两种组分的纤维素酶基因随机突变及紫外诱变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了进一步提高基因重组菌的β-葡萄糖苷酶和内切葡聚糖酶的分泌表达能力,以及为这两种酶的深入研究和开发利用提供技术指导,论文探索了β-葡萄糖苷酶和内切葡聚糖酶基因的定向进化及其基因工程菌诱变育种的可行性和方法,主要结果如下:
     (1)采用易错PCR技术对本实验室已克隆出的β-葡萄糖苷酶基因进行随机突变,将突变后构建的重组质粒pTRC99A-bgl1导入E.coli BL21 CodonPlus(DE3)-RIL中进行表达,结果表明,β-葡萄糖苷酶基因未能实现分泌性表达,而是形成了包涵体。
     (2)对酵母基因工程菌GS115-bgl1-38进行紫外诱变育种。筛选出的酵母突变株GS115-bgl1-9和GS115-bgl1-37的酶活分别为出发菌株GS115-bgl1-38产β-葡萄糖苷酶酶活的2倍和1.5倍。通过十次传代实验证明其遗传性能相对稳定。通过对GS115-bgl1-38、GS115-bgl1-9和GS115-bgl1-37的酶学性质比较可知,突变株的最适温度与出发菌株变化不大,但最适pH范围呈扩大趋势,受金属离子的影响与出发菌株差异也较大。
     (3)采用单因素和正交实验对酵母突变株GS115-bgl1-9分泌表达β-葡萄糖苷酶的条件进行了初步研究,适宜的条件为:接种量为4%(v/v),每24h添加0.5%(v/v)甲醇,Tween80添加量为0.2%(v/v),L-组氨酸添加量为0.5%(v/v),发酵液初始pH为5.0。
     (4)以内切葡聚糖酶基因为模板进行易错PCR,向内切葡聚糖酶引入突变位点,然后将PCR产物连接到载体pTRC99A上构建突变后的表达质粒pTRC99A-Cel5A,导入E.coli BL21 CodonPlus(DE3)-RIL中表达。获得透明圈明显小于未突变菌株的4个菌株pTRC99A-Cel5A-1、pTRC99A-Cel5A-2、pTRC99A-Cel5A-3和pTRC99A-Cel5A-4。4个菌株的诱导产酶实验结果表明,它们的总酶活分别为0.050 IU/mL、0.050 IU/ mL、0.048 IU/ mL、0.043 IU/ mL,均低于未突变株的表达量。但4个突变菌株的酶最适pH和最适温度有一定程度的改变。测序结果表明,突变后的Cel5A基因中少数碱基发生了改变,突变株酶学性质的改变可能就是由于这些碱基的改变所致。
In order to further enhance the expression ability ofβ-glucosidase and endoglucanase from the strain of genetic engineering and provide technical guidance for further research and application on two kinds of enzymes,we explored the feasibility and methods on directed evolution of two kinds of enzymes and mutation breeding of the strain of genetic engineering,the main results are as follows:
     (1)β-glucosidase was directedly evolved in vitro by error-prone PCR,then it was ligated with pTRC99A vector and transferred into E.coli BL21 CodonPlus(DE3)-RIL.The results show that the gene ofβ-glucosidase was unable to express in E.coli BL21 CodonPlus(DE3)-RIL, the protein had formed into inclusion body.
     (2)The strain of genetic engineering GS115-bgl1-38 was mutated by ultraviolet light,two high production strain was obtained:GS115-bgl1-9 mutation and GS115-bgl1-37 mutation,their enzyme production capacities increased by 2 times and 1.5 times separately,two mutants kept stable after 10 times subculture.We also have studied on characters of two mutants,compared with the contrast,mutations’s optimal reaction temperature had little change,but the optimal pH had expanding tendency, metal ions had most impact on ability.
     (3)By single and orthogonal test,we studied the culture medium for the expression ofβ-glucosidase from GS115-bgl1-9 mutation. The results indicated that the appropriate conditions were initial pH5.0 of BMGY,adding 0.5% histidine, inoculumed 4% with additive amount of methanol 0.5% every 24h. In addition, adding 0.2% Tween80 can enhanceβ-glucosidase activity.
