水稻抗稻瘟病基因Pid3的抗性同源基因发掘与人工进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻瘟病是水稻最为严重的病害之一,利用含有抗病基因的水稻品种是一种有效且环保的防治稻瘟病危害手段。迄今已经定位的抗稻瘟病基因有70多个,其中24个已被克隆。目前克隆的抗稻瘟病基因绝大多数都属于NBS-LRR(Nucleotide Binding-site Leucine-rich Repeat)类型,并且很多都是处于同一位点的等位基因或复等位基因。抗稻瘟病基因Pid3是利用假基因化分子标记在籼稻品种地谷中克隆的典型CC-NBS-LRR基因,该基因在粳稻和杂草稻中的同源基因普遍提前终止,但提前终止位点在野生稻与籼稻中没有检测到。
     鉴于目前已经克隆的这些抗稻瘟病基因特点,本研究利用等位发掘的方法在野生稻和栽培稻中共克隆了41个Pid3同源基因,并将其中11个进行了以感稻瘟病水稻品种TP309为背景的基因转化。对转基因植株抗性鉴定发现来自多年生普通野生稻A4、38-1、40-1和籼稻品种9311.kasalath中的Pid3同源基因具有抗稻瘟病功能:在检测过的一百多个稻瘟病菌小种里面,来自籼稻品种9311中的9311-Pid3抗谱与Pid3相同,其他4个同源基因的抗谱则各不相同,并且来自多年生普通野生稻A4中的A4-Pid3在检测过的稻瘟病菌小种中具有最广的抗谱。最后经检测发现9311-Pid3基因在我国籼稻育种中已经得到广泛利用,而Pid3及其同源基因在粳稻育种中还有很大的利用空间。
     9311-Pid3与野生稻40-1-Pid3对稻瘟病菌具有不同的抗谱,它们在预测的蛋白序列上的差异只出现在LRR区域,预示着LRR区域在这两个基因间对稻瘟病菌小种特异识别方面起作用。经过对Pid3同源基因间LRR区域的互换重组,发现野生稻38-1-PID3与地谷PID3间对稻瘟病菌小种特异识别区域是CC-NBS;38-1-PID3与A4-PID3间以及A4-PID3与地谷PID3间主要由CC-NBS区域起小种特异识别作用,但LRR区域也会产生一定影响。在对地谷中Pid3基因与野生稻15-3-Pid3基因进行LRR区域互换重组研究时,发现重组基因DG15出现了植株矮化表型,经抗性鉴定表明其仍具有抗稻瘟病功能;在对Pid3基因MHD保守模体点突变体研究中也发现有植株矮化表型出现,但这种突变体却并不抗病,与这两种突变类似的其他突变体以前在烟草叶片中作瞬时表达研究时常常都归为自发HR(Hypersensitive Response)反应,本研究结果表明它们的分子机制可能是不相同的。
     由于绝大多数抗稻瘟病基因都属于NBS-LRR类型,本研究利用这一结构特点对抗稻瘟病基因的人工进化做了初步探索。将Pid3基因与同属于CC-NBS-LRR类型的广谱抗稻瘟病基因Pi9以及抗稻瘟病QTL Pbl做了不同结构域间的互换重组,在这些重组基因中,发现Pid3Pi9、Pid3aPi9、Pid3aPb1、Pid3aaPb1仍然具有抗稻瘟病功能,尽管这些重组基因的抗性没有重组前的基因强,但这些结果说明不同抗稻瘟病基因间人工重组进化是可行的。同时为了探索大规模人工进化抗稻瘟病基因的途径,本研究利用multisite gateway技术成功构建了Pid3基因的3片段重组基因,尽管此基因目前未检测到具有抗稻瘟病功能,但我们相信此重组技术将会为大规模人工进化抗稻瘟病基因提供技术支持。
     最后本研究将得到的Pid3同源基因进行了杂交聚合,还利用组织特异性表达启动子PD540(-544)将Pid3基因进行了水稻绿色部位特异表达,使其在水稻胚和胚乳中不表达,进行了一些抗稻瘟病基因转基因生物安全方面的研究探索。
Rice blast, caused by the filamentous ascomycete Magnaporthe oryzae (M. oryzae), is one of the major diseases that drastically damage rice production. The use of plant varieties with resistance (R) genes is, and will continue to be, the most cost-effective and environmentally-friendly way to control this disease. Thus far, more than70blast R genes have been described at the genetic level,24of which have been cloned and characterized. Most of these cloned blast R genes be long to the nucleotide binding-site leucine-rich repeat (NBS-LRR) family, and some have been found to be alleles. We previously cloned Pid3from the indica variety Digu by performing a genome-wide comparison of paired NBS-LRR genes and their pseudogene alleles between two rice genome-sequenced varieties,9311(indica) and Nipponbare (japonica), Pid3alleles in most japonica varieties were identified as pseudogenes due to the presence of a nonsense mutation, but this pseudogene mutation did not occur in the indica varieties that were tested, or in common wild rice species.
     In this study,41orthologs of Pid3in common wild rice and in cultivated rice were identified using an allele mining approach, and11of which were transformed into the rice blast susceptible variety TP309. After resistance evaluation for transgenic plants,5Pid3orthologs were found to be functional rice blast resistance genes. The ortholog in indica variety9311had the same blast resistance spectrum as Pid3, while the remaining4orthologs had different resistance spectrum between each other, and the ortholog in common wild rice A4had the broadest resistance spectrum as to these blast strains we used. Additional, we found the Pid3ortholog in9311had been broadly used as resistance resources in our Country's indica rice breeding program, and these Pid3orthologs could be important blast resistance resources for japonica rice breeding in the future.
