频域OCT对青光眼视网膜分层厚度检测的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
频域相干光断层扫描术(spectral domain optical coherence tomography, SDOCT)被认为是最有发展前途的OCT技术。相对于时域(time domain, TD) OCT,它极大地提高了扫描速度和轴向分辨率,视网膜的活体断层成像更加清晰、直观。
     在临床应用中,我们还有很多疑问。频域OCT与时域OCT的测量的视网膜神经纤维层(retinal nerve fiber layer, RNFL)厚度,两者有无差异?对早期原发性开角型青光眼(primary open angle glaucoma, POAG)的诊断能力如何?频域OCT对RNFL局部缺损的检测与眼底彩照的结果是否一致?是否比时域OCT更灵敏、准确?黄斑区视网膜神经节细胞复合体(ganglion cell complex, GCC)层在青光眼人群有何变化?与视功能参数的改变是否一致?青光眼是否累及光感受器细胞?关于这些问题,目前国外学者研究不多,国内基本未见报道。
     本研究采用频域OCT检测了视网膜的RNFL、GCC和光感受器细胞层的厚度,分析了青光眼对视网膜不同层次的结构损害特征,希望解答上述问题,提高我们对青光眼的认识能力和诊断水平。
     第一部分频域OCT对视网膜神经纤维层厚度的检测
     目的
     1.比较频域与时域OCT测量早期、视野前期青光眼和非青光眼人群RNFL厚度的差异和联系,及其对青光眼的早期诊断效能。
     2.评价频域、时域OCT与眼底彩照检测青光眼RNFL局部缺损的相关性和一致性。
     方法
     1.分别用Cirrus HD-OCT和Stratus OCT测量非青光眼人群62例(62眼)、早期POAG患者47例(47眼)、视野前期POAG患者30例(30眼)的RNFL厚度,比较两种OCT测量的三组人群4个象限及全周平均RNFL厚度的差异、相关性和一致性;比较各参数对早期、视野前期青光眼的诊断效能;比较两种OCT根据系统自带的正常人数据库,对青光眼人群检测的阳性率。
     2.选择经眼底彩照确认有RNFL局部缺损的POAG患者55例(55眼)和非青光眼人群41例(41眼)纳入研究,分析眼底彩照、Cirrus HD-OCT、Stratus OCT分别检测的RNFL局部缺损的位置和宽度,进行三者检测结果的一致性和相关性研究,评价OCT对RNFL局部缺损的诊断价值。
     结果
     1. Cirrus HD-OCT测量的三组人群4个象限和全周平均RNFL厚度均较Stratus OCT薄,差异有统计学意义;在非青光眼和视野前期、早期青光眼人群,两种OCT测量的全周平均RNFL厚度的差值分别是:(11.6±10.6)μm、(6.9±17.5)μm和(6.0±13.1)μm。
     2.两种OCT测量的4个象限和全周平均RNFL厚度的相关系数为0.676~0.935(P均为0.000),其中下方、上方象限和全周平均测量值之间相关系数均达到0.9以上。
     3. Cirrus HD-OCT和Stratus OCT测量的视野前期青光眼全周平均RNFL厚度的AROC为0.951和0.881,差异有统计学意义(P=0.006);而其他4个象限RNFL厚度值的AROC的差异没有统计学意义(P>0.05)。两种OCT对早期青光眼测量的全周平均及各象限RNFL厚度的AROC均没有显著差异(P>0.05)。两种OCT测量的全周平均、下方及上方RNFL厚度的AROC较大,在视野前期青光眼组均>0.87,在早期青光眼组均>0.95。
     4.根据系统自带的正常数据库,Cirrus HD-OCT、Stratus OCT检测视野前期青光眼人群的阳性率分别是83.4%、43.3%,而对早期青光眼,两种OCT的阳性率分别是97.9%、95.8%。
     5.55例(55眼)POAG患者共有RNFL局部缺损75处,分别位于颞上和颞下象限。以RNFL厚度落在系统正常数据库的红色区域为标准,Cirrus HD-OCT和Stratus OCT检测RNFL局部损害的敏感度分别是88.0%和69.3%,特异度分别是92.7%和97.6%。
     6. Cirrus HD-OCT和Stratus OCT检测RNFL局部缺损的位置均与眼底彩照的检测结果高度正相关(r=0.993、0.992,P均=0.000);两种OCT检测的RNFL局部缺损宽度与眼底彩照检测的差异均没有统计学意义(Cirrus HD-OCT:P=0.114, Stratus OCT:P==0.074),并且OCT与眼底彩照的检测值之间有一定正相关(Cirrus HD-OCT:r=0.420, P=0.019; Stratus OCT:r=0.432, P=0.002). Cirrus HD-OCT对RNFL局部缺损宽度的检测值大于Stratus OCT (P=0.002)。
     结论
     1.对于视野前期、早期青光眼和非青光眼人群,Cirrus HD-OCT检测的各象限和全周平均RNFL厚度值普遍比Stratus OCT显著偏小,但是相关性较好。
     2.两种OCT测量的全周平均、下方和上方RNFL厚度值均能很好的区分视野前期、早期青光眼和非青光眼人群,Cirrus HD-OCT对视野前期青光眼的诊断能力高于Stratus OCT.
