欧洲黑杨幼苗氮高效基因型及SNPs标记筛选研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究是对欧洲黑杨(Populus nigra L.)基因资源氮素利用效率进行研究,通过对比分析施氮前后各无性系的生长表现和测定分析与氮素利用相关的生理指标,筛选出氮素利用效率高效型欧洲黑杨基因型,为我国资源高效型杨树新品种选育提供优良种质,并为杨树氮素利用机理研究和育种资源的养分利用能力评价提供依据,为功能性单核苷酸多态性(single nucleotide polymorphism,SNP)分子标记提供较为准确的表型数据。主要研究结果为以下三个方面:
     1、欧洲黑杨氮素利用效率评价及优良基因型筛选。本研究以104份欧洲黑杨基因型为材料,通过生长量和生理指标的测定,研究土壤施氮和不施氮条件下其氮素利用效率的差异。结果表明:不同供氮水平下,不同基因型欧洲黑杨生长差异显著。根据2个供氮水平的苗木年平均材积生长量将欧洲黑杨群体划分为4个类型:双高效型、高氮高效型、低氮高效型和双低效型。并结合氮反应指数在双高效型与高氮高效型中分别筛选出8个氮利用效率高、生长表现优良的基因型,具较高的育种价值。比较分析不同基因型氮利用效率相关指标,发现双高效型的净光合速率、硝酸还原酶和谷氨酰胺合成酶活性、根系干质量、体积、比表面积均高于高氮高效型,初步揭示了不同类型欧洲黑杨氮利用效率存在差异的机理。
     2、欧洲黑杨氮素吸收利用相关功能基因SNP位点的筛选和分析。利用PCR扩增、测序和比对技术,从3个基因与植物吸收铵态氮相关基因(AMT1;2、AMT1;3和AMT1;5),4个与植物吸收硝态氮相关基因(NRT1.2、NRT2.1、NRT2.3和NRT2.4),2个与植物氮素同化相关基因(GW1和GW2)中共筛选了205个核苷酸变异,其中包括164个SNP位点(平均64bp一个)和41Indel(平均250bp一个)。所测序DNA区域的核苷酸多样性为总核苷酸多样性θw、πT分别是0.00525和0.00380。,9个候选基因Ka/Ks值均小于1,因此说明这些基因受负向选择影响,核苷酸序列相对保守。进化的中性检测结果表明,除NRT1.2和AMT1;2外,其他基因符合中性进化,欧洲黑杨群体在基因NRT1.2序列区域存在搭载效应和负选择作用;基因AMT1;2序列存在负选择作用或者有害变异频率。通过9个候选基因的重组分析研究,欧洲黑杨的SNP间的最小重组事件为0.1951。对其中的5个基因进行连锁不平衡(LD)分析,表明随着核苷酸序列长度的增加,SNP连锁不平衡程度逐渐减弱。说明欧洲黑杨适合采用候选基因进行关联分析和功能SNP标记的开发。
     3、氮素利用效率性状与SNP标记的关联分析。利用基于基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)技术对与氮素吸收利用相关的AMT1;2等基因的17个位点进行分型检测。采用单因素方差分析(ANOVA)和一般线性模型(GLM)分析,对分型的SNP标记和施氮区/不施氮区的材积、苗高和地径这3个生长性状值进行了关联分析。结果表明有7个SNP位点与生长性状显著关联。其中SNP2和SNP7均与不施氮区/施氮区的生长性状达到极显著关联,因此,这2个标记与欧洲黑杨氮素吸收利用相关的功能性SNP分子标记,说明AMT1;2和AMT1;5基因可以作为与氮素利用效率相关的候选基因或与主基因相连锁。AMT1;2基因SNP2(C-T转换),引起编码蛋白质的氨基酸变化(Thr-Ile),CT基因型的材积值、树高和地径高于CC基因型;AMT1;5基因SNP7(A-G转换),该位点是同义突变,GA基因型的材积值和地径高于AA基因型; AMT1;3基因的SNP3、SNP4、SNP5和SNP6均位于编码区,除SNP5外,其他都属于非同义突变,SNP3的GG基因型、SNP4的TT基因型、SNP5的GA基因型和SNP6的CC基因型的材积值、树高和地径高于其他基因型。SNP14位点位于NRT2.4基因的非编码区,GA的基因型的地径高于AA基因型。
In this paper, gene resources of Populus nigra were used as materials, nitrogen use efficiency were evaluated and the high-effective-nitrogen-genotypes were selected by analyzing the growth of various clones under two different nitrogen treatments, which provides high-effective-nitrogen-genotypes of poplar for our country, and the basic mechanism of their efficiency to nitrogen and evolution of the ability to absorb nutrients during poplar breeding, also provides more accurate phenotype data for the functional SNP markers. The three main results are described as following:
     1. Study on evaluation of nitrogen efficiency within P.nigra gene resources and selection of excellent genotypes. The variation in nitrogen utilization efficiency of 104 P.nigra genotypes was studied by analyzing growth and physiological parameters under nitrogen fertilization or non-fertilization conditions. The results showed that the variation of nitrogen utilization efficiency among seedlings of varied black poplar genotypes were significant at different nitrogen supply. All seedlings with varied genotypes in this study were divided into four categories according to annual average individual volume increment in the two nitrogen treatments. These categories are high efficient in both nitrogen applications, efficient in high N application, efficient in low N application, and low efficient in both nitrogen applications. Eight high efficient genotypes were selected from each of the first two categories. These seedlings were highly efficient to nitrogen utilization with excellent growth and productivity; therefore they were highly valuable for poplar breeding. Comparison analysis of the related parameters of nitrogen utilization efficiency showed that the value of nitrogen response to parameters including net photosynthetic rate, nitrate reductase activity, GS activity, root dry weight, root volume and specific root area of seedlings within the first category were all higher than those within the second category, which revealed preliminarily the mechanisms underlying nitrogen utilization of different P.nigra genotypes.