     (4)Endoglucanase gene from B.thermoliquefaciens-NL was directedly evolved in vitro by error-prone PCR,then it was ligated with pTRC99A vector and transferred into E.coli BL21 CodonPlus(DE3)-RIL,the mutant library had been construsted.Four lower production strains were obtained ,they were named: pTRC99A-Cel5A-1,pTRC99A-Cel5A-2,pTRC99A-Cel5A-3 and pTRC99A-Cel5A-4,the ability of 4 mutative strains were: 0.050 IU/ml,0.050 IU/ml,0.048 IU/ml,0.043 IU/ml. Compared with the contrast, characters of 4 mutations were changed a little, and through sequencing we knew the bases of genes of 4 mutations were changed a little , so we thought that the change of bases from gene may lead to the change of enzymes'character.
引文
[1]Tomme P, Warren RA, Gilkes N. Cellulose hydrolysis by bacteria and fungi[J]. Advance in Microbial Physiology, 1995, 37(1): 1-81
    [2]Goyal A, Ghosh B, Eveleigh D. Characteristics of fungal cellulases[J]. Biores. Technol., 1991, 36: 31-50
    [3]Puls J, Wood T. The degradation pattern of cellulose by extracellular cellulases of aerobic and anaerobic microorganisms [J]. Bioresource Technol., 1991, 36(1): 15-19
    [4]Ong E, Greenwood J, Gilkes N, et al. The cellulose binding domains of cellulases: tools for Biotechnology [J]. Trends Biotechnol., 1989, 7(9): 239-243
    [5]Sinnott M L.Catalytic mechanisms of enzymic glycosyl transfer[J].Chemical Reviews,1990,90:1171-1202
    [6]Bauer M W, Bylina E J, Swanson R V, et al. Comparison of a beta-glucosidase and a beta Mannosidase from the Hyperthermophilic Archaeon Pyrococcus furiosus. Purification, characterization,gene cloning, and sequence analysis[J]. The Journal of Biological Chemistry, 1996, 271(39): 23749-23755
    [7]Woodward J,Wiseman A.Fungal and otherβ-glucosidases.Their properties and applications[J].Enzyme Mierobial Technology,1982,4(2):73-79
    [8]LymarES,Li B,RenganthanV.Purification and charaeterization of a cellulose-bindingβ-glucosidases from cellulose degrading cultures of phaneroehaete chrysosPorium[J].APPlied Environment Mierobiology, 1995,61(8):2876-1980
    [9]姚卫蓉,丁霄霖.β-葡萄糖普酶产生菌的选育[J].无锡轻工大学学报,997,3(16):8-13
    [10]Ki Bong OH,Hamada K,SaitoM.Isolation and propties of an extravellularβ-glucosidase from a filamnentous fungus,cladosoonium resinae,isolated from keprosene[J].Biosci Bioteeh Biochem,1999, 63(2):281-287
    [11]李远华.β-葡萄糖苷酶的研究进展川[J].安徽农业大学学报,2002,29(4):421-425
    [12]张丹,刘耀平,鱼红闪,等.人参皂苷β-葡萄糖苷酶的分离纯化及其酶学特性[J].应用与环境生物学报, 2003,9(3):259-262
    [13]宛晓春,汤坚,丁霄霖.黑曲霉β-葡萄糖苷酶的提纯与性质[J].菌物系统,1998,17(2):154-159
    [14]Anders F,Lars R.Expression of azeatin-o-glueoside degradingβ-glueosidase in Brassicanapus[J]. Plant- Physiology(USA),1995,108:1369-1377
    [15]Mkpong O E,Hua Y,Chism G.Purifieation,characterization and loealization of linamarase in cassava[J]. Plant Physiology,1990,93:176-191
    [16]石艳,吴谋胜,陈清西.嵘螺β-葡萄糖苷酶性质的初步研究[J].厦门大学学报(自然科学版),2004, 43(增刊):32-35
    [17]张哲,赵红.福寿螺β-葡萄糖苷酶的分离纯化及性质的初步研究[J].厦门大学学报(自然科学版) 1999,38(2):287-291