     The predicted40-1-PID3and9311-PID3proteins differed solely in the LRR region, thus, specificity differences between orthologs could be determined by the LRR region. Functional analysis in transgenic plants of recombinant orthologs constructed in vitro provided further information:DG38and A438recombinants, encoding the LRR of38-1-Pid3, conferred Pid3and A4-Pid3resistance specificity, respectively;38DG recombinant, encoding the LRR of Pid3, conferred38-1-Pid3resistance specificity;38A4recombinant, encoding the LRR of A4-Pid3, conferred different resistance specificity from38-1-Pid3and A4-Pid3, thus, specificity differences between orthologs could be determined by the CC-NBS domain too. DG15recombinant, encoding the LRR of15-3-Pid3, exhibited dwarf, abnormal morphology phenotype and conferred blast resistance, whereas the point mutate Pid3(D508V), which had a point mutation in the MHD motif, exhibited moderately dwarf, abnormal morphology phenotype and didn't confer blast resistance, thus we believed that the molecular mechanism between the two mutates was different, although both were considered the same HR phenotypes in other transient expression researches in tobacco leaves.
     Considering that most of the cloned blast R genes belong to NBS-LRR type, we constructed some recombinants in vitro between Pid3and other NBS-LRR type rice blast R genes to explore artificial evolution of rice blast R genes. Pid3Pi9and Pid3aPi9recombinants encoding the LRR region and ARC-LRR region of broad blast R gene Pi9, respectively, also conferred blast resistance; The analogue Pid3aPbl and Pid3aaPbl recombinants encoding the LRR region and ARC-LRR region of blast resistance QTL Pb1, respectively, had the blast resistance ability too. These results demonstrated the possibility of artificial evolution of rice blast R genes in the future. Meanwhile, in order to explore large-scale artificial evolution of rice blast R genes, we constructed three-fragment recombinants using the multi-site gateway technology. Although the recombinant did not confer blast resistance, we believed this approach would do favor for artificial evolution of rice blast R genes in the future.
     Finally, we pyramided Pid3orthologs by crossing transgenic plants with each ortholog, and constrained Pid3expression only in rice green tissues not in embryo and endosperm by using tissue specific promoter PD540(-544) for transgenic bio-safety research.
引文
1. Abramovitch RB, JC Anderson, GB Martin. Bacterial Elicitation and Evasion of Plant Innate Immunity. Nat Rev Mol Cell Biol,2006,7(8):601-611.
    2. Ashikawa I, N Hayashi, H Yamane, et al. Two Adjacent Nucleotide-Binding Site-Leucine-Rich Repeat Class Genes Are Required to Confer Pikm-Specific Rice Blast Resistance. Genetics, 2008,180(4):2267-2276.
    3. Bai SW, J Liu, C Chang, et al. Structure-Function Analysis of Barley Nlr Immune Receptor Mla10 Reveals Its Cell Compartment Specific Activity in Cell Death and Disease Resistance. Plos Pathogens,2012,8(6):e1002752.
    4. Belkhadir Y, R Subramaniam, JL Dangl. Plant Disease Resistance Protein Signaling:Nbs-Lrr Proteins and Their Partners. Curr Opin Plant Biol,2004,7(4):391-399.
    5. Bendahmane A, G Farnham, P Moffett, et al. Constitutive Gain-of-Function Mutants in a Nucleotide Binding Site-Leucine Rich Repeat Protein Encoded at the Rx Locus of Potato. Plant J,2002, 32(2):195-204.
    6. Bent AF, D Mackey. Elicitors, Effectors, and R Genes:The New Paradigm and a Lifetime Supply of Questions. Annual Review of Phytopathology,2007,45:399-436.
    7. Bernoux M, JG Ellis, PN Dodds. New Insights in Plant Immunity Signaling Activation. Curr Opin Plant Biol,2011,14(5):512-518.
    8. Bernoux M, T Ve, S Williams, et al.Structural and Functional Analysis of a Plant Resistance Protein Tir Domain Reveals Interfaces for Self-Association, Signaling, and Autoregulation. Cell Host & Microbe,2011,9(3):200-211.
    9. Boller T, SY He. Innate Immunity in Plants:An Arms Race between Pattern Recognition Receptors in Plants and Effectors in Microbial Pathogens. Science,2009,324(5928):742-744.
    10.Bordoli L, F Kiefer, K Arnold, et al. Protein Structure Homology Modeling Using Swiss-Model Workspace. Nat Protocols,2008,4(1):1-13.
    11. Boudsocq M, MR Willmann, M McCormack, et al. Differential Innate Immune Signalling Via Ca2+ Sensor Protein Kinases. Nature,2010,464(7287):418-422.
    12. Brunner S, S Hurni, P Streckeisen, et al. Intragenic Allele Pyramiding Combines Different Specificities of Wheat Pm3 Resistance Alleles. Plant J,2010,64(3):433-445.
    13. Bryan GT, KS Wu, LFarrall, et al. Ta Single Amino Acid Difference Distinguishes Resistant and Susceptible Alleles of the Rice Blast Resistance Gene Pi-Ta. Plant Cell,2000,12(11): 2033-2046.