     3.两种OCT均具有较好的诊断RNFL局部缺损的价值,与眼底彩照检测值一致性较好。
     第二部分频域OCT对视网膜神经节细胞复合体厚度的检测
     目的
     1.探讨频域OCT检测的黄斑区视网膜神经节细胞复合体(ganglion cell complex, GCC)厚度在青光眼人群的分布特征。
     2.分析GCC厚度与视功能检测参数在青光眼与非青光眼人群的变化关系,同时结合RNFL厚度进行评价,探讨青光眼对视网膜结构与功能损害的一致性。
     方法
     1.采用频域OCT (RTVue-100)和时域OCT (Stratus OCT)分别检测非青光眼人群41例(41眼)和POAG患者101例(101眼)的黄斑区GCC厚度和视盘全周平均RNFL厚度,比较GCC的5个厚度参数值在早期和视野前期青光眼与非青光眼人群的差异,以及在早期、进展期和晚期青光眼人群的差异;计算并比较GCC厚度与RNFL厚度的受试者工作特征曲线下面积(area under the receive operating characteristic curve, AROC).
     2.对非青光眼人群41例(41只眼)和POAG患者95例(95只眼)分别进行RTVue-100OCT检测黄斑区整体平均GCC厚度、Cirrus HD-OCT检测视盘全周平均RNFL厚度、Humphrey视野计检测平均偏差(mean deviation, MD)、闪光视网膜电图检测明视负波反应(photopic negative response, PhNR)的振幅。通过曲线拟合、建立回归模型分析以上4个参数在青光眼病程中的变化关系。
     结果
     1.GCC的5个厚度参数(整体平均厚度GCC-Avg、上方平均厚度GCC-Sup、下方平均厚度GCC-Inf、局部丢失容积GCC-FLV、整体丢失容积GCC-GLV)在视野前期、早期青光眼与非青光眼人群比较,差异均有统计学意义(P<0.001)。
     2.在青光眼的视野前期、早期、进展期与晚期,整体平均厚度GCC-Avg、上方平均厚度GCC-Sup和下方平均厚度GCC-Inf的测量值逐渐减少;而局部丢失容积GCC-FLV、整体丢失容积GCC-GLV的测量值逐渐增大,差异有统计学意义(P<0.001)。
     3. 5个GCC厚度参数诊断青光眼的AROC分别是0.965,0.950,0.949,0.967,0.972。而全周平均RNFL厚度的AROC为0.978,与GCC各参数比较,其差异没有统计学意义(P>0.05)。
     4.黄斑区整体平均GCC厚度与MD值在青光眼病程中呈曲线变化关系,回归模型的决定系数为0.595;与PhNR振幅呈直线变化关系,回归模型决定系数为0.437。视盘全周平均RNFL厚度与MD、PhNR振幅也分别呈曲线、直线变化关系,决定系数分别是0.606,0.454。
     结论
     1.频域OCT测量的黄斑区GCC厚度,随青光眼病情进展而逐渐变薄,具有很好的区分青光眼与非青光眼人群的能力。
     2.GCC厚度和RNFL厚度均与MD呈曲线变化关系,与PhNR振幅呈直线变化关系,GCC厚度与功能参数的回归模型决定系数略低于RNFL厚度。
     第三部分频域OCT对视网膜光感受器细胞层厚度的检测
     目的
     1.用频域OCT辅助手工测量正常人视网膜光感受器细胞各层的厚度,评价检测方法的可行性和可重复性。
     2.以该方法测量青光眼和非青光眼人群的视网膜光感受器细胞层的厚度,探讨光感受器细胞层在青光眼病程中的变化。
     方法
     1.用频域OCT对正常人40例40眼的黄斑区扫描获得视网膜断层图像,同一位操作者采用Sigma图像分析软件盲法测量黄斑中心凹和旁中心凹处(中心凹外1.5 mm)视网膜光感受器细胞核、内节和外节层的厚度。
     2.检测方法的重复性检验:随机选择30张正常眼的SDOCT图像,由同一位检测者在3次非连续时间内、盲法测量其黄斑中心凹光感受器细胞各层的厚度。计算组内相关系数(intraclass correlation coefficient,ICC)、组内变异系数(within-subject coefficient of variation, CVw)和可重复性指数(repeatability coefficient)
     3.以该方法测量POAG患者(青光眼组)48例48眼和非青光眼人群(对照组)38例38眼的黄斑中心凹和旁中心凹处光感受器细胞各层厚度,比较其在青光眼与非青光眼人群的差异,分析光感受器细胞层厚度与视盘旁视网膜神经纤维层厚度间的关系。
     结果
     1.频域OCT测量正常人黄斑中心凹视锥细胞核层、内节层、外节层的平均厚度分别是:(96.1±10.5)μm、(24.2+2.1)μm、(32.1±3.2)μm;旁黄斑中心凹光感受器(以视杆细胞为主)核层、内节层、外节层的平均厚度分别是:(69.2±13.1)μm、(22.0+2.4)μm、(23.9±4.1)gm。
     2.测量黄斑中心凹视锥细胞核层、内节层、外节层的重复性:组内相关系数分别为0.964、0.816、0.824,组内变异系数分别为3.11、4.98、4.91,可重复性指数分别为8.475、8.137、8.132。
     3.早期青光眼组的黄斑中心凹处视锥细胞层、细胞核层厚度分别是(165.9+16.7)μm、(105.7±13.9)μm、较对照组明显增厚(P=0.026,0.020),内节和外节层厚度为(60.4±5.6)μm),与对照组比较差异没有统计学意义(P=1.000)。而中晚期青光眼组的黄斑中心凹处视锥细胞层、细胞核层、内节和外节层厚度分别是(160.0+14.8)μm、(101.8±12.7)μm、(58.5±5.3)μm,与对照组比较差异没有统计学意义(P=0.751,0.350,1.000)
     4.青光眼组的黄斑中心凹处视锥细胞核层厚度和视盘旁RNFL厚度之间有二元线性关系:Y=-0.019X2+2.73X+10.34,R2=0.211,P=0.005。
     5.青光眼组和对照组在中心凹外3 mm处光感受器细胞核层、内节层、外节层的厚度与对照组比较,差异均没有统计学意义(P=0.410,0.445,0.198)。
     结论
     1.频域OCT联合手工测量的方法对视网膜光感受器细胞各层的检测,具有较高的重复性,是研究活体光感受器细胞结构较可靠的方法。
     2.早期青光眼的黄斑中心凹视锥细胞层及细胞核层显著增厚,并随病程进展呈现出动态、曲线性变化。