     2. Discovery and analysis of SNPs from genes that are involved in nitrogen utilization. A total of 205 single nucleotide polymorphism (SNP) sites are found from nine genes, three of which related to ammonium nitrogen absorption (AMT1;2, AMT1;3 and AMT1;5), four of which related to nitrate nitrogen absorption (NRT1.2, NRT2.1 NRT2.3 and NRT2.4), two of which related to nitrogen assimilation (GW1 and GW2), The media SNP frequency was one site per 50 bp. The average nucleotide diversity for the sequenced regions was calculated to beθw=0.00525 andπT=0.00380, between P. tremula and P. trichocarpa. The Ka:Ks ratios for all nine gene lower than one , indicating the action of purifying selection. Tests of neutrality for each gene revealed that the results reject neutral evolution at NRT1.2 and AMT1;2. Nucleotide sequence of NRT1.2 and AMT1;2 were likely to be undergoing negative selection which caused hitchhiking effect. Recombination analyzing for the nine candidate genes revealed nine recombination events of SNP in P. nigra, which was similar to P. tomentosa. The linkage disequilibrium of SNPs in five candidate genes was detected and the result showed that LD declined rapidly within the gene regions. These rules were similar to those in other trees. Which suggested that wide LD mapping in the whole genome of Populus might be impossible and unnecessary, but LD mapping based on candidate genes could be particularly useful in breeding programs of poplar. The results showed that P. nigra were suitable for association analysis with candidate genes and development of SNP markers.
     3. Association analysis between SNPs and NUE traits. A total of 17 SNPs were genotyped using MALDI-TOF MS technology. These SNPs were from eight genes. Association analysis between marker and growth traits was carried out using One-way Analysis of Variance (ANOVA) and General Linear Model (GLM) techniques. The growth traits included volume, seedling height and ground diameter under the two nitrogen treatments. The results showed seven SNPs associations between markers and growth traits, both SNP2 and SNP7 were very significantly correlated with growth traits under the two nitrogen treatments, which concluded that AMT1;2 and AMT1;5 could be the potential major gene affecting NUE of P.nigra or correlate with the major gene, and polymorphic loci SNP2 and SNP7 might be used as molecular markers for improving growth of P. nigra. SNP3, SNP4, SNP5, SNP6 and SNP14 were significantly associated with growth traits under the two nitrogen conditions, these loci might be assist functional markers with NUE in poplar. SNP2 of AMT1;2 showed C-T transition, which resulted in changes to amino acid (Thr-Ile). The trees with genotype CT at SNP2 had higher growth (volume, seedling height and ground diameter) than CC genotype. SNP7 of AMT1;5 showed A-G transition, which was a synonymous mutation. The trees with genotype GA at SNP7 had higher growth (volume and ground diameter) than AA genotype. SNP7 of AMT1;5 shows A-G transition, which also was a synonymous mutation. SNP3, SNP4, SNP5 and SNP6 were all located in coding region of AMT1;3, SNP3, SNP4 and SNP6 which resulted in changes of amino acid. The trees with genotype GG at SNP3, genotype TT at SNP4, genotype GA at SNP5, genotype CC at SNP6 had higher growth (volume, seedling height and ground diameter) than those with other genotypes. SNP14 was located in non-coding region of NRT2.4, The tree with genotype GA at SNP 14 had higher ground diameter than AA genotype.
引文
[1]方升佐.中国杨树人工林培育技术研究进展.应用生态学报[J]. 2008,19(10): 2308-2316.
    [2] Nambiar EKS. Increasing forest productivity through genetic improvement of nutritional characteristics. In: Tacoma (ed). Forest potentials productivity and value Symposium. Washington: Weyerhaeuser Science Symposium, 1984:20-24.
    [3] Vanden Broeck A. EUFORGEN Technical Guidelines for genetic conservation and use for European black poplar(Populus nigra L.) [M]. Rome: International Plant Genetic Resource Institute, 2003. 1-6.
    [4] Abreu SN, Soares AM, Nogueira AJ, et al. Tree rings, Populus nigra L., as mercury data logger in aquatic environments: case study of an historically contaminated environment. Bull Environ Contam Toxicol[J]. 2008,80(3): 294-299.
    [5] Benetka V, BartákováI, Mottl J. Productivity of Populus nigra L. ssp. nigra under short-rotation culture in marginal areas Biomass and Bioenergy[J]. 2002,23(5): 327-336.
    [6] Winfield MO, Arnold GM, Cooper F, et al. A study of genetic diversity in Populus nigra subsp. betulifolia in the Upper Severn area of the UK using AFLP markers. Molecular Ecology[J]. 2002,7(1): 3-10.
    [7] Koskela J, Vries SMGd, Kajba D, et al. Populus nigra Network. Report of seventh (25–27 October 2001, Osijek, Croatia) and eighth meetings (22–24 May 2003, Treppeln, Germany). Rome, Italy.: International Plant Genetic Resources Institute, 2004:79-97.
    [8]解荷峰,于中奎,陈一山.黑杨派基因库内无性系生长特性的遗传分析.林业科学研究[J]. 1995,7(2): 234-237.
    [9]马常耕.强化林木育种支撑林业工程建设.林业科技管理[J]. 2003,(1): 24-26.
    [10] Mullin TJ. Genotype-nitrogen interactions in full-sib seedlings of black spruce. Canadian Journal of Forest Research[J]. 1985,15(6): 1031-1038.
    [11] Karim SA, Hawkins BJ. Variation in response to nutrition in a three-generation pedigree of Populus. Canadian Journal of Forest Research[J]. 1999,29(11): 1743-1750.
    [12] Simon M, Zsuffa L, Burgess D. Variation in N, P, and K status and N efficiency in some North American willows. Canadian Journal of Forest Research[J]. 1990,20(12): 1888-1893.
    [13]张焕朝,徐成凯,王改萍,等.杨树无性系的磷营养效率差异.南京林业大学学报(自然科学版)[J]. 2001,25(2): 14-18.
    [14]周志春,谢钰容,金国庆,等.马尾松种源对磷肥的遗传反应及根际土壤营养差异.林业科学[J]. 2003,39(6): 62-67.
    [15] Lars R, Lars-G?ran S. Clonal Variation in Nutrient Content in Woody Biomass of Hybrid Aspen (Populus tremula L.×P. tremuloides Michx.). Silva Fennica[J]. 2003,37(3): 313-324.
    [16] Paul EH, Stettler RF. Nutritional concerns in selection of black cottonwood and hybrid clones for short rotation Canadian Journal of Forest Research [J]. 1986,16: 860-863.