    14. Cai M, J Wei, X Li, et al. A Rice Promoter Containing Both Novel Positive and Negative Cis-Elements for Regulation of Green Tissue-Specific Gene Expression in Transgenic Plants. Plant Biotechnol J,2007,5(5):664-674.
    15. Caicedo AL, BA Schaal, BN Kunkel. Diversity and Molecular Evolution of the Rps2 Resistance Gene in Arabidopsis Thaliana. Proc NatlAcad Sci U S A,1999,96(1):302-306.
    16. Caplan J, M Padmanabhan, SP Dinesh-Kumar. Plant Nb-Lrr Immune Receptors:From Recognition to Transcriptional Reprogramming. Cell Host & Microbe,2008,3(3):126-135.
    17. Catanzariti AM, PN Dodds, T Ve, et al. The Avrm Effector from Flax Rust Has a Structured C-Terminal Domain and Interacts Directly with the M Resistance Protein. Mol Plant Microbe Interact,23(1):49-57.
    18. Chen J, YF Shi, WZ Liu, et al. A Pid3 Allele from Rice Cultivar Gumei2 Confers Resistance to Magnaporthe Oryzae. J Genet Genomics,2011,38(5):209-216.
    19. Chen Q, Z Han, H Jiang, et al. Strong Positive Selection Drives Rapid Diversification of R-Genes in Arabidopsis Relatives. J Mol EvoL 2010,70(2):137-148.
    20. Chen XW, PC Ronald. Innate Immunity in Rice. Trends Plant Sci,2011,16(8):451-459.
    21. Chen XW, JJ Shang, DX Chen, et al. A B-Lectin Receptor Kinase Gene Conferring Rice Blast Resistance. Plant J,2006,46(5):794-804.
    22. Chen Y, ZY Liu, DA Halterman. Molecular Determinants of Resistance Activation and Suppression by Phytophthora Infestans Effector Ipi-O. Plos Pathogens,2012,8(3):e1002595.
    23. Comai L, K Young, BJ Till, et al. Efficient Discovery of DNA Polymorphisms in Natural Populations by Ecotilling. Plant J,2004,37(5):778-786.
    24. Cui H, T Xiang, JM Zhou. Plant Immunity:A Lesson from Pathogenic Bacterial Effector Proteins. Cellular Microbiol,2009,11(10):1453-1461.
    25. Dangl JL, JDG Jones. Plant Pathogens and Integrated Defence Responses to Infection. Nature,2001, 411(6839):826-833.
    26. Darbani B, A Eimanifar, CN Stewart, et al. Methods to Produce Marker-Free Transgenic Plants. Biotechnol J,2007,2(1):83-90.
    27. Das A, D Soubam, PK Singh, et al. A Novel Blast Resistance Gene, Pi54rh Cloned from Wild Species of Rice, Oryza Rhizomatis Confers Broad Spectrum Resistance to Magnaporthe Oryzae. Funct Integr Genomics,2012,12(2):215-228.
    28. De Jonge R, HP van Esse, K Maruthachalam, et al. Tomato Immune Receptor Vel Recognizes Effector of Multiple Fungal Pathogens Uncovered by Genome and Rna Sequencing. Proc Natl Acad Sci U S A,2012,109(13):5110-5115.
    29. De Vetten N, A-M Wolters, K Raemakers, et aL A Transformation Method for Obtaining Marker-Free Plants of a Cross-Pollinating and Vegetatively Propagated Crop. Nat Biotech, 2003,21(4):439-442.
    30. Dean R, JAL Van Kan, ZA Pretorius, et al. The Top 10 Fungal Pathogens in Molecular Plant Pathology. Mol Plant Pathology,2012,13(4):414-430.
    31. Delteil A, J Zhang, P Lessard, et al. Potential Candidate Genes for Improving Rice Disease Resistance. Rice,2010,3(1):56-71.
    32. DeYoung BJ, RW Innes. Plant Nbs-Lrr Proteins in Pathogen Sensing and Host Defense. Nat Immunol,2006,7(12):1243-1249.
    33. Dodds PN, GJ Lawrence, AM Catanzariti, et al. Direct Protein Interaction Underlies Gene-for-Gene Specificity and Coevolution of the Flax Resistance Genes and Flax Rust Avirulence Genes. Proc Natl Acad Sci U S A,2006,103(23):8888-8893.
    34. Dodds PN, GJ Lawrence, JG Ellis. Six Amino Acid Changes Confined to the Leucine-Rich Repeat Beta-Strand/Beta-Turn Motif Determine the Difference between the P and P2 Rust Resistance Specificities in Flax. Plant Cell, 2001,13(1):163-178.
    35. Dodds PN, JP Rathjen. Plant Immunity:Towards an Integrated View of Plant-Pathogen Interactions. Nat Rev Genet,2010,11(8):539-548.
    36. Dong J, F Xiao, F Fan, et al. Crystal Structure of the Complex between Pseudomonas Effector Avrptob and the Tomato Pto Kinase Reveals Both a Shared and a Unique Interface Compared with Avrpto-Pto. Plant Cell,2009,21(6):1846-1859.
    37. Du B, W Zhang, B Liu, et al. Identification and Characterization of Bphl4, a Gene Conferring Resistance to Brown Planthopper in Rice. Proc Natl Acad Sci U S A,2009,106(52): 22163-22168.