    [18]汪大受.康氏木霉纤维酶系β-葡萄糖苷酶的提取与性质[J].生物化学与生物物理学报,1980,12(3) : 283-299
    [19]陈向东,藤尾雄策.日本根霉IF05318胞外β-葡萄糖苷酶的纯化及部分特性[J].微生物学报,1997,37(5): 368-373
    [20]王沁.黑曲霉β-葡萄糖苷酶的催化性质[J].天然产物研究与开发,1994,6(4):36-39
    [21]姚卫蓉,王佳良.无花黑曲霉β-葡萄糖苷酶的固体发酵工艺初探[J].江苏食品与发酵,2000,100(1):9-14
    [22]孙力军,沈爱光,熊晓辉,等.β-葡萄糖苷酶产酶发酵条件的优化研究[J].食品工业科技,1998, 19(5): 22-24
    [23]张曙光,张发群.β-葡萄糖普酶产生菌产酶条件研究[J].纤维素科学与技术,1995,3(1):37-41
    [24]曾宇成,张树政.海枣曲霉β-葡萄糖昔酶的催化性质[J].微生物学报,1989,9(3):195-199
    [25]Jones C S,Kosman D J. Purifieation,Properties,kinetics and mechanism of Beta-N-acetylglueosamidase from Aspergillus niger[J].Journal of Biologieal Chemistry,1980,255:11861-11869
    [26]Yin KH,Hoek Y,Teek K,T.properties ofβ-glueosidase purified from AsPergillus niger mutants USDB 0827and USDB 0828[J].Bioehemieal Engineering,1992,37(5):651-659
    [27]Khawar,Muhammad H R,Ahsan M S,et al.A simple and nondestructive method for the separati on of polysaeeharides fromβ-glueosidase Produced extraeelluarly by Aspergillus niger[J].Enzymeand Microbial Technology,1994,16(10):912-917
    [28]Busto M D,Ortega N,Perea-Mateosb M.Stabilisation of cellulases by cross-linking withglutarald ehyde and soil humates[J].Bioresouree Teehnology,1997,60(1):27-33
    [29]KimSW,KangSW,LeeJS.Cellulase and xylanase produetion by Aspergillus niger KKS in various bioreaetors [J].Bioresouree Teehnology,1997,59(l):63-67
    [30]Terutaka Y,Masatade O,Souji R,et al.Subsite strueture of theβ-glueosidase from Aspergillus niger, evaluated by steady-state kinetics with cello-oligosaceharides as substrates[J].Carbohydrate Researeh, 1997,298(l-2):51-57
    [31]JohanssonG,Reezey K.Purification and charaeterization of Twoβ-D-Glueosidase from an Aspergillus niger Enzyme Preparation:Affinity and Specifieity Toward Glucosylated Compounds Charaeteristic of the Proeessing of Fruits[J].Enzyme and Microbial Technology,1998,22(5):374-382.
    [32]Abdel-Naby M A,Osman M,Abdel-FatthAF.Purifieation and properties of three cellobiases from Aspergillus nigerA20[J].APPl Bioehem Biotechol,1999,76(1):33-44
    [33]Bravo V,Paez M P,AouladM,et al.The influence of temperature upon the hydrolysisof cellobiose byβ-l,4-glucosidases from Aspergillus niger[J].Enzyme and Mierobial Technology,2000,26(8):614-620
    [34]Siegel D,Ira M,Mara D,et al.Cloning,Expression,Charaeterization andNueleophile Identifieation of Family3,Aspergillus nigerβ-Glueosidase[J].JB101Chem,2000,275(7):4973-4980
    [35]藤芳超,李多川,李亚玲,等.嗜热毛壳菌一种β-葡萄糖苷酶的分离纯化及特性[J].菌物学报,2006, 25(3): 451-487
    [36]Saloheimo M, Panula J K,Ylosmaki E,et al.Enzymatic ProPerties and intraeellular loealization of the novel Trichoderma reeseiβ-Glueosidase BGLll (CellA)[J].APPlied Environment Mierobiology, 2002,68(9):4546-4553
    [37]邹辉,黎锡流,罗明姬.低聚龙胆糖的酶法生产技术[J].中国食品添加剂,2004(3):97-101
    [38]Gunata Y Z, Bayonove C L, Baumes R L, et al.The extraction and determinationof free and glycosidically bound fractions of some grape aroma substances[J]. J Chromatogr, 1985, 331:83-90