    [17] Moll RH, Kamprath EJ, Jackson WA. Analysis and Interpretation of Factors Which Contribute to Efficiency of Nitrogen Utilization. American Society of Agronomy[J]. 1982,74: 562-564.
    [18]李贻铨,蒋建屏,徐清彦.整地施肥对I—69杨人工林生长效应的研究.林业科学研究[J]. 1990,3(5): 424-440.
    [19]何应同,王少元.杨树不同土壤立地条件施肥效应研究.湖北林业科技[J]. 1998,(3): 5-12.
    [20]肖君,方升佐.杨树人工林施肥效应研究进展.林业科技开发[J]. 2007,21(4): 15-17.
    [21]张曦,胡增辉,苏晓华,等.土壤氮水平对几种黑杨新无性系苗木生长的影响.现代农业科学[J]. 2009,(1): 80-82.
    [22]宋金耀,刘永军,樊志艳,等.新山海关杨与普通山海关杨形态和生理指标的比较.西北林学院学报[J]. 2009,24(1): 35-38.
    [23]宋金耀,刘永军,党晓燕,等.新山海关杨速生性的主因子分析.中国农学通报[J]. 2008,24(7): 384-389.
    [24]高红兵,戚继忠.小青杨叶中硝酸还原酶活力的研究.吉林林学院学报[J]. 2000,16(2): 90-91.
    [25]余树全,付达荣.高原杨树叶片硝酸还原酶活性对比差异初步研究.四川林业科技[J]. 1997,18(1): 51-54.
    [26]周国璋,王世绩.四种杨树扦插苗的硝酸还原酶活力体内衰减的初步研究.林业科学研究[J]. 1989,2(3): 296-299.
    [27] Lea PJ, Miflin BJ. Alternative route for nitrogen assimilation in higher plants. Nature[J]. 1974,251(5476): 614-616.
    [28] Bertrand H, Pascal B, Isabelle Q, et al. Towards a Better Understanding of the Genetic and Physiological Basis for Nitrogen Use Efficiency in Maize. Plant Physiology[J]. 2001,125: 1258–1270.
    [29]曾建敏,崔克辉,黄见良,等.水稻生理生化特性对氮肥的反应及与氮利用效率的关系.作物学报[J]. 2007,33(7): 1168-1176.
    [30]董玥,陈雪平,赵建军,等.低氮胁迫不同氮效率基因型茄子光合特性差异.华北农学报[J]. 2009,24(1): 181-184.
    [31]韩胜芳,李淑文,文宏达,等.不同氮效率小麦品种的光合碳同化特性.植物营养与肥料学报[J]. 2006,12(6): 797-804.
    [32]曾建敏,彭少兵,崔克辉,等.热带水稻光合特性及氮素光合效率的差异研究.作物学报[J]. 2006,32(12): 1817-1822.
    [33] Bahman E, John RS, Jerry WM. Fractal Analysis for Morphological Description of Corn Roots under Nitrogen Stress. Agronomy Journal[J]. 1993,85: 287-289.
    [34] Feil B, Thiraporn R, Geisler G, et al. The Impact of Temperature on Seedling Root Traits of European and Tropical Maize (Zea mays L.) Cultivars. Journal of Agronomy and Crop Science[J].166(2): 81-89.
    [35] Bengough AG, Mulins CE. Mechanical impedance to root growth: a review of experimental techniques and root growth responses. European Journal of Soil Science[J].41(3): 341-358.
    [36]程建峰,潘晓云,刘宜柏.土壤条件对陆稻根系生长的影响.土壤学报[J]. 2002,39(4): 590-598.
    [37]樊剑波,沈其荣,谭炯壮,等.不同氮效率水稻品种根系生理生态指标的差异.生态学报[J]. 2009,29(6): 3052-3058.
    [38]黄高宝,张恩和,胡恒觉.不同玉米品种氮素营养效率差异的生态生理机制.植物营养与肥料学报[J]. 2001,7(3): 293-297.
    [39]刘代平,宋海星,刘强,等.油菜根系形态和生理特性与其氮效率的关系.土壤[J]. 2008,40(5): 765-769.
    [40]王艳.玉米根系对硝酸盐反应的基因型差异及生理机制[D].北京:中国农业大学, 2001.
    [41]张亚丽,樊剑波,段英华,等.不同基因型水稻氮利用效率的差异及评价.土壤学报[J]. 2008,45(2): 267-273.
    [42]曹桂兰,张媛媛,朴钟泽,等.水稻不同基因型耐低氮能力差异评价.植物遗传资源学报[J]. 2006,7(3): 316-320.
    [43]梁景霞,梁康迳,祁建民,等.烟草不同基因型耐低氮能力差异评价.植物遗传资源学报[J]. 2007,8(4): 451-455.
    [44]钱晓晴,沈其荣,徐国华.配合施用NH-N和NO-N对旱作水稻生长与水分利用效率的影响.土壤学报[J]. 2003,40(6): 895-900.
    [45]张亚丽,董园园,沈其荣,等.不同水稻品种对铵态氮和硝态氮吸收特性的研究.土壤学报[J]. 2004,41(6): 803-809.
    [46]段英华,张亚丽,沈其荣.水稻根际的硝化作用与水稻的硝态氮营养.土壤学报[J]. 2004,36(4): 803-809.
    [47]金雪霞,范晓晖,蔡贵信,等.菜地土壤氮素矿化和硝化作用的特征.土壤学报[J]. 2004,36(4): 382-386.
    [48] Bloom AJ, Sukrapanna SS, Warner RL. Boot respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol[J]. 1992,99: 1294-1301.
    [49] Hackette SL, kye GE, Burton C, et al. Charaterization of an ammonium transport system in filamentous fungi with methyl lammoniom- 14C as the substrate J BiolChem [J]. 1970,245: 4241-4250.
    [50] Ninnemann O, Jauniaux JC, Frommer WB. Identification of a high affinity NH 4+ transporter from plants[J]. EMBO J, 1994,13(15): 3464-3471.
    [51] Gazzarrini S, Lejay L, Gojon A, et al. Three Functional Transporters for Constitutive, Diurnally Regulated, and Starvation-Induced Uptake of Ammonium into Arabidopsis Roots. The Plant Cell[J]. 1999,11: 937-947.