    38. Durrant WE, X Dong. Systemic Acquired Resistance. Annu Rev Phytopathol,2004,42:185-209.
    39. Ellis JG, PN Dodds, GJ Lawrence. Flax Rust Resistance Gene Specificity Is Based on Direct Resistance-Avirulence Protein Interactions. Annu Rev Phytopathol,2007,45289-306.
    40. Ellis JG, GJ Lawrence, JE Luck, et al. Identification of Regions in Alleles of the Flax Rust Resistance Gene L That Determine Differences in Gene-for-Gene Specificity. Plant Cell,1999, 11(3):495-506.
    41. Feng F, JM Zhou. Plant-Bacterial Pathogen Interactions Mediated by Type Ⅲ Effectors. Curr Opin Plant Biol, 2012,15(4):469-476.
    42. Fu ZQ, SP Yan, A Saleh, et al. Npr3 and Npr4 Are Receptors for the Immune Signal Salicylic Acid in Plants. Nature,2012,486(7402):228-233.
    43. Fukuoka S, N Saka, H Koga, et al. Loss of Function of a Proline-Containing Protein Confers Durable Disease Resistance in Rice. Science,2009,325(5943):998-1001.
    44. Gao JS, N Sasaki, H Kanegae, et al. The Tir-Nbs but Not Lrr Domains of Two Novel N-Like Proteins Are Functionally Competent to Induce the Elicitor P50-Dependent Hypersensitive Response. Physiol Mol Plant Pathol,2007,71(1-3):78-87.
    45. Gao ZY, EH Chung, TK Eitas, et al. Plant Intracellular Innate Immune Receptor Resistance to Pseudomonas Syringae Pv. Maculicola 1 (Rpml) Is Activated at, and Functions on, the Plasma Membrane. Proc Natl Acad Sci U S A, 2011,108(18):7619-7624.
    46. Gu K, D Tian, F Yang, et al. High-Resolution Genetic Mapping of Xa27(T), a New Bacterial Blight Resistance Gene in Rice, Oryza Sativa L. Theor Appl Genet,2004,108(5):800-807.
    47. Gust AA, T Nurnberger. Plant Immunology a Life or Death Switch. Nature,2012,486(7402): 198-199.
    48. Hayashi N, H Inoue, T Kato, et al. Durable Panicle Blast-Resistance Gene Pbl Encodes an Atypical Cc-Nbs-Lrr Protein and Was Generated by Acquiring a Promoter through Local Genome Duplication. Plant J,2010,64(3):498-510.
    49. Hou S, Y Yang, D Wu, et al. Plant Immunity:Evolutionary Insights from Pbsl, Pto, and Rin4. Plant signaling & behavior,2011,6(6):794-799.
    50. Hua L, J Wu, C Chen, et al. The Isolation of Pil, an Allele at the Pik Locus Which Confers Broad Spectrum Resistance to Rice Blast. Theor Appl Genet,2012,125(5):1047-1055.
    51. Huang CL, SY Hwang, YC Chiang, et al. Molecular Evolution of the Pi-Ta Gene Resistant to Rice Blast in Wild Rice (Oryza Rufipogon). Genetics,2008,179(3):1527-1538.
    52. Huang X, X Wei, T Sang, et al. Genome-Wide Association Studies of 14 Agronomic Traits in Rice Landraces. Nat Genet,2010,42(11):961-967.
    53. Jia Y, SA McAdams, GT Bryan, et al. Direct Interaction of Resistance Gene and Avirulence Gene Products Confers Rice Blast Resistance. EMBO J,2000,19(15):4004-4014.
    54. Johal GS, SP Briggs. Reductase-Activity Encoded by the Hml Disease Resistance Gene in Maize. Science,1992,258(5084):985-987.
    55. Jones DA, JDG Jones. The Role of Leucine-Rich Repeat Proteins in Plant Defences. Adv Bot Res, 1997,24:89-167.
    56. Jones JDG, JL Dangl. The Plant Immune System. Nature,2006,444(7117):323-329.
    57. Kanzaki H, K Yoshida, H Saitoh, et al. Arms Race Co-Evolution of Magnaporthe Oryzae Avr-Pik and Rice Pik Genes Driven by Their Physical Interactions. Plant J,2012.
    58. Kawano Y, A Akamatsu, K Hayashi, et al. Activation of a Rac Gtpase by the Nlr Family Disease Resistance Protein Pit Plays a Critical Role in Rice Innate Immunity. Cell Host & Microbe, 2010,7(5):362-375.
    59. Kim MG, L da Cunha, AJ McFall,et al. Two Pseudomonas Syringae Type Ⅲ Effectors Inhibit Rin4-Regulated Basal Defense in Arabidopsis.Cell,2005,121(5):749-759.
    60. Krasileva KV, D Dahlbeck, BJ Staskawicz. Activation of an Arabidopsis Resistance Protein Is Specified by the in Planta Association of Its Leucine-Rich Repeat Domain with the Cognate Oomycete Effector. Plant Cell,2010,22(7):2444-2458.
    61. Kruijt M, DJ Kip, MHAJ Joosten, et al. The Cf-4 and Cf-9 Resistance Genes against Cladosporium Fulvum Are Conserved in Wild Tomato Species. Mol Plant Micro Interact,2005,18(9): 1011-1021.
    62. Kuang H, SS Woo, BC Meyers, et al. Multiple Genetic Processes Result in Heterogeneous Rates of Evolution within the Major Cluster Disease Resistance Genes in Lettuce. Plant Cell,2004, 16(11):2870-2894.