    [39]Williams P J, Christopher R S, Bevan W, et al. Massy-Westropp Studies on the hydrolysis of Vitis vinifera monoterpenne precursor compounds and model monoterpeneβ-D-glucosides rationalizing the monoterpene composition of grapes[J]. J Agric Food Chem, 1982, 30: 1219-1223
    [40]Engel K H, Tressl R. Formation of aroma components form on volatile precursors in passion fruit[J]. Agric Food chem, 1983, 31: 998-1002
    [41]Delcroix A , Günata Z, Sapis J C, et al. Glycosidase activities of three enological yeast strains during wine making: Effect on the terpenol content of Muscat wine[J]. American Journal of Enology and Viticulture, 1994, 45: 291-296
    [42]顾卫民.β-葡萄糖苷酶的特性及其在食品工业中的应用[J].江苏食品与发酵,2003(1):5-7
    [43]Gonzalez-Candelas L, Gil J V, Lamuela-Raventos R M, et al. The use of transgenic yeasts expressing a gene encodilg a glycosyl hydrolase as a tool to increase resveratrol conteni in wine[J]. Int J Food Microbiol, 2000, 59: 179-183
    [44]Shoseyov O, Bravdo, B A, Ikan R, et al. Immobilized endo-β-glucosidase enriches flavor of wine and passion fruit juice[J]. Journal of Agricultural and Food Chemistry 1990, 27: 973-1976
    [45]Ogawa K, Ijima Y, Guo W, et al. Purification of aβ-primeverosidase concerned with alcoholic aroma formation in tea leaves[J]. Journal of Agriculture and Food Chemistry, 1997, 45: 877-882
    [46]Pyo Y H, Lee T C, Lee Y C. Enrichment of bioactive is of lavones in soymilk fermented withβ-glucosidase producing lactic acid bacteria[J]. Food Research International, 2005, 38: 551-559
    [47]Yan T R, Liau J C. Synthesis of alkylβ-glucosides from cellobiose with Aspergillus nigerβ-glucosidaseⅡ[J]. Biotechnology Letters, 1998, 20(7): 653-657
    [48]娄红祥,李饶,左春旭.氰苷类化合物的化学研究[J].沈阳药学院学报, 1990, 7(3): 219-223
    [49]邵金辉,韩金祥,朱有名,等.β-葡萄糖苷酶在工农医领域的应用[J].生命的化学,2005,5(l):22-24
    [50]Syrigos K N,Rowlinson B G,Epenetos A A.Invitrocy to toxieity following speeific activation of amygdylin by beta-glueosidase conjugated to a bladder caneerassoeiated monoelonal antibody[J]. International Journal of Caneer,1998,78(6):712-718
    [51]Morjani H,Aouali N,Belhoussine R,et al.Elevation of glueosylceramide in multidrug-resistant cancer cells and aeeumulation in cytoplasmic drop lets[J].International Journal of Cancer,2001,94(2):157-162
    [52]Kousparou C A,EPenetosAA,Deonarain M P.Antibody-guided enzyme therapy of caneerprodueing cyanide results in necrosis of targeted cells[J].InternationalJournal of Cancer,2002,99(1):138-143
    [53]Yan T R,Liau J C.Synthesis of alkylβ-glueosides from cellobiose with Aspergillus nigerβ-glueosidaseⅡ[J].Biotechnology Letters,1998,20(7):653-657
    [54]许晶,张永忠,孙艳梅.β-葡萄糖苷酶的研究进展[J].食品研究与开发,2005,26(6):183-186
    [55]彭喜春,彭志英.β-葡萄糖苷酶的研究现状及应用前景[J].江苏食品与发酵,2001,107(4):22-25
    [56]孙爱东,葛毅强,倪元颖,等.不同来源的增香酶酶解橙汁(皮)中键合态主要芳香物质的效果分析[J].食品与发酵工业,2001,27(1l):1-4
    [57]陈守文,陈九武,赵山.利用黑曲霉β-葡萄糖苷酶改善葡萄酒的研究[J].中国酿造,1999,(3):17-19
    [58]Gonzalez C L,Gil J V,Lamuela-Raventos R M,et al.The use of transgenic yeasts expressing a geneencoding a glycosyl hydrolase as a tool to increase resveratrol content in wine[J].International Journal of Food Mierobiology,2000,59(3):179-183