    [52] Suenga A, Moriya K, Sonoda Y. Constitutive expression of a novel type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiol[J]. 2003,44: 206- 211.
    [53] Sonoda Y, Ikeda A, Saiki S. Distinct expression and function of three ammonium transporter genes ( OsAMT1;1、1;3) in rice. Plant Cell Physiol[J]. 2003,44: 726- 734.
    [54] Lauter FR, Ninnemann O, Bucher M. Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. Proc Natl Acad Sci U S A[J]. 1996,93: 8139- 8144.
    [55] Von WN, Gazzarrini S, Gojon A, et al. The molecular physiology of ammonium uptake and retrieval. Curr Opin Plant Biol[J]. 2000,3: 254-261.
    [56] Salvemini F, Marini AM, Riccio A. Functional characterization of an ammonium transporter gene from Lotus japonicus. Gene [J]. 2001,270: 237- 243.
    [57] Simon RU, Wood C, Udvardi MK. Molecular and cellular characterization of LjAMT2 ;1 , an ammonium transporter from the model legume Lotus japonicus. Plant Mol Biol[J]. 2003,51: 99-108.
    [58] Apuzzo ED, Rogato A, Simon RU. Characterization of three functional high-affinity ammonium transporters in lotus japonicus with differential transcriptional regulation and spatial expression. Plant Physiol[J]. 2004,134: 1763-1774.
    [59] Pearson JN, Finnemann J, Schjoerring JK. Regulation of the high affinity ammonium transporter ( BnAMT1;2 ) in the leaves of Brassica napus by nitrogen status. Plant Mol Biol[J]. 2002,49: 483-490.
    [60] Selle A, Willmann M, Grunze N. The high affinity poplar ammonium importer PttAMT1;2 and its role in ectomycorrhizal symbiosis. New Phytol[J]. 2005,168: 697-706.
    [61] González DB, Camargo A, Fernández E. Ammonium transporter genes in Chlamydomonas : The nitrate-specific regulatory gene Nit is involved in Amt1;1 expression. Plant Mol Biol[J]. 2004,56: 863- 878.
    [62] Jahna TP, Anders LB, Zeuthen T. Aquaporin homologues inplants and mammals transport ammonia. FEBS Letters[J]. 2004,574: 31-36.
    [63] Ninnemann O, Jauniaux JC, Frommer WB. Identification of a high affinity NH transporter from plants EMBO J[J]. 1994,13:: 3464-3471.
    [64] Wang MY, Siddiqi MY, TJ TJR, et al. Ammonium uptake by rice roots. II. Kinetics of 13 NHinflux across the plasmalemma. Plant Physiol[J]. 1993,103: 1259-1267.
    [65] Palkova Z, Janderova B, JGabriel, et al. Pospisek M,Forstova J. Ammonia mediates communication between yeast colonies. Nature[J]. 1997,390: 532-536.
    [66] Marini AM, Andre B. In vivo N-lycosylation of the Mep-high-affinity ammonium transporter of Saccharomyces cerevisiae reveals an extracytosolic N-terminus. Mol Microbiol[J]. 2000,38: 552 -564.
    [67] Thomas GH, Mullins JG, Merrick M. Membrane topology of the Mep/ Amt family of ammonium transporters Mol Microbiol[J]. 2000,37: 331-344.
    [68] Schwacke R, Schneider A, Graaff d, et al. ARAMEMNON ,a novel database for Arabidopsis integral membrane proteins. Plant Physiol [J]. 2003,131: 16-26.
    [69] Crawford NM, Glass A. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci[J]. 1998,3: 389-395.
    [70] Ludewig U, Wilken S, Wu B. Homo and hetero ligomerization of ammonium transporter-1 NH 4+ uniporters [J]. JBiolChem, 2003,278: 45603- 45610.
    [71] Shelden MC, Bruxelles GL, Whelan J. Arabidopsis ammonium transporter , AtAMT1;1 and AtAMT1;2 , have different biochemical properties and functional roles. Plant Soil[J]. 2001,231: 151-160.
    [72] Crawford NM, Forde BG. Molecular and developmental biology of inorganic nitrogen nutrition [C], MD: American Society of Plant Biologists; Rockville 2002. 1-25.
    [73] Kaiser BN, Rawat SR, Siddiqi MY. Functional analysis of an Arabidopsis T2DNA“knockout”of the high-affinity NH 4+ transporter AtAMT1;1[J]. Plant Physiol, 2002,130: 1263-1275.
    [74] Sohlenkamp C, Wood CC, Roeb GW, et al. Characterization of Arabidopsis AtAMT2 , a high-affinity ammonium transporter of the plasma membrane. Plant Physiol[J]. 2002,130: 1788-1796.
    [75] Ludewig U, von WN, Frommer WB. Uniport of NH 4+ by the root hair plasma membrane ammonium transporter LeAMT1;1 J Biol Chem[J]. 2002,277: 13548-13555.
    [76] Gazzarrini S, Lejay L, Gojon A, et al. Three functional transporters for constitutive, diurnally regulated, and starvation- induced uptake of ammonium into Arabidopsis roots. Plant Cell[J]. 1999,11:: 937 -947.
    [77] Sohlenkamp C, Shelden M, Howitt S, et al. Characterization of Arabidopsis AtAMT2 , a novel ammonium transporter in plants. FEBS Letters[J]. 2000,467: 273- 278.
    [78] Gansel X, Munos S, Tillard P, et al. Differential regulation of the NO 3? and NH 4+ transporter genes AtNrt2;1 and AtAmt1;1 in Arabidopsis : Relation with long distance and local controls by N status of the plant[J]. Plant J 2001,26: 143- 155.
    [79] Wang RC, Guegler K, Labrie ST, et al. Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell[J]. 2000,12: 1491-1509.
    [80] Kumar A, Silim SN, Okamoto M. Differential expression of three members of the AMT1 gene family encoding putative high-affinity NH 4+ transporters in roots of Oryza sativa subspecies indica[J]. Plant Cell Environ, 2003,26: 907-914.
    [81] Suenaga A, Moriya K, Sonoda Y. Constitutive expression of anovel-type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiol[J]. 2003,44: 206-211.