    63. Kumar GR, K Sakthivel, RM Sundaram, et al. Allele Mining in Crops:Prospects and Potentials. Biotechnol Adv,2010,28(4):451-461.
    64. Lacombe S, A Rougon-Cardoso, E Sherwood, et al. Interfamily Transfer of a Plant Pattern-Recognition Receptor Confers Broad-Spectrum Bacterial Resistance. Nature Biotechnol 2010,28(4):365-394.
    65. Lahaye T. The Arabidopsis Rrsl-R Disease Resistance Gene-Uncovering the Plant's Nucleus as the New Battlefield of Plant Defense? Trends Plant Sci,2002,7(10):425-427.
    66. Lee SK, MY Song, YS Seo, et al. Rice Pi5-Mediated Resistance to Magnaporthe Oryzae Requires the Presence of Two Coiled-Coil-Nucteotide-Bind ing-Leucine-Rich Repeat Genes. Genetics, 2009,181(4):1627-1638.
    67. Lee SW, SW Han, M Sririyanum, et al. A Type I-Secreted, Sulfated Peptide Triggers Xa21-Mediated Innate Immunity. Science,2009,326(5954):850-853.
    68. Li HJ, XH Li, JH Xiao, et al. Ortholog Alleles at Xa3/Xa26 Locus Confer Conserved Race-Specific Resistance against Xanthomonas Oryzae in Rice. Mol Plant,2012,5(1):281-290.
    69. Li J, Q Chen, L Wang, et al. Biological Effects of Rice Harbouring Bphl4 and Bph15 on Brown Planthopper, Nilaparvata Lugens. Pest Manag Sci,2011,67(5):528-534.
    70. Li S, S Wang, Q Deng, et al. Identification of Genome-Wide Variations among Three Elite Restorer Lines for Hybrid-Rice. PLoS ONE,2012,7(2):e30952.
    71. Liker E, E Fernandez, E Izaurralde, et al. The Structure of the Mrna Export Factor Tap Reveals a Cis Arrangement of a Non-Canonical Rnp Domain and an Lrr Domain. EMBO J,2000,19(21): 5587-5598.
    72. Lin F, S Chen, ZQ Que, et al. The Blast Resistance Gene Pi37 Encodes a Nucleotide Binding Site-Leucine-Rich Repeat Protein and Is a Member of a Resistance Gene Cluster on Rice Chromosome 1. Genetics,2007,177(3):1871-1880.
    73. Liu J, X Liu, L Dai, et al. Recent Progress in Elucidating the Structure, Function and Evolution of Disease Resistance Genes in Plants. J Genet Genomics,2007,34(9):765-776.
    74. Liu JL, YJ Hu, Y Ning, et al. Genetic Variation and Evolution of the Pi9 Blast Resistance Locus in the Aa Genome Oryza Species. J Plant Biol,2011,54(5):294-302.
    75. Liu X Q, L Wang, X D Liu, et al.The Molecular Evolution of the Rice Blast Resistance Gene Pi36. Internat J Plant Sci,2010,171(3):235-243.
    76. Liu XQ, F Lin, L Wang, et aL The in Silico Map-Based Cloning of Pi36, a Rice Coiled-Coil-Nucleotide-Binding Site-Leucine-Rich Repeat Gene That Confers Race-Specific Resistance to the Blast Fungus. Genetics,2007,176(4):2541-2549.
    77. Luck JE, GJ Lawrence, PN Dodds, et al. Regions Outside of the Leucine-Rich Repeats of Flax Rust Resistance Proteins Play a Role in Specificity Determination. Plant Cell,2000,12(8): 1367-1377.
    78. Lukasik E, FLW Takken. Standing Strong, Resistance Proteins Instigators of Plant Defence. Curr Opin Plant Biol 2009,12(4):427-436.
    79. Mackey D, BF Holt, A Wiig, et al.Rin4 Interacts with Pseudomonas Syringae Type III Effector Molecules and Is Required for Rpml-Mediated Resistance in Arabidopsis. Cell 2002,108(6): 743-754.
    80. Maekawa T, W Cheng, LN Spiridon, et al. Coiled-Coil Domain-Dependent Homodimerization of Intracellular Barley Immune Receptors Defines a Minimal Functional Module for Triggering Cell Death. Cell Host & Microbe,2011,9(3):187-199.
    81. Maekawa T, TA Kufer, P Schulze-Lefert. Nlr Functions in Plant and Animal Immune Systems:So Far and yet So Close. Nat immunol 2011,12(9):817-826.
    82. Mauricio R, EA Stahl, T Korves, et al. Natural Selection for Polymorphism in the Disease Resistance Gene Rps2 of Arabidopsis Thaliana. Genetics,2003,163(2):735-746.
    83. Mazourek M, ET Cirulli, SM Collier, et al. The Fractionated Orthology of Bs2 and Rx/Gpa2 Supports Shared Synteny of Disease Resistance in the Solanaceae. Genetics,2009,182(4): 1351-1364.
    84. McDowell JM, M Dhandaydham, TA Long, et al. Intragenic Recombination and Diversifying Selection Contribute to the Evolution of Downy Mildew Resistance at the Rpp8 Locus of Arabidopsis. Plant Cell,1998,10(11):1861-1874.