    [59]王晓芳.产纤维素酶的真菌筛选与纤维素酶的诱导及其理化性质研究[D].南京师范大学硕士学位论文.江苏南京:南京师范大学,2002,4.10-11
    [60]胡利勇,钟卫鸿.纤维素酶基因克隆及其功能性氨基酸研究进展[J].生物技术,2003,(4):43-44
    [61]刘纯强,王祖农.纤维素酶基因克隆及应用前景[J].生物工程进展,1991,11(3):8-15
    [62]Arja Miettinen-Oinonen,John Londesborough,Vesa Joutsjoki.Three cellulases from Melanocarpus Albomyces for textile treatment at neutral pH[J].Enzyme and Microbial Technology,2004,34:332-341
    [63]Lenting H B M,Warmoeskerken M M C G.Guidelines to come to minimized tensile strength loss upon cellulase application[J].Journal of Biotechnology,2001,89:227-232
    [64]Cortez J M,Ellis J,Bishop D P.Cellulase finishing of woven,cotton fabrics injet and winch machines[J]. Journal of Biotechnology.2001,89:239-245
    [65]Shao-jun Ding,Wei Ge,John A.Buswell.Secretion,purification and characterisation of a recombinant Volvariella volvacea endoglucanase expressed in the yeastPichia pastoris[J].Enzyme and Microbial Technology,2002 31:621–626
    [66]谭慧芳,张国青,郑光宇等.特异腐质霉中性内切葡聚糖酶Ⅱ基因的克隆及表[J].微生物学报,2006,33(6):68-72
    [67]Hakamada Y,Endo K,Takizawa S,et al.Enzymatic properties,crystallization,anddeduced amino acid sequence of an alkaline endoglucanase from Bacillus circulans[J].Biochimica et.Biophysica Acta, 2002,1570:174-1801
    [68]Heikinheimo L, Suominen P, Suominen P, et al. Treating denim fabrics with Trichoderma reesei cellulases[J]. Textile Research Journal. 2000, 70(11): 969-973
    [69]余晓斌,全文海,章克昌.洗涤剂用碱性纤维素酶的研究(I)[J].工业微生物,1997, 27(4):5-8
    [70]Hassan K Sreenath, Vina W Yang, Harold H Burdsall, et al. Toner removal by alkaline-active cellulases from desert basidiomycetes[C]. ACS Symposium655, 1996. 21: 267-279
    [71]Lui J,Otto E,Lange NK,et al. Bio-polishing of cotton knit: from multicomponent cellulase complex to mono-component[C]. Book of papers of the International Conference and Exhibition of the AATCC, Philadelphia, PA,1998,445-454
    [72]Arja Miettinen Oinonen, Pirkko Suominen. Enhanced production of Trichoderma reesei endoglucanases and use of the new cellulase preparations in producing the stonewashed effect on denim fabric[J]. Appl. Environ. Microbiol., 2002, 68(8): 3956-3964
    [73]Putz H J,Renner K, Gottsching L, et al. Enzymatic deinking in comparison with conventional deinking of offset news paper, Proceedings of TAPPI Pulping Conference[M]. Jappi Press, Atlanta, pp. 1994, 877-884
    [74]Jeffries T W, Klunkgness J H, Sykes M S, et al. Comparison of enzymaticenhanced with traditional deinking of xerographic arid laser-printed paper[J]. Tappi J., 1994,77(4):173
    [75]Mrkbak AL, Degn P, Zimmermann W. Deinking of soy bean oil based inkprinted paperwith lipases anda neutral surfactant[J]. J. Biotechnol., 1999, 67(2-3):229
    [76]汪世华,吴思方,杨燕凌.基因工程在菌种改良中的应用.发酵科技通讯.2002,31(2):7-11
    [77]Leung D W,Chen E,Goeddel D V.A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction[J].Technique,1989,1:11~15