    [82] Becker D, Stanke R, Fendrik I. Expression of theΝΗ4+ transporter gene LeAMT1;2 is induced in tomato roots upon association with N2 fixing bacteria[J]. Planta, 2002,215: 424-429.
    [83] Ryan SA, Nelson RS, Harper JE. Soybean mutant lacking constitutive nitrate reductase activity. Plant Physiol[J]. 1993,72: 510-514.
    [84] Wu S, Lu Q, Kriz AL. Identification of cDNA clones corresponding to two inducible nitrate reductase genes in soybean:analysis in wild-type and nrl mutant. Plant mol Biol[J]. 1995,29(3): 491-506.
    [85] Lee RB, Clarkson D. Nitrogen-13 studies of nitrate fluxes in barley roots. I. Compartmental analysis from measurements of 13N efflux. The EMBO Journal[J]. 1986,5: 1753-1767.
    [86] Siddiqi MY, Glass A, Ruth TJ, et al. Studies of the uptake of nitrate in barley. Plant Physiol[J]. 1990,93: 1426-1432.
    [87] Touraine B, Glass AD. NO 3? and ClO 3? fluxes in the chl1-5 mutant of Arabidopsis thaliana. Does the CHL1-5 gene encode a low-affinity NO 3? transporter?[J]. Plant Physiol, 1997,114(1): 137-144.
    [88] Von WN, Gazzarini S, Frommer WB. Regulation of mineral nitrogen uptake in plants. Plant Soil[J]. 1996,196: 191-199.
    [89] Okamoto M, John VJ, Glass A. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: Responses to nitrate provision. Plant Cell Physoil[J]. 2003,44(3): 304-317.
    [90] Liu KH, Huang CY, Tsay YF. CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. The Plant Cell[J]. 1999,11: 865-874.
    [91] Huang N-C, Liu K-H, Lo H-J, et al. Cloning and Functional Characterization of an Arabidopsis Nitrate Transporter Gene That Encodes a Constitutive Component of Low-Affinity Uptake. The Plant Cell[J]. 1999,11: 1381-1382.
    [92] Zhou JJ, Theodoulou FL, Muldin I, et al. Cloning and functional characterization of a Brassica napus transporter that is able to transport nitrate and histidine. The Journal of Biological Chemistry [J]. 1998,273: 12017-12023.
    [93] Lauter FR, O ON, M B. Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. Proceedings of the National Academy of Sciences USA[J]. 1996,93: 8139-8144.
    [94] Trueman LJ, Forde BG, Onyeocha I. Recent advances in the molecular biology of a family of eukaryotic high affinity nitrate transporters. Plant Physiology and Biochemistry[J]. 1996,34: 621-627.
    [95] Quesada A, Krapp A, J. Trueman L, et al. PCR-identification of a Nicotiana plumbaginifolia cDNA homologous to the high-affinity nitrate transporters of the crnA family. Plant Molecular Biology[J]. 1997,34: 265-274.
    [96] Vidmar JJ, Zhuo D, Siddiqi MY, et al. Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley. Plant physiology [J]. 2000,123: 307-318.
    [97] Amarasinghe BH, de BG, Braddon M, et al. Regulation of GmNRT2 expression and nitrate transport activity in roots of soybean (Glycine max). Planta[J]. 1998,206(1): 44-52.
    [98]潘丽峰,李昆志,陈丽梅.谷氨酰胺合成酶植物基因工程应用研究进展.广东农业科学[J]. 2007,(1): 106-109.
    [99] Man HM, Boriel R, El-Khatib R, et al. Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol[J]. 2005,167(1): 31-39.
    [100] Fu J, Sampalo R, Gallardo F, et al. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant, Cell and Environment [J]. 2003,26(3): 411-418.
    [101]张志毅,林善枝,张德强.现代分子生物学技术在林木遗传改良中的应用.北京林业大学学报[J]. 2002,24(5): 250-261.
    [102]谭晓风,胡芳名.分子标记及其在林术遗传育种研究中的应用.经济林研充[J]. 1997,15(2): 19-22.
    [103]翁跃进. AFLP——一种DNA分子标记新技术.遗传[J]. 1996,18(6): 29-31.
    [104]何桢祥,施季森.林木遗传图谱构建的技术与策略.浙江林学院学报[J]. 1995,15(2): 151-157.
    [105]苏晓华,张倚纹.林木遗传图谱研究的现状与展望.林业科技通讯[J]. 1995,(5): 10-12.
    [106]徐宁迎.候选基因法检测家畜数量性状基因位点的研究与应用.浙江农业学报[J]. 1999,11(5): 266-270.
    [107] Whitt SR, Buckler ES. Using natural allelic diversity to evaluate gene function. Methods MolBiol[J]. 2003,236: 123-139.
    [108]王晓通,王晓娜.候选基因法在动物育种中的应用.畜牧与饲料科学[J]. 2004,(4): 36-39.
    [109] Wout B. Biotechnology and the domestication of forest trees. Current Op inion in Biotechnology[J]. 2005,16: 159-166.
    [110] Gonzalez-Martinez SC, Krutovsky KV, Neale DB. Forest-tree population genomics and adaptive evolution. New phytologist[J]. 2006,170(2): 227-238.
    [111]刘传光,张桂权.水稻单核苷酸多态性及其应用.遗传[J]. 2006,28(6): 737-744.
    [112]王荣焕,王天宇,黎裕.植物基因组中的连锁不平衡.遗传[J]. 2007,29(11): 1317-1323.
    [113]褚延广,苏晓华.单核苷酸多态性在林木中的研究进展.遗传[J]. 2008,30(10): 1272-1278.
    [114] Collins FS, Guyer MS, Chakravarti A. Variations on a theme: Cataloging human DNA sequence variation. Science[J]. 1997,278(5343): 1580-1581.
    [115] Gottgens B, Barton LM, Gilbert JG. Analysis of vertebrate SCL loci identifies conserved enhancers. Nature Biotechnol[J]. 2000,18: 181-186.
    [116] Loots GG, Locksley RM, Blankespoor CM. dentification of a coordinate regulator of interleukins 4, 13 and 5 by cross-species sequence comparisons. Science[J]. 2000,288(5463): 136-140.
    [117] Tao H, Cox DR, Frazer KA. Allele-specific KRT1 expression is a complex trait. PLoS Genet[J]. 2006,2(6): 93.