    85. Mc Dowell JM, SASimon. Recent Insights into R Gene Evolution. Mol Plant Pathology,2006,7(5): 437-448.
    86. McHale L, XP Tan, P Koehl, et al. Plant Nbs-Lrr Proteins:Adaptable Guards. Genome Biol, 2006, 7(4):212.
    87. Mestre P, DC Baulcombe. Elicitor-Mediated Oligomerization of the Tobacco N Disease Resistance Protein. Plant Cell, 2006,18(2):491-501.
    88. Meyers BC, A Kozik, A Griego, et al. Genome-Wide Analysis of Nbs-Lrr-Encoding Genes in Arabidopsis. Plant Cell, 2003,15(4):809-834.
    89. Moffat AS. Plant Genetics-Mapping the Sequence of Disease Resistance. Science,1994,265(5180): 1804-1805.
    90. Nei M, AP Rooney. Concerted and Birth-and-Death Evolution of Multigene Families. Annu Rev Genet,2005,39:121-152.
    91. Okuyama Y, H Kanzaki, A Abe, et al. A Multifaceted Genomics Approach Allows the Isolation of the Rice Pia-Blast Resistance Gene Consisting of Two Adjacent Nbs-Lrr Protein Genes.Plant J, 2011,66(3):467-479.
    92. Parker JE. Plant Recognition of Microbial Patterns. Trends Plant Sci,2003,8(6):245-247.
    93. Peter Moffett GF, Jack Peart and David C. Interaction between Domains of a Plant Nbs-Lrr Protein in Disease Resistance-Related Cell Death. EMBO J,2002,21(17):4511-4519.
    94. Qi D, BJ DeYoung, RW Innes. Structure-Function Analysis of the Coiled-Coil and Leucine-Rich Repeat Domains of the Rps5 Disease Resistance Protein. Plant Physiol,2012,158(4): 1819-1832.
    95. Qiu C, J Sangha, F Song, et al. Production of Marker-Free Transgenic Rice Expressing Tissue-Specific Bt Gene. Plant Cell Reports,2010,29(10):1097-1107.
    96. Qu SH, GF Liu, B Zhou, et al. The Broad-Spectrum Blast Resistance Gene Pi9 Encodes a Nucleotide-Binding Site-Leucine-Rich Repeat Protein and Is a Member of a Multigene Family in Rice. Genetics,2006,172(3):1901-1914.
    97. Rai AK, SP Kumar, SK Gupta, et al. Functional Complementation of Rice Blast Resistance Gene Pi-K(H)(Pi54) Conferring Resistance to Diverse Strains of Magnaporthe Oryzae. J Plant Biochem Biotechnol, 2011,20(1):55-65.
    98. Rairdan GJ, SM Collier, MA Sacco, et al. The Coiled-Coil and Nucleotide Binding Domains of the Potato Rx Disease Resistance Protein Function in Pathogen Recognition and Signaling. Plant Cell,2008,20(3):739-751.
    99. Rairdan GJ, P Moffett. Distinct Domains in the Arc Region of the Potato Resistance Protein Rx Mediate Lrr Binding and Inhibition of Activation. Plant Cell,2006,18(8):2082-2093.
    100. Rairdan GJ, P Moffett. Distinct Domains in the Arc Region of the Potato Resistance Protein Rx Mediate Lrr Binding and Inhibition of Activation. Plant Cell,2006,18(8):2082-2093.
    101. Ravensdale M, ANemri, PH Thrall, et al. Co-Evolutionary Interactions between Host Resistance and Pathogen Effector Genes in Flax Rust Disease. Mol Plant Pathol,2011,12(1):93-102.
    102. Rose LE, PD Bittner-Eddy, CH Langley, et al. The Maintenance of Extreme Amino Acid Diversity at the Disease Resistance Gene, Rpp13, in Arabidopsis Thaliana. Genetics,2004,166(3): 1517-1527.
    103. Seeholzer S, T Tsuchimatsu, T Jordan, et al. Diversity at the Mla Powdery Mildew Resistance Locus from Cultivated Barley Reveals Sites of Positive Selection. Mol Plant Microbe Interact, 2010,23(4):497-509.
    104. Sela H, LN Spiridon, AJ Petrescu, et al. Ancient Diversity of Splicing Motifs and Protein Surfaces in the Wild Emmer Wheat (Triticum Dicoccoides) Lr10 Coiled Coil (Cc) and Leucine-Rich Repeat (Lrr) Domains. Mol Plant Pathol,2012,13(3):276-287.
    105. Shang JJ, Y Tao, XW Chen, et al. Identification of a New Rice Blast Resistance Gene, Pid3,by Genomewide Comparison of Paired Nucleotide-Binding Site-Leucine-Rich Repeat Genes and Their Pseudogene Alleles between the Two Sequenced Rice Genomes. Genetics,2009,182(4): 1303-1311.
    106. Shen QH, FS Zhou, S Bieri, et al. Recognition Specificity and Rar1/Sgt1 Dependence in Barley Mla Disease Resistance Genes to the Powdery Mildew Fungus. Plant Cell,2003,15(3): 732-744.
    107. Skamnioti P, SJ Gurr. Against the Grain:Safeguarding Rice from Rice Blast Disease. Trends BiotechnoL 2009,27(3):141-150.
    108. Song WY, LY Pi, GL Wang, et al. Evolution of the Rice Xa21 Disease Resistance Gene Family. Plant Cell 1997,9(8):1279-1287.