    [78]Caldwell R C,Joyee G F.Randomization of genes by PCR mutagenesis[J]PCRMethods andApplication, 1992,2(1):28~33
    [79]Chen K,Arnold F H.Tuning the activity of an enzyme for unusual environments:sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide[J].Proceedings of the National Academy of Sciences of the United States of America,1993,90:5618~5622
    [80]Stemmer WPC.DNA shuffling by random fragmentation and reassembly:in vitro recombination for molecular evolution[J].Proceedings of the National Academy of Sciences of the United States of America,1994,91:10747-10751
    [81]Stemmer W P C.Rapid evolution of a protein in vitro byDNAshuffling[J].Nature, 1994,370(6488): 389-391
    [82]Zhang Y X,Perry K,Vinci V A,et al.Genome shuffling leads to rapid phenotypic improvement in bacteria[J].Nature,2002,415(6872):644-646
    [83]Crameri A,Raillard S,Bermudez E,et al.DNA shuffling of a family of genesfrom diverse species accelerates directed evolution[J].Nature,1998,391(15):288-291
    [84]Kagami O,Kikuchi M,Harayama S.Single-stranded DNA family shuffling[J].Methods in Enzymology,2004,388:11-21
    [85]Kikuchi M,Ohnishi K,Harayama S.An effective family shuffling method using single-stranded DNA[J].Gene,2000,243(1-2):133-137
    [86]Kolkman J A,Stemmer W P C.Directed evolution of proteins by exon shuffling[J].Nature Biotechnology,2001,19:423-428
    [87]雷肇祖,钱志良,章健,工业菌种改良述评[J],工业微生物,2004,34(1):39-51
    [88]黄旭初等,金湘,毛培宏,柠檬酸发酵菌黑曲霉的菌种改良述评[J],生物技术,2005,15(3):93-95
    [89]余增量著,离子束生物技术引论,合肥:安徽科学技术出版社,1998,241-249
    [90]李平,宛晓春,陶文沂等,复合诱变黑曲霉选育β-葡萄糖苷酶高产菌株[J],菌物系统,2000,19(1) :117-121
    [91]吕平,杨柳枝,王艳国,工业微生物低能重离子注入应用研究进展[J],天津化工,2007,21(2):1-2
    [92]洪厚利,刘辰,薛业敏等,激光复合诱变选育木薯原料柠檬酸高产菌[J],食品与发酵工业,2003,29(1): 41-44
    [93]李红玉,李成华,丁新春等,重离子辐照对红酵母的诱变作用[J],辐射研究与辐工艺学报,2004,22(1): 56-60
    [94]王芳,徐秉良,曹奎荣.深绿木霉紫外光诱导耐低温突变菌株的研究[J].甘肃农业大学学报, 2005,8(4): 507-511
    [95]张建峰,陈光,黄梅花等.红曲霉紫外诱变选育多糖高产菌株[J].吉林农业大学学报,2006,28(1):22-24
    [96]武晓炜,吴志国,王艳敏等.甲胺磷降解菌的紫外诱变及高产菌株的筛选[J].河北省科学院学报, 2005, 22(3):7 1-73
    [97]张婵婵,菜籽饼粕水解液为氮源细菌产L-乳酸的菌种选育及发酵条件优化[D].合肥:合肥工业大学硕士论文库,2007
    [98]杜云平,谷氨酰胺合成酶的基因表达和谷氨酰胺代谢途径的定向进化[D].广州:中山大学硕士论文库,2007
    [99]罗红霞,陈志刚等,硫酸二乙酯诱变选育乳酸菌菌株的研究[J].中国乳品工业,2009
    [100]刘丽华,刘丽萍,李文彬,王霞.稀土和硫酸二乙酯联合诱变米曲霉产氨基酰化酶的研究[J].化学与生物工程,2009,26(11)
    [101]王弋博,刘向阳,李三阳等,用紫外诱变及紫外+硫酸二乙酯复合诱变方法选育高产异淀粉酶菌株[J].青海大学学报,2003,21(4)
    [102]夏帆,张华山,顾亚婧,阳飞等,用紫外线-硫酸二乙酯复合诱变K氏酿酒酵母[J].酿酒科技,2008
    [103]Ausubel F M, Kingston R E, Seidman J G,等.精编分子生物学实验指南(第四版) [M].北京:科学出版社, 2005, 22-24, 26, 55-58
    [104]Sambrook J.著,黄培党译.分子克隆实验指南(上册)(第三版)[M].北京:科学出版社, 2002, 87-102, 387-395.
    [105]Mahadevan P R, Bruce Eberhart. Glucosidase and exo-glucanases[J]. Archives of Biochemistry,1964, 108: 22-29
    [106]Bardford M. Rapid and sensitive method for the quantitation of microgram quantities of protein utilize- ing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72: 248
    [107]夏黎明,萧庆,余世袁.碳源对固定化里氏木霉合成纤维素酶的影响[J].纤维素科学与技术, 1994, 2(3-4): 72-77

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700