The spectral domain OCT (SD OCT) is deemed to be the most promising OCT technology. Compared with time domain (TD) OCT, it shows much faster scan speed and higher axial revolution, and improves visualization of the intra-retinal structures in vivo more clear.
     In clinical use of SDOCT, we have many questions:Is there any difference between the retinal nerve fiber layer (RNFL) thicknesses measured using SDOCT and TDOCT? And whether the diagnostic power of SDOCT is better? Whether the topographic profiles of localized RNFL defects determined by SD-OCT and TD-OCT agree with that determined by fundus photography? And is the SDOCT more sensitive and accurate? How the macular ganglion cell complex (GCC) thickness changes in glaucoma patients? Whether the GCC thickness changes correlate with the changes of visual functional parameters? Is photoreceptor involved in glaucoma? About the above problems, we found few reports conducted by some overseas researchers, but they are far from solved, and no report in Chinese.
     In this study, we use SDOCT to measure the RNFL, GCC and photoreceptor layer thickness, and analyze the intra-retinal structural damage in glaucoma. We hope to give answers to these clinical questions, and help us understanding the pathophysiology of glaucoma and assisting clinicians in glaucoma management.
     Part I Retinal nerve fiber layer thickness measurement by SD-OCT
     Purpose
     1. To compare the RNFL thickness measurements in mild glaucoma, preperimetric glaucoma patients and non-glaucoma subjects between TD-OCT and SD-OCT, to assess the diagnostic values of RNFL measurements by the two types OCT.
     2. To evaluate the correlation and agreement between topographic profiles of localized RNFL defects determined by SD-OCT and TD-OCT with fundus photography.
     Methods
     1. Cirrus HD-OCT and Stratus OCT were used to measure the RNFL thickness of 62 eyes of 62 non-glaucoma subjects,47 eyes of 47 mild glaucoma patients, and 30 eyes of 30 preperimetric glaucoma patients. The measurements of RNFL thickness parameters, their correlation, and diagnostic value between the two types OCT was compared and evaluated. The positive rates in glaucoma patients determined by the standard normal databases of the OCT systems were calculated.
     2. Forty-one eyes of 41 non-glaucoma subjects and 55 eyes of 55 glaucomatous patients with localized, wedge-shaped RNFL defects identified by two glaucoma specialists in fundus photographs were enrolled in the study. The angular location and width of RNFL defects determined on the images of fundus photography, Cirrus HD-OCT and Stratus OCT were analyzed respectively using Pearson's correlation coefficient and linear regression analysis, to assess the diagnostic values of RNFL defects determined by two types OCT.