    109. Song WY, GL Wang, LL Chen, et al. A Receptor Kinase-Like Protein Encoded by the Rice Disease Resistance Gene, Xa21. Science,1995,270(5243):1804-1806.
    110. Stahl EA, G Dwyer, R Mauricio, et al. Dynamics of Disease Resistance Polymorphism at the Rpml Locus of Arabidopsis. Nature,1999,400(6745):667-671.
    111. Sun X, Y Cao, Z Yang, et al. Xa26, a Gene Conferring Resistance to Xanthomonas Oryzae Pv. Oryzae in Rice, Encodes an Lrr Receptor Kinase-Like Protein. Plant J,2004,37(4):517-527.
    112. Sweat TA, TJ Wolpert. Thioredoxin H5 Is Required for Victorin Sensitivity Mediated by a Cc-Nbs-Lrr Gene in Arabidops is. Plant Cel,. 2007,19(2):673-687.
    113. Swiderski MR, D Birker, JDG Jones. The Tir Domain of Tir-Nb-Lrr Resistance Proteins Is a Signaling Domain Involved in Cell Death Induction. Mol Plant Microbe Interact, 2009,22(2): 157-165.
    114. Takahashi A, N Hayashi, A Miyao, et al. Unique Features of the Rice Blast Resistance Pish Locus Revealed by Large Scale Retrotransposon-Tagging. BMC Plant Biol, 2010,10(175).
    115. Tameling WIL, JH Vossen, M Albrecht, et al. Mutations in the Nb-Arc Domain of 1-2 That Impair Atp Hydrolysis Cause Autoactivation. Plant Physiol, 2006,140(4):1233-1245.
    116. Tamura M, H Tachida. Evolution of the Number of Lrrs in Plant Disease Resistance Genes. Mol Genet Genomics,2011,285(5):393-402.
    117. Tao Y, FH Yuan, RT Leister, et al. Mutational Analysis of the Arabidopsis Nucleotide Binding Site-Leucin e-Rich Repeat Resistance Gene Rps2. Plant Cell, 2000,12(12):2541-2554.
    118. Telliez JB, KM Bean, LL Lin. Lrdd, a Novel Leucine Rich Repeat and Death Domain Containing Protein. BBA-Protein Struct M,2000,1478(2):280-288.
    119. Thirugnanasambandam A, KM Wright, SD Atkins, et al. Infection of Rrs 1 Barley by an Incompatible Race of the Fungus Rhynchosporium Secalis Expressing the Green Fluorescent Protein. Plant Pathol,2011,60(3):513-521.
    120. Thomma B, T Nurnberger, M Joosten. Of Pamps and Effectors:The Blurred Pti-Eti Dichotomy. Plant Cell,2011,23(1):4-15.
    121. Tian F, DJ Li, Q Fu, et al. Construction of Introgression Lines Carrying Wild Rice (Oryza Rufipogon Griff) Segments in Cultivated Rice (Oryza Sativa L.) Background and Characterization of Introgressed Segments Associated with Yield-Related Traits. Theor Appl Genet,2006,112(3):570-580.
    122. Tiffin P, DA Moeller. Molecular Evolution of Plant Immune System Genes. Trends Genet,2006, 22(12):662-670.
    123. Tornero P, P Merritt, A Sadanandom, et al.Rarl and Ndrl Contribute Quantitativery to Disease Resistance in Arabidopsis, and Their Relative Contributions Are Dependent on the R Gene Assayed. Plant Cell 2002,14(5):1005-1015.
    124.Van Ooijen G, G Mayr, MMA Kasiem, et aL Structure-Function Analysis of the Nb-Arc Domain of Plant Disease Resistance Proteins. J Exp Bot,2008,59(6):1383-1397.
    125. Wang C-IA, G Guncar, JK Forwood, et al. Crystal Structures of Flax Rust Avirulence Proteins Avrl567-a and -D Reveal Details of the Structural Basis for Flax Disease Resistance Specificity. Plant CelL 2007,19(9):2898-2912.
    126. Wang HM, J Chen, YF Shi, et al. Development and Validation of Caps Markers for Marker-Assisted Selection of Rice Blast Resistance Gene Pi25. Acta Agron Sin,2012.
    127. Wang W, Y Wen, R Berkey, et al. Specific Targeting of the Arabidopsis Resistance Protein Rpw8.2 to the Interfacial Membrane Encasing the Fungal Haustorium Renders Broad-Spectrum Resistance to Powdery Mildew.Plant Cell,2009,21(9):2898-2913.
    128. Wang ZX, M Yano, U Yamanouchi, et al. The Pib Gene for Rice Blast Resistance Belongs to the Nucleotide Binding and Leucine-Rich Repeat Class of Plant Disease Resistance Genes. Plant J, 1999,19(1):55-64.
    129. Weaver LM, MR Swiderski, Y Li, et al. The Arabidopsis Thaliana Tir-Nb-Lrr R-Protein, Rppla; Protein Localization and Constitutive Activation of Defence by Truncated Alleles in Tobacco and Arabidopsis. Plant J,2006,47(6):829-840.
    130. Williams SJ, P Somaraj, E deCourcy-Ireland, et al.An Autoactive Mutant of the M Flax Rust Resistance Protein Has a Preference for Binding Atp, Whereas Wild-Type M Protein Binds Adp. Mol Plant Microbe Interact 2011,24(8):897-906.