    [118] Sanger F, Coulson AR. DNA sequencing with chain-termination inhibitors. Proc Natl Acad Sci USA[J]. 1977,74: 5463-5467.
    [119] Kruglak L, Nickerson DA. Variation is the spice of life Nat Genet[J]. 2001,27: 234-236.
    [120] Schaffer SW, Walthor CS, Toleno DM. Protein variation in ADH and ADH-RSLATED in Drosophila pseudoobscura:linkage disequilibrium between single nucleotide polymorphisms and protein allets. Genetics[J]. 2001,159: 673-687.
    [121] Remington DL, Thornsberry JM, Matsuoka Y. Structure of linkage disequilibriumand phenotypic associations in the maize genome. Proc Natl AcadSci USA[J]. 2001,98: 11479-11484.
    [122] Dooner HK, Martinez-Ferz IM. Recombination occurs uniforrnly within the bronze gene ,a meiotic recombination hotspotin the maize genome. Plant Cell[J]. 1997,9: l633-l646.
    [123] KanazinH V, albert T, DSee, et al. Discovery and assay of single-nucleotide polymorphisms in barley (Hordeum vulgare). Plant Mol Biol[J]. 2002,48: 529-537.
    [124] Tenaillon MI, Sawkins MC, Anderson LK, et al. Patterns of diversity and recombination along chromosome 1 of maize (Zea mays ssp. mays L.). Genetics[J]. 2002,162: 1401?1413.
    [125] Jermstad KD, Sheppard LA, Kinloch BB, et al. Isolation of a full-length CC-NBS-LRR resistance gene analog candidate from sugar pine showing low nucleotide diversity. Tree Genetics & Genomes[J]. 2006,2(2): 76-85.
    [126] Neale DB, Savolainen O. Association genetics of complex traits in conifers. Trends in Plant Science[J]. 2004,9(7): 325-330.
    [127] Ingvarsson PrK. Nucleotide Polymorphism and Linkage Disequilibrium Within and Among Natural Populations of European Aspen (Populus tremula L., Salicaceae). Genetics[J]. 2005,169: 945-953.
    [128] Kirst M, Cordeiro CM, Rezende GD, et al. Power of microsatellite markers for fingerprinting and parentage analysis in Eucalyptus grandis breeding populations. J Hered[J]. 2005,96(2): 161-166.
    [129] Yin TM, DiFaxzio SP, E LEGL. Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map. Thero Appl Genet [J]. 2004,109: 451-463.
    [130] Flint-Garcia SA, Thornsberry JM, S ESBE. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol[J]. 2003,54: 357-374.
    [131] Flint-Garcia SA, Thuillet AC, Yu JM, et al. Maize association population : a high-resolution platform for quantitative trait locus dissection. Plant J[J]. 2005,44: 1054-1064.
    [132] Yu JM, Buckler ES. Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology[J]. 2006,17: 16.
    [133] Thuriaux P. Is recombination confined to structura1 genes on the eukaryotic genome. Nature[J]. 1977,168: 460-462.
    [134] Talbot CJ, Nicod A, Cherny SS. High-resolution mapping of quantitative trait loci inout breed rice. Nat Genet[J]. 1999,21: 305-308.
    [135]梁慧珍,李卫东,王辉,等. SNPs在大豆等作物遗传及改良中的应用.中国农学通报[J]. 2004,(05).
    [136] Sunnucks P. Efficient genetic markers for population biology. Trends in Ecology and Evolution[J]. 2000,15: 199-203.
    [137] Rafalski JA, Tingey SV. Genetic diagnostics in plant breeding:RAPDs, microsatellites and machines. Trends in Genetics[J]. 1993,9: 275-280.
    [138]杨景华,王士伟,刘训言,等.高等植物功能性分子标记的开发与利用.中国农业科学[J]. 2008,41(11): 3429-3436.
    [139] Jansson S, Douglas CJ. Populus: a model system for plant biology. Annu Rev Plant Biol[J]. 2007,(58): 435-458.
    [140] Zhang B, Zhou Y, Zhang L, et al. Identification and Validation of Single Nucleotide Polymorphisms in Poplar Using Publicly Expressed Sequence Tags. Journal of Integrative Plant Biology[J]. 2005,47(12): 1493-1499.
    [141] Patrick GM, Manuel L, Pierre P, et al. Species-specific single nucleotide polymorphism markers for detecting hybridization and introgression in poplar. Canadian Journal of Botany[J]. 2007,85(11): 1082-1091.
    [142]杨晓慧,张有慧,张志毅,等.毛白杨干细胞决定基因Wuschel的克隆及其单核苷酸多态性分析.林业科学[J]. 2009,45(1): 43-49.
    [143]徐煲铧,杨晓慧,李百炼,等.毛白杨纤维素合酶基因PtCesA_4的克隆、表达及单核苷酸多态性分析.林业科学[J]. 2009,45(5): 1-10.
    [144]卫尊征,郭琦,李百炼,等.小叶杨ga20氧化酶基因的克隆、表达及单核苷酸多态性分析.林业科学[J]. 2009,54(4): 19-27.
    [145] Chu Y, Su X, Huang Q, et al. Patterns of DNA sequence variation at candidate gene loci in black poplar (Populus nigra L.) as revealed by single nucleotide polymorphisms. Genetica[J]. 2009,137: 141-150.
    [146] Kim S, Misra. A SNPgenotyping:technologies and biomedical application. Annu Rev Biomed Eng[J]. 2007,9: 289-320.
    [147] Gill GP, Brown GR, Neale DB. A sequence mutation in the cinnamyl alcohol dehydrogenase gene assiated with altered lignification in loblolly pine. Plant Biotechnol J[J]. 2003,4(1): 253-258.
    [148] Thumma BR, Nolan MF, Evans S, et al. Polymorphism in cinnamoyl CoA reductase(CCR) are assciated with variation in microfibril angle in microfibril angle in Eucalyptus Spp. Genetics[J]. 2005,171(3): 1257-1265.
    [149] ARENS P, COOPS H, JANSEN J, et al. Molecular genetic analysis of black poplar (Populus nigra L.) along Dutch rivers. Molecular Ecology[J]. 1998,7(1): 11-18.