     Results
     1. The measuring values of the four quadrants and global average RNFL thickness parameters on the three groups by Cirrus HD-OCT were thinner than those by Stratus OCT with significant difference. The difference of the global average RNFL thickness between the two types OCT were 11.6±10.6μm,6.9±17.5μm and 6.0±13.1μm respectively in the non-glaucoma, preperimetric glaucoma and mild glaucoma groups. The correlation coefficients (r) of the RNFL thickness parameters between the two types OCT were 0.676-0.935 (P=0.000). Inferior and superior quadrant, global average RNFL thickness had the largest r value more than 0.9.
     2. The area under the receive operating characteristic curve (AROC) of global average RNFL measured by Cirrus HD-OCT and Stratus OCT on preperimetric glaucoma patients were 0.951 and 0.881 (P=0.006), and the AROC of the four quadrants RNFL thickness between the two types OCT without significant difference (P>0.05). The differences of the two OCTs'AROC of all the RNFL thickness parameters on mild glaucoma patients were all no significant (P>0.05). The AROC of the global average, inferior and superior RNFL thickness were larger than 0.87 on preperimetric glaucoma group,0.95 on mild glaucoma group.
     3. Based on the standard normal database of Cirrus HD-OCT and Stratus OCT systems, the positive rates in preperimetric glaucoma patients were 83.4% and 43.3%, in mild glaucoma patients were 97.9% and 95.8%.
     4. Seventy-five RNFL defects were identified in 55 glaucomatous eyes by two glaucoma specialists unanimously with the defect position at superior-temporal and inferior-temporal quadrants. If the RNFL thickness in the red color band of the normal database defined as the defect borderline, the sensitivity of Cirrus HD-OCT and Stratus OCT to determining RNFL defects were 88.0% and 69.3% respectively and their specificity were 92.7% and 97.6% respectively.
     5. The angular locations of RNFL defects by Cirrus HD-OCT and Stratus OCT were highly correlated with those by fundus photography (r=0.993,0.992, P<0.001). No significant differences were found in the defect width of RNFL between Cirrus HD-OCT or Stratus OCT and fundus photography (Cirrus HD-OCT:P=0.114; Stratus OCT:P=0.074), and the angular widths of RNFL defects by Cirrus HD-OCT and Stratus OCT were moderately correlated with those by fundus photography(r=0.420,0.432, P=0.019,0.002). The angular widths of RNFL defects by Cirrus HD-OCT was larger than that by Stratus OCT (P=0.002).
     Conclusions
     1. RNFL thickness measurements generally were thinner by Cirrus HD-OCT than by Stratus OCT in mild glaucoma, preperimetric glaucoma patients and non-glaucoma subjects, but the measurements of the two types OCT correlated well.
     2. The global average, superior and inferior quadrant RNFL thickness measured by both of the two types OCT, could distinguish between the mild glaucoma or preperimetric glaucoma patients and non-glaucoma subjects. The diagnostic power of Cirrus HD-OCT was higher than that of Stratus OCT.
     3. Both of the two types OCT could localize RNFL defects with high sensitivity and specificity. The measure value of Cirrus HD-OCT and Stratus OCT for RNFL defects showed a good diagnostic agreement with fundus photography.
     Part□Ganglion cell complex thickness measurement by SD-OCT
     Purpose
     1. To explore the macular GCC thickness feature in POAG patients measured with SD-OCT.
     2. To analyze the association between GCC, RNFL thickness and the visual function parameters, and evaluate the relationship between structural and functional damage of retina in glaucoma.
     Methods
     1. The macular GCC thickness and peripapillary RNFL thickness of 41 eyes of 41 non-glaucoma subjects and 101 eyes of 101 POAG patients were measured using RTVue-100 and Stratus OCT respectively. The measurements of the 5 GCC thickness parameters (GCC-Avg, GCC-Sup, GCC-Inf, GCC-GLV and GCC-FLV) were compared between mild glaucoma or preperimetric glaucoma patients and non-glaucoma subjects, and among the mild, advanced and end-stage glaucoma patients. The area under the receive operating characteristic curve (AROC) of the GCC thickness and RNFL thickness were calculated and compared.
     2. Ninety-five eyes of 95 POAG patients and 41 eyes of 41 non-glaucoma subjects were enrolled in the study. Macular GCC-Avg thickness and peripapillary average RNFL thickness were measured using RTVue-100 OCT and Cirrus HD-OCT respectively, mean deviation (MD) of visual field was examined using Humphrey VF analyzer, photopic electroretinograms were elicited by white stimuli on a white background and the amplitude of photopic negative response (PhNR) were measured. The associations between the GCC or RNFL thickness and MD or amplitude of PhNR were evaluated with linear and curvilinear regression models.
     Results
     1. There were significant differences of the 5 GCC thickness measurements between mild glaucoma or preperimetric glaucoma patients and non-glaucoma subjects (P<0.001).