    131. Woolhouse MEJ, JP Webster, E Domingo, et al. Biological and Biomedical Implications of the Co-Evolution of Pathogens and Their Hosts. Nat Genet,2002,32(4):569-577.
    132. Wu L, ML Goh, C Sreekala, et al. Xa27 Depends on an Amino-Terminal Signal-Anchor-Like Sequence to Localize to the Apoplast for Resistance to Xanthomonas Oryzae Pv Oryzae. Plant Physiol,2008,148(3):1497-1509.
    133. Wulff BBH, A Heese, L Tomlinson-Buhot, et al. The Major Specificity-Determining Amino Acids of the Tomato Cf-9 Disease Resistance Protein Are at Hypervariable Solvent-Exposed Positions in the Central Leucine-Rich Repeats. Mol Plant Microbe Interact,2009,22(10):1203-1213.
    134. Wulff BBH, CM Thomas, M Smoker, et al. Domain Swapping and Gene Shuffling Identify Sequences Required for Induction of an Avr-Dependent Hypersensitive Response by the Tomato Cf-4 and Cf-9 Proteins. Plant Cell,2001,13(2):255-272.
    135. Xiao S, S Ellwood, O Calis, et al. Broad-Spectrum Mildew Resistance in Arabidopsis Thaliana Mediated by Rpw8. Science,2001,291(5501):118-120.
    136. Xie XW, J Yu, JL Xu, et al. Introduction of a Non-Host Gene Rxo1 Cloned from Maize Resistant to Rice Bacterial Leaf Streak into Rice Varieties. Sheng Wu Gong Cheng Xue Bao,2007,23(4): 607-611.
    137. Xu X, X Liu, S Ge, et al. Resequencing 50 Accessions of Cultivated and Wild Rice Yields Markers for Identifying Agronomically Important Genes. Nat Biotech,2012,30(1):105-111.
    138. Xue JY, Y Wang, P Wu, et al. A Primary Survey on Bryophyte Species Reveals Two Novel Classes of Nucleotide-Binding Site (Nbs) Genes. Plos One,2012,7(5).
    139. Yang H, Z Chu, H, J Fu, et al. The Major Blast Resistance Qtl Rbr2 Is an Allele of Pib Gene. Molecular Plant Breeding,2008,6(2):213-219.
    140. Yang S, T Gu, C Pan, et al. Genetic Variation of Nbs-Lrr Class Resistance Genes in Rice Lines. Theor Appl Genet,2008,116(2):165-177.
    141. Ye R, F Zhou, Y Lin. Two Novel Positive Cis -Regulatory Elements Involved in Green Tissue-Specific Promoter Activity in Rice (Oryza Sativa L Ssp.). Plant Cell Reports,2012, 31(7):1159-1172.
    142. Yoshimura S, U Yamanouchi, Y Katayose, et al. Expression of Xal, a Bacterial Blight-Resistance Gene in Rice, Is Induced by Bacterial Inoculation. Proc Natl Acad Sci U S A,1998,95(4): 1663-1668.
    143. Yuan B, C Zhai, WJ Wang, et al. The Pik-P Resistance to Magnaporthe Oryzae in Rice Is Mediated by a Pair of Closely Linked Cc-Nbs-Lrr Genes. Theor Appl Genet,2011,122(5):1017-1028.
    144. Yue J-X, BC Meyers, J-Q Chen, et al. Tracing the Origin and Evolutionary History of Plant Nucleotide-Binding Site-Leucine-Rich Repeat (Nbs-Lrr) Genes. New Phytologist,2012,193(4): 1049-1063.
    145. Zhai C, F Lin, ZQ Dong, et al. The Isolation and Characterization of Pik, a Rice Blast Resistance Gene Which Emerged after Rice Domestication. New Phytologist,2011,189(1):321-334.
    146. Zhang J, J-M Zhou. Plant Immunity Triggered by Microbial Molecular Signatures. Mol Plant,2010, 3(5):783-793.
    147. Zhao BY XH Lin, J Poland, et al. A Maize Resistance Gene Functions against Bacterial Streak Disease in Rice. Proc Natl Acad Sci U S A,2005,102(43):15383-15388.
    148. Zhou B, SH Qu, GF Liu, et al. The Eight Am ino-Acid Differences within Three Leucine-Rich Repeats between Pi2 and Piz-T Resistance Proteins Determine the Resistance Specificity to Magnaporthe Grisea. Mol Plant Microbe Interact,2006,19(11):1216-1228.
    149. Zhu X, S Chen, J Yang, et al. The Identification of Pi50(T), a New Member of the Rice Blast Resistance Pi2/Pi9 Multigene Family. Theor Appl Genet,2012,124(7):1295-1304.
    150. Zipfel C, JP Rathjen. Plant Immunity:Avrpto Targets the Frontline. Curr Biol,2008,18(5): 218-220.
    151. 国家水稻数据中心稻瘟病主效抗性基因列表[Db/Ol]. Http://Www.Ricedata.Cn/Gene/Gene Pi.Htm,2012-6-20.
    152.胡亚军.水稻抗稻瘟病pi2/Pi9嵌合基因对稻瘟病和白叶枯病广谱抗性分子机理的研究.硕士学位论文,长沙,湖南农业大学,2009.
    153.尚俊军.水稻NBS-LRR基因家族分析与抗稻瘟病基因Pid3的克隆.博士学位论文,北京,中国科学院遗传与发育生物学研究所,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700