    [150]丁明明,苏晓华,黄秦军.欧洲黑杨基因资源稳定碳同位素组成特征.林业科学研究[J]. 2006,19(3): 272-276.
    [151]张香华,苏晓华,黄秦军,等.欧洲黑杨育种基因资源ssr多态性比较研究.林业科学研究[J]. 2006,19(4): 477-483.
    [152]丁明明,黄秦军,苏晓华.欧洲黑杨基因资源材性关联基因的SNP分析.遗传[J]. 2008,30(6): 795-800.
    [153]吴惠仙,唐新民,文二华.施肥对杨树后期生长及养分的影响.中南林业调查规划[J]. 2000,19(3): 61-62.
    [154]刘建安,米国华,张福锁.不同基因型玉米氮效率差异的比较研究.农业生物技术学报[J]. 1999,7(3): 248-254.
    [155]马祥庆,刘爱琴,黄宝龙,等.氮素高效基因型杉木无性系的选择研究.林业科学[J]. 2002,38(6): 53-57.
    [156]樊瑞怀,杨水平,周志春,等.氮素营养对马褂木家系苗木生长效应分析.林业科学研究[J]. 2009,22(1): 85-90.
    [157]刘文环,李朝晖,姜海涛,等.杨树扦插苗追肥试验.防护林科技[J]. 2000,(3): 70-71.
    [158]高俊凤.植物生理学实验指导[M].北京:高等教育出版社, 2006. 61-64.
    [159]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社, 2002. 49-265.
    [160]余树全,付达荣,李翠环,等.康定杨优树无性系苗期测定.浙江林学院学报[J]. 2003,20(3): 245-248.
    [161] Paula MM, L?′gia ML, Isabel MS, et al. Expression of the Plastid-Located Glutamine Synthetase of Medicago truncatula. Accumulation of the Precursor in Root Nodules Reveals an in Vivo Control at the Level of Protein Import into Plastids. Plant Physiol[J]. 2003,132: 390-399.
    [162]王月福,姜东,于振文,等.氮素水平对小麦籽粒产量和蛋白质含量的影响及其生理基础.中国农业科学[J]. 2003,36(5): 513-520.
    [163]左元梅,刘永秀,张福锁.玉米/花生混作改善花生铁营养对花生根瘤碳氮代谢及固氮的影响.生态学报[J]. 2004,24(11): 2584-2590.
    [164] Ladha JK, Kirk GJD, Bennett J, et al. Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm. Field Crops Research[J]. 1998,56(1-2): 41-71.
    [165] Milroy SP, Bange MP. Nitrogen and light responses of cotton photosynthesis and implications for crop growth. Crop Sci[J]. 2003,43: 904-913.
    [166]郭盛磊,阎秀峰,白冰,等.供氮水平对落叶松幼苗光合作用的影响.生态学报[J]. 2005,25(6): 1291-1298.
    [167]勾玲,闫洁,韩春丽,等.氮肥对新疆棉花产量形成期叶片光合特性的调节效应.植物营养与肥料学报[J]. 2004,10(5): 488-493.
    [168] Barker GLA, Edwards KJ. A genome-wide analysis of single nucleotide polymorphism diversity in the world's major cereal crops. Plant Biotechnology Journal[J]. 2009,7(4): 318-325.
    [169] Tanksley SD. Mapping polygenes. Annu Rev Genet[J]. 1993,27: 205-233.
    [170] Sewell MM, Neale DB. Mapping quantitative traits in forest trees. In: Jain SM, Minocha SC (eds). Forestry sciences. molecular biology of woody plants: Kluwer Academic Publishers, 2000:407-423.
    [171] Simko I, Haynes KG, Jones RW. Assessment of linkage disequilibrium in potato genome with single nucleotide polymorphism markers. Genetics[J]. 2006,173(4): 2237-2245.
    [172] Kaiser BN, Rawat SR, Siddiqi MY. Functional analysis of an Arabidopsis T2DNA“knockout”of the high-affinity NH 4+ transporter AtAMT1;1[J]. Plant Physiol, 2002,130: 1263-1275.
    [173]赵首萍,赵学强,施卫明.高等植物氮素吸收分子机理研究进展.土壤[J]. 2007,39(2): 173-180.
    [174] Miflin BJ, Lea PJ. Ammonia assimilation. In: Miflin BJ (ed). Amino acids and their derivatives. New York: Academic Press, 1980:169-202.
    [175] Hirel B, Bertin P, Quillere I, et al. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol[J]. 2001,125(3): 1258-1270.
    [176] Legionnet A, Muranty H, F FL. Genetic variation of the riparian pioneer tree species populus nigra. II. Variation In susceptibility to the foliar rust melampsora larici-populina Heredity[J]. 1999,82(3): 318-327.
    [177] Csencsics D, Angelone S, Paniga M, et al. A large scale survey of Populus nigra presence and genetic introgression from non-native poplars in Switzerland based on molecular identification. Journal for Nature Conservation[J]. 2009,17(3): 142-149.
    [178] Holderegger R, Angelone S, Brodbeck S, et al. Application of genetic markers to the discrimination of European Black Poplar (Populus nigra) from American Black Poplar (P.deltoides) and Hybrid Poplars (P.×canadensis) in Switzerland. Trees[J]. 2005,15(6): 742-747.
    [179] Quesada A, Galvan A, Schnell RA, et al. Five nitrate assimilation-related loci are clustered in Chlamydomonas reinhardtii. Mol Gen Genet[J]. 1993,240(3): 387-394.
    [180] Orsel M, Krapp A, Daniel-Vedele F. Analysis of the NRT2 nitrate transporter family in Arabidopsis. Structure and gene expression. Plant Physiol[J]. 2002,129(2): 886-896.
    [181] Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res[J]. 1998,8(3): 186-194.
    [182] Larkin MA, Blackshields G, Brown NP, et al. Clustal W and Clustal X version 2.0. Bioinformatics[J]. 2007,23(21): 2947-2948.
    [183] Rozas J, Sanchez-DelBarrio JC, Messeguer X, et al. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics[J]. 2003,19(18): 2496-2497.
    [184] Watterson GA. On the number of segregating sites in genetical models without recombination. Theor Popul Biol[J]. 1975,7(2): 256-276.
    [185] Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A[J]. 1979,76(10): 5269-5273.