     2. The measurements of GCC-Avg, GCC-Sup and GCC-Inf thickness were decreased, while the measurements of GCC-FLV and GCC-GLV were increased, from mild and advanced to end-stage glaucoma with significant difference (P<0.001).
     3. The AROC of the 5 GCC thickness parameters (GCC-Avg, GCC-Sup, GCC-Inf, GCC-GLV and GCC-FLV) were 0.965,0.950,0.949,0.967 and 0.972 respectively. The AROC of global average RNFL thickness parameter was 0.978. There were no significant differences of the AROC between the 5 GCC thickness and RNFL thickness paramenters.
     4. The curvilinear regression model better described the relationship between GCC thickness and MD with coefficient of determination (R2=0.595), and the linear regression model better fit the relationship between GCC thickness and amplitude of PhNR with coefficient of determination (R2=0.437). RNFL thickness showed the similar regression models with MD and amplitude of PhNR as GCC thickness, but the coefficients of determination were higher between the RNFL thickness and MD or amplitude of PhNR (R2=0.606,0.454).
     Conclusions
     1. The macular GCC thickness measured using SDOCT decreased with the severity of glaucoma, it could well differentiate between non-glaucoma subjects and glaucomatous patients.
     2. Both of the GCC thickness and RNFL thickness showed a curvilinear relationship with MD and a linear relationship with amplitude of PhNR, the coefficients of determination of GCC thickness were lower than RNFL thickness.
     Part□Photoreceptor layer thickness measurement by SD-OCT
     Purpose
     1. To explore the feasibility and repeatability of manual measure photoreceptor layer thickness using SDOCT.
     2. To measure and compare photoreceptor layer thickness between glaucoma and non-glaucoma subjects using SDOCT, and explore the change of photoreceptor in glaucoma.
     Methods
     1. The macular areas of 40 eyes from 40 normal subjects were imaged by SDOCT. The outer nuclear layer (ONL) and inner and outer segments (IS/OS) layer thicknesses in fovea and parafovea (1.5 mm from the fovea) were measured by a single masked observer using an image analysis software (SigmaScan Pro version 5.0).
     2. Repeatability test:the measurements were repeated 3 times in a random sample of 30 normal macular images to determine the intraclass correlation coefficient (ICC), within-subject coefficient of variation (CVw) and repeatability coefficient.
     3. Forty-eight eyes of 48 POAG patients and 38 eyes of 38 non-glaucoma subjects were measured the photoreceptor layer thickness in fovea and parafovea using SDOCT. The measurements between glaucoma and non-glaucoma groups were compared. The association between photoreceptor layer thickness and RNFL thickness was evaluated.
     Results
     1. The ONL、IS and OS layer thickness in normal subjects were 96.1±10.5μm,24.2±2.1μm and 32.1±3.2μm respectively in fovea, and 69.2±13.1μm,22.0±2.4μm and 23.9±4.1μm respectively in parafovea.
     2. Repeatability test results:the ICC of ONL, IS and OS layer thickness measurement was 0.964,0.816 and 0.824 respectively, the CVw of the 3 layer thickness measurement was 3.11%,4.98% and 4.91%, and the repeatability coefficient of the 3 layer thickness measurement was 8.475,8.137 and 8.132, respectively.
     3. The total photoreceptor layer and the ONL thickness in the fovea were 165.9±16.7μm and 105.7±13.9μm respectively in the mild glaucoma group, which were higher than that of the non-glaucoma group (P=0.026,0.020). While the IS+OS layer thickness in the fovea were 60.4±5.6μm, which was no significant difference compared with the non-glaucoma group (P= 1.000). The total photoreceptor layer, the ONL, and the IS+OS layer thickness in the parafovea were 160.0±14.8μm,101.8±12.7μm and 58.5±5.3μm respectively in the advanced glaucoma group, which was no significant difference compared with the non-glaucoma group (P=0.751,0.350,1.000).
     4. The relationship between ONL in fovea and RNFL thickness in glaucoma group was best described with a second order polynomial regression model association (Y=-0.019X2+ 2.73X+10.34,R2=0.211, P=0.005).
     5. There were no significant differences between the glaucoma and non-glaucoma group of the ONL, IS and OS layer thickness in parafovea (P=0.410,0.445,0.198).
     Conclusions
     1. The manual measure photoreceptor layer thickness using SDOCT was feasible and repeatable for in vivo study.
     2. The foveal ONL thickness was increased in mild glaucomatous eyes. The curvilinear alteration of foveal ONL thickness was associated with the severity of the disease.
引文
1. Hee MR, Izatt JA, Swanson EA, et al. Optical coherence tomogmphy of the human retina [J]. Arch Ophthalmol 1995,113(3):325-332.
    2. Schuman JS, Hee MR, Arya AV, et al. Optical coherence tomography:a new tool for glaucoma diagnosis [J]. Curt Opin Ophthalmol 1995,6(2):89-95.
    3. Puliafito CA, Hee MR, Lin CP, et al. Imaging of macular diseases with optical coherence tomogmphy [J]. Ophthalmology 1995,102(2):217-229.
    4. Blumenthal EZ, Williams JM, Weinreb RN, et al. Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomogmphy [J]. Ophthalmology 2000,1 07(12):2278-2282.
    5.黄丽娜,古洵清.主编.光学相干断层成像术的临床应用[M].广东:新世纪出版社,2002:9.
    6. 葛坚,骆荣江,刘杏,等.光学相干断层成像术检测视网膜神经纤维层厚度的初步研究[J].中国实用眼科杂志1999,17(6):331-335.
    7.刘杏,黄晶晶.光学相干断层扫描仪在我国眼科临床的应用(一)[J].眼科2004,13(4):196-199.
    8.刘杏,黄晶晶.光学相干断层扫描仪在我国眼科临床的应用(二)[J].眼科2004,13(5):260-263.
    9.樊宁,黄丽娜,成洪波,等STRATUS OCT测量正常人视网膜神经纤维层的厚度[J].眼科2007,16(4):237-240.
    10.刘杏,凌运兰,骆荣江,等.应用光学相干断层成像术测量正常人视网膜神经纤维厚度[J].中华眼科杂志2000,36(5):362-365.
    11.黄丽娜,Joles Schuman, Nan Wang.光学相干断层成像与组织形态学检测猴眼青光眼视网膜纤维层厚度的比较[J].中华眼科杂志1999,37(3):188-192.
    12.黄丽娜,樊宁,成洪波,等.两种相干光断层扫描仪测量兔眼视网膜厚度和组织学检查的对比研究[J].眼科2009,4(18):239—242.
    13. Leung CK, Medeiros FA, Zangwill LM, et al. American Chinese glaucoma imaging study:a comparison of the optic disc and retinal nerve fiber layer in detecting glaucomatous damage [J]. Invest Ophthalmol Vis Sci.2007,48(6):2644-2652.
    14. Bowd C, Zangwill LM, Medeiros FA et al. Structure-function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry [J]. Invest Ophthalmol Vis Sci.2006,47(7):2889-2895.
    15. Lin SC, Singh K, Jampel HD, et al. Optic nerve head and retinal nerve fiber layer analysis:a report by the American Academy of Ophthalmology [J]. Ophthalmology.2007,114(10): 1937-1949.
    16. Azuara-Blanco A, Burr JM. Assessment of glaucoma imaging technology [J]. Ophthalmology.2008,115(7):1266-1267.
    17. Sehi M, Ume S, Greenfield DS.Scanning laser polarimetry with enhanced corneal compensation and optical coherence tomography in normal and glaucomatous eyes [J]. Invest Ophthalmol Vis Sci.2007,48(5):2099-2104.
    18. Oh JH, Kim YY, et al. Scanning laser polarimetry and optical coherence tomography for detection of retinal nerve fiber layer defects [J]. Korean J Ophthalmol.2009,23(3):169-175.
    19. Guedes V, Schuman JS, Hertzmark E, et al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes [J]. Ophthalmology 2003,110(1):177-189.
    20. Wollstein G, Schuman JS, Price LL, et al. Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields [J]. Am J Ophthalmol.2004,138(2):218-225.
    21.黄丽娜,成洪波,樊宁,等.STRATUS OCT对正常人黄斑部视网膜厚度和容积的测量[J].中国实用眼科杂志2007,25(12):1314-1318.
    22. Chen TC, Cense B, Pierce MC, et al. Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging [J]. Arch Ophthalmol 2005, 123(12):1715-1720.
    23. R S Parikh, S R Parikh, R Thomas. Diagnostic capability of macular parameters of Stratus OCT 3 in detection of early glaucoma [J]. Br J Ophthalmol 2010,94(2):197-201.
    24. Kumar A, Sinha S. Optical coherence tomography [J]. Ophthalmology 2008,115(2): 417-418.
    25.王晓贞,李树宁,吴葛玮,等.频域OCT检测视乳头形态及视网膜神经纤维层厚度在青光眼诊断中的作用[J].中华眼科杂志2010,46(8):702—707.
    26. Nork TM. Acquired color vision loss and a possible mechanism of ganglion cell death in glaucoma [J]. Trans Am Ophthalmol Soc,2000,98(1):331-363.
    27. Poinoosawmy D, Nagasubramanian S, Gloster J. Colour vision in patients with chronic simple glaucoma and ocular hypertension [J]. Br J Ophthalmol,1980,64(11):852-857.
    28. Stiefelmeyer S, Neubauer AS, Berninger T, et al. The multifocal pattern electroretinogram in glaucoma [J]. Vision Res,2004,44(1):103-112.
    29. Ver Hoeve JN,Murdock TJ, Heatley GA, et al. Increased latency of early multifocal ERG response in glaucoma [J]. Invest Ophthalmol Vis Sci,2000.41(1):S520.
    30. Panda S, Jonas JB. Decreased photoreceptor count in human eyes with secondary angle-closure glaucoma [J]. Invest Ophthalmol Vis Sci,1992,33(8):2532-2536.
    31. Kendell KR. Quigley HA, Kerrigan LA. et al. Primary open-angle glaucoma is not associated with photoreceptor loss [J]. Invest Ophthalmol Vis Sci,1995,36(1):200-205.
    32. Nork TM, ver Hoeve JN, Poulsen GL, et al. Swelling and loss of photoreceptors in chronic human and experimental glaucomas [J]. Arch Ophthalmol,2000,118(2):235-245.
    33.吴昌凡,邢怡桥,陈长征,等.频域OCT对高度近视性黄斑病变光感受器内外节改变的观察[J].中国实用眼科杂志2010,29(1):47-50.
    34. Srinivasan VJ, Monson BK, Wojtkowski M, et al. Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography [J]. Invest Ophthalmol Vis Sci,2008,49(4):1571-1579.
    1. Azuara-Blanco A, Burr JM. Assessment of glaucoma imaging technology [J]. Ophthalmology.2008,115(7):1266-1267.
    2.黄丽娜,申晓丽,樊宁,等.SD-OCT检测正常人视网膜神经纤维层厚度的可重复性研究[J].中国实用眼科杂志,2010,6(10):39-42.
    3. 吴慧娟,鲍永珍,任泽钦,等.频域光学相干断层扫描在视网膜神经纤维层厚度测量中的应用[J].眼科研究,2010,28(5):445-449.
    4. Leung CK, Cheung CY, Weinreb RN, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography:a variability and diagnostic performance study [J]. Ophthalmology.2009,116(7):1257-1263.
    5. Mwanza JC, Chang RT, Budenz DL, et al. Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with cirrus HD-OCT in glaucomatous eyes [J].Invest Ophthalmol Vis Sci.2010,51(11):5724-5730.
    6. Knight OJ, Chang RT, Feuer WJ, et al. Comparison of retinal nerve fiber layer measurements using time domain and spectral domain optical coherent tomography [J]. Ophthalmology.2009,116(7):1271-1277.
    7. Vizzeri G, Weinreb RN, Gonzalez-Garcia AO, et al. Agreement between spectral-domain and time-domain OCT for measuring RNFL thickness [J].Br J Ophthalmol.2009,93(6): 775-781.
    8. Sung KR, Kim DY, Park SB, et al. Comparison of retinal nerve fiber layer thickness measured by Cirrus HD and Stratus optical coherence tomography [J]. Ophthalmology.2009, 116(7):1264-1270.
    9. Katz J, Sommer A, Gaasterland DE, et al. Comparison of analytic algorithms for detecting glaucomatous visual field loss [J]. Arch Ophthalmol.1991,109(12):1684-1689.
    10. Gordon MO, Kass MA. The ocular hypertension treatment study:design and baseline description of the participants [J]. Arch Ophthalmol.1999,117(5):573-583.
    11.李美玉.主编.青光眼学[M].北京:人民卫生出版社,2004:335.
    12. Mardin CY, Horn FK, Jonas JB, et al. Preperimetric glaucoma diagnosis by confocal scanning laser tomography of the optic disc. British Journal of Ophthalmology [J].1999, 83(3):299-304.
    13. Hood DC, Kardon RH. A framework for comparing structural and functional measures of glaucomatous damage [J]. Prog Retin Eye Res,2007,26(6):688-710.
    14. Stein DM, Ishikawa H, Hariprasad R, et al. A new quality assessment parameter for optical coherence tomography [J]. Br J Ophthalmol,2006; 90(2):186-190.
    15. Cheung CY, Leung Ck, Lin D, et al. Relationship between retinal nerve fiber layer measurement and signal strength in optical coherence tomography [J]. Ophthalmology,2008, 115(8):1347-1351.
    16.黄晶晶,刘杏,曾阳发,等.瞳孔大小对光学相干断层扫描仪测晕视网膜神经纤维层厚度的影响[J].中山大学学报(医学科学版)2006,27(2):212—216.
    17. Smith M, Frost A, Graham CM, et al. Effect of pupillary dilatation on glaucoma assessments using optical coherence tomography [J]. Br J Ophthalmol,2007,91(12): 1686-1690.
    18. Sommer A, Katz J, Quigley HA, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss [J]. Arch Ophthamol 1991,109(1):77-83.
    19. Quigley HA, Katz J, Derick RJ, et al. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage [J]. Ophthalmology 1992, 99(1):19-28.
    20. Airaksinen PJ, Drance SM, Douglas GR, et al. Diffuse and localized nerve fiber loss in glaucoma [J]. Am J Ophthalmol 1984,98(5):566-571.
    21. Harwerth RS, Carter-Dawson L, Shen F, et al. Ganglion cell losses underlying visual field defects from experimental glaucoma [J]. Invest Ophthamol Vis Sci.1999,40(10): 2242-2250.
    22. JC Mwanza, JD Oakley, DL. Budenz, et al. Ability of Cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes [J]. Ophthalmology 2011,118(2): 241-248.
    23. SB Park, KR Sung, SY Kang, et al. Comparison of glaucoma diagnostic capabilities of Cirrus-HD and Stratus optical coherence tomography [J]. Arch Ophthalmol.2009,127(12): 1603-1609.
    24. Leung CK, Medeiros FA, Zangwill LM, et al. American Chinese glaucoma imaging study:a comparison of the optic disc and retinal nerve fiber layer in detecting glaucomatous damage [J]. Invest Ophthalmol Vis Sci.2007,48(6):2644-2652.
    25. Lin SC, Singh K, Jampel HD, et al. Optic nerve head and retinal nerve fiber layer analysis:a report by the American Academy of Ophthalmology [J]. Ophthalmology.2007,114(10): 1937-1949.
    26. Fang Yuan, Pan Ying-zi, Li Mei, et al. Diagnostic capability of Fourier-Domain optical coherence tomography in early primary open angle glaucoma [J]. Chin Med J 2010,123(15): 2045-2050.
    27. Zhong Y, Shen X, Zhou X, et al. Blue-on-yellow perimetry and optical coherence tomography in patients with preperimetric glaucoma. Clin Experiment Ophthalmol.2009, 37(3):262-269.
    28. Mori S, Hangai M, Sakamoto A, et al. Spectral-domain optical coherence tomography measurement of macular volume for diagnosing glaucoma [J]. J Glaucoma.2010,19(8): 528-534.
    29. Budenz DL, Anderson DR., Varma R, et al. Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT [J]. Ophthalmology,2007,114(6):1046-1052.
    30. Tuulonen A, Airaksinen PJ. Initial glaucomatous optic disk and retinal nerve fiber layer abnormalities and their progression [J]. Am J Ophthalmol,1991,111(4):485-490.
    31.黄丽娜(?),Joles Schuman, Nan Wang光学相干断层成像与组织形态学检测猴眼青光眼视网膜纤维层厚度的比较[J].中华眼科杂志2001,37(3):188.
    32.黄丽娜,樊宁,成洪波,等.两种相干光断层扫描仪测量兔眼视网膜厚度和组织学检查的对比研究[J].眼科2009,4(18):239—242.
    33. Chen TC, Cense B, Pierce MC, et al. Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging [J]. Arch Ophthalmol 2005, 123(12):1715-1720.
    34. Hwang JM, Kim TW, Park PH, et al. Correlation between topographic profiles of localized retinal nerve fiber layer defects as determined by optical coherence tomography and red-free fundus photography [J]. J Glaucoma 2006,15(3):223-228.
    35. Soliman MA, Van Den Berg TJ, Ismaeil AA, et al. Retinal nerve fiber layer analysis: relationship between optical coherence tomography and red-free photography [J]. Am J Ophthalmol 2002,133(2):187-195.
    36.吴西施,徐亮,张莉,等.用谱域OCT检测青光眼局限性视网膜神经纤维层缺损[J].眼科2010,1(19):14-18.
    37. Jeoung JW, Park KH. Comparison of Cirrus OCT and Stratus OCT on the ability to detect localized retinal nerve fiber layer defects in preperimetric glaucoma [J]. Investigative Ophthalmology and Visual Science 2010,51(2):938-945.
    38. Jeoung JW, Park KH, Woo KT, et al. Diagnostic Ability of Optical Coherence Tomography with a Normative Database to Detect Localized Retinal Nerve Fiber Layer Defects [J]. Ophthalmology 2005,112(12):2157-2163.
    1. Quigley HA, Nickells RW, Kerrigan LA, et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis [J]. Invest Ophthalmol Vis Sci.1995, 36(5):774-786.
    2. Leung CK, Medeiros FA, Zangwill LM, et al. American Chinese glaucoma imaging study:a comparison of the optic disc and retinal nerve fiber layer in detecting glaucomatous damage [J].Invest Ophthalmol Vis Sci.2007,48(6):2644-2652.
    3. Bowd C, Zangwill LM, Medeiros FA et al. Structure-function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry [J]. Invest Ophthalmol Vis Sci.2006,47(7):2889-2895.
    4. Zeimer R, Asrani S, Zou S, et al. Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study [J]. Ophthalmology 1998