles[J]. Colloid Surface, 1990, 43(2): 389-411
    [66]Souheng Wu. Surface and interfacial tensions of polymer melts. II. Poly(methyl methacrylate), poly(n-butyl methacrylate), and polystyrene[J]. J Phys Chem., 1970, 74 (3): 632–638
    [67]裴冰.活性炭吸附净化低浓度甲苯气体工艺改进研究[D].上海:同济大学,2008:18-38?
    [68]陈念贻,许志宏,刘洪霖等.计算化学及其应用[M].上海:科学技术出版社,1987. 209-210
    [69]孙玉敬.葡甘聚糖微结构的分子动力学模拟[D].福州:福建农林大学,2006:13-28
    [70]任华.分子模拟在界面相互作用计算中的应用[D].西安:西北工业大学,2007:14-26
    [71]丁云桥.钛掺杂聚硅烷和非对称取代的聚硅烷的电子结构及其性质的理论研究[D].山东:山东大学,2006:13-26
    [72]苏文锻.系综原理[M].厦门:厦门大学出版社, 1990.257-259
    [73]Andrew R, Leach . Molecular modeling [M]. Addison Wesley Longman: principles and applications, 1996. 27-157
    [74]William G H. One-dimensional dense-fluid detonation wave structure[J]. J Phys Chem, 1983, 87 (15): 2795–2798
    [75]NoséS, Yonezawa F. Isothermal-isobaric computer simulations of melting and crystallization of a Lennard-Jones system[J]. Solid State Commun, 1985, 56(12): 1009-1013
    [76]Anderson H C. Differential Thermal Analysis of Epoxide Reactions[J]. Anal. Chem, 1960, 32 (12): 1592–1595
    [77] Anthony K R, William A. Charge equilibration for molecular dynamics simulations[J]. J Phys Chem, 1991, 95 (8): 3358–3363
    [78]J R Hart, Rappe A K, Gorun S M, et al. Estimation of magnetic exchange coupling constants in bridged dimer complexes[J]. J Phys Chem, 1992, 96 (15): 6264–6269
    [79]程杰.自组装环肽纳米管的分子模拟研究[D].哈尔滨:哈尔滨工业大学,2009:20-36
    [80]吴建洋.分子模拟研究醇/水在沸石分子筛膜中的吸附与扩散[D].厦门:厦门大学,2009:16-35
    [81]杨金枝.分子模拟分析醇水在MFI沸石膜中渗透时的吸附与扩散现象[D].厦门:厦门大学,2007:14-39
    [82]张帆.蒙脱石的改性、除砷性能及水化过程的分子模拟[D].天津:天津大学,2007:16-43
    [83]Cheetham A K, Wilkinson A P. Structure determination and refinement with synchrotron X-ray powder diffraction data. J Phys Chem, 1991, 52: 1199
    [84]阙燚.二元烷烃体系相变的分子动力学模拟[D].重庆:重庆大学,2010:12-39
    [85]刘佳.纳米复合材料力学性能的分子动力学模拟[D].北京:北京工业大学,2010:14-36
    [86]Yoshiharu N, Paul L, Henri C. Crystal structure and hydrogen– bonding system in cellulose Iβfrom synchrotron x-ray and neutron fiber diffraction[J].J Am Chem Soc, 2002, 124(31): 9074-9082
    [87]Sugiyama J, Vuong R and Chanzy H. Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall[J]. Macromolecules, 1991, 24: 4168–4175
    [88]Hunt M L, Newman S, Scheraga H A, et al. Dimensions and Hydrodynamic Properties of Cellulose Trinitrate Molecules in Dilute Solution[J]. J Phys Chem, 1956, 60 (9): 1278–1290
    [89]Sang Y O, Dong I Y, Younsook S. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray di?raction and FTIR spectroscopy[J]. Carbohydr Res. 2005, 340: 2376–2391
    [90]杨立强,张淑芝,刘学民,苏高峰.油溶性污渍在棉纤维表面的吸附.江南大学学报(自然科学版)[J]. 2011(10):592-596
    [91]中国国家标准化管理委员会. GB/T 13174-2008.衣料用洗涤剂去污力及循环洗涤性能的测定[S].北京:中国标准出版社,2009
    [92]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005:173-309
    [93]Seiji K, Hirotaka I, Yasuhiro T. In?uence of solvent type on dibenzothiophene adsorption onto activated carbon fiber and granular coconut-shell activated carbon[J]. Fuel. 2010, 89: 365–371
    [94]Bansal R C, Goyal M. Activated carbon adsorption[M]. Boca Raton, FL: CRC Press Inc.2005:85
    [95]Tan I A W, Hameed B H, Ahmad A L. Equilibrium and kinetic studies on basic dye adsorption by oil palm fiber activated carbon[J]. Chem Eng. 2007, 127: 111
    [96]靳贺玲,张玉萍.碱性果胶酶精练棉针织物表面红外光谱分析[J].纺织学报,2010,31(1): 81-84
    [97]梁治齐.红外光谱在纺织纤维鉴别上的应用[J].北京联合大学学报,2000,14 (3):13-15
    [98]温演庆,朱谱新,吴大诚.红外光谱技术在纺织品检测中的应用[J].纺织科技进展, 2007(2) : 1 -4
    [99]William P, Uternohlen J R, Mary E R. Evaluation of Detergents for Textile Cleaning[J]. Ind eng chem. 1949, 41(12): 2881-2887
    [100]肖红.木棉纤维结构和性能及其集合体的浸润与浮力特征研究[D].上海:东华大学, 2005:15-38
    [101]Afshin F, Matthew T, Alphonsus V. Compositional Effects on the Adhesion of Acrylic Pressure Sensitive Adhesives[J]. Langmuir, 2000, 16 (4): 1816–1824
    [102]Zhang J f, Kwok D Y. Combining Rule for Molecular Interactions Derived from Macroscopic Contact Angles and Solid?Liquid Adhesion Patterns[J]. Langmuir, 2003, 19 (11): 4666–4672
    [103]Chijioke U, Kwok D Y. On the Maximum Spreading Diameter of Impacting Droplets on Well-Prepared Solid Surfaces. Langmuir, 2005, 21 (2): 666–673
    [104]天津大学物理化学教研室编.物理化学(第3版)[M].北京:高等教育出版社,1993: 166
    [105]何慧,沈家瑞.用接触角法测量聚合物共混体系的表面性能[J].合成材料老化与应用, 2002(1): 1-3
    [106]金俊弘,罗开清,江建明等离子基团对PBO纤维的表面性能及其界面粘结性能的影响[J].复合材料学报,2006(23): 70-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700