    [186] Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics[J]. 1993,133(3): 693-709.
    [187] Fay JC, Wu CI. Hitchhiking under positive Darwinian selection. Genetics[J]. 2000,155(3): 1405-1413.
    [188] McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature[J]. 1991,351(6328): 652-654.
    [189] Hudson RR, Kreitman M, Aguade M. A test of neutral molecular evolution based on nucleotide data. Genetics[J]. 1987,116(1): 153-159.
    [190] Hill M, Spurna V. Interaction of mouse leukemic cells with L cells in tissue culture. I. Passage of leukemic cell DNA into the nuclei of L cells. Exp Cell Res[J]. 1968,50(1): 208-222.
    [191] Flint-Garcia SA, Thornsberry JM, Buckler ESt. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol[J]. 2003,54: 357-374.
    [192] Hill WG, Weir BS. Variances and covariances of squared linkage disequilibria in finite populations. Theor Popul Biol[J]. 1988,33(1): 54-78.
    [193]周琦,王文. Dna水平自然选择作用的检测.动物学研究[J]. 2004,25(1): 73-80.
    [194] Zhang D, Zhang Z. single nucleotide polymorphisms discovery and lingkage disequilibrium(LD) in forest trees Forestry Studies in China[J]. 2005,7(3): 1-14.
    [195] Ingvarsson PK. Multilocus patterns of nucleotide polymorphism and the demographic history of Populus tremula. Genetics[J]. 2008,180(1): 329-340.
    [196] ERIN J, GILCHRIST, GEORGE W, et al. Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Molecular Ecology[J]. 2006,15: 1367-1378.
    [197] Tuskan GA, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science[J]. 2006,313(5793): 1596-1604.
    [198] Ohta T, Kimura M. Behavior of neutral mutants influenced by asociated overdominant loci in finite populations. Genetics[J]. 1971,69(2): 247-260.
    [199] Nachman MW. Variation in recombination rate across the genome: evidence and implications. Curr Opin Genet Dev[J]. 2002,12(6): 657-663.
    [200] Kuittinen H, Aguade M. Nucleotide variation at the CHALCONE ISOMERASE locus in Arabidopsis thaliana. Genetics[J]. 2000,155(2): 863-872.
    [201] Dvornyk V, Sirvio A, Mikkonen M, et al. Low nucleotide diversity at the pal1 locus in the widely distributed Pinus sylvestris. Mol Biol Evol[J]. 2002,19(2): 179-188.
    [202] Rafalski A, Morgante M. Corn and humans: recombination and linkage disequilibrium in two genomes of similar size. Trends Genet[J]. 2004,20(2): 103-111.
    [203] Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet[J]. 1999,22(2): 139-144.
    [204]宁静,朱旗,黄建安,等. Issr分子标记及其在茶树遗传育种研究中的应用.茶叶科学技术[J]. 2008,(2): 5-8.
    [205] Zondervan KT, Cardon LR. The complex interplay among factors that influence allelic association. Nat Rev Genet[J]. 2004,5(2): 89-100.
    [206] Gupta PK, Rustgi S, Kulwal PL. Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Molecular Biology[J]. 2005,57(4): 461-485.
    [207] Gonzalez-Martinez SC, Huber D, Ersoz E, et al. Association genetics in Pinus taeda L. II. Carbon isotope discrimination. Heredity[J]. 2008,101(1): 19-26.
    [208]褚延广.欧洲黑杨(Populus nigra L.)水、光资源高效利用相关单核苷酸多态性(SNP)研究[D].北京:中国林业科学研究院, 2009. 65-80.
    [209] Orsel M, Filleur S, Fraisier V, et al. Nitrate transport in plants: which gene and which control. J Exp Bot[J]. 2002,53(370): 825-833.
    [210] Glass AD, Britto DT, Kaiser BN, et al. The regulation of nitrate and ammonium transport systems in plants. J Exp Bot[J]. 2002,53(370): 855-864.
    [211] Howitt SM, Udvardi MK. Structure, function and regulation of ammonium transporters in plants. Biochim Biophys Acta[J]. 2000,1465(1-2): 152-170.
    [212] Kronzucker HJ, Siddiqi MY, Glass A. Kinetics of NH 4+ Influx in Spruce[J]. Plant Physiol, 1996,110(3): 773-779.
    [213] Zhuo D, Okamoto M, JJ JV, et al. Regulation of a putativehigh2affinity nitrate transporter ( AtNrt2 ;1) in roots of Arabidopsis thaliana. The Plant Journal[J]. 1999,17(5): 563-568.
    [214] Richard-Molard C, Krapp A, Brun F, et al. Plant response to nitrate starvation is determined by N storage capacity matched by nitrate uptake capacity in two Arabidopsis genotypes. J Exp Bot[J]. 2008,59(4): 779-791.
    [215] Chopin F, Wirth J, Dorbe MF, et al. The Arabidopsis nitrate transporter AtNRT2.1 is targeted to the root plasma membrane. Plant Physiol Biochem[J]. 2007,45(8): 630-635.
    [216] Chopin F, Orsel M, Dorbe MF, et al. The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds. Plant Cell[J]. 2007,19(5): 1590-1602.
    [217] Desnos T. Root branching responses to phosphate and nitrate. Curr Opin Plant Biol[J]. 2008,11(1): 82-87.
    [218] Yuan L, Loque D, Kojima S, et al. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. Plant Cell[J]. 2007,19(8): 2636-2652.
    [219] Yuan L, Loque D, Ye F, et al. Nitrogen-dependent posttranscriptional regulation of the ammonium transporter AtAMT1;1. Plant Physiol[J]. 2007,143(2): 732-744.
    [220]孙淑斌,李宝珍,胡江,等.水稻低丰度表达基因OsAMT1;3实时荧光定量PCR方法的建立及其应用.中国水稻科学[J]. 2006,20(1): 8-12.
    [221] Sontheimer EJ. Bridging sulfur substitutions in the analysis of pre-mRNA splicing. Methods[J]. 1999,18(1): 29-37.
    [222] Tosi M. Molecular genetics of C1 inhibitor. Immunobiology[J]. 1998,199(2): 358-365.
    [223] Thornsberry JM, Goodman MM, Doebley J, et al. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet[J]. 2001,28(3): 286-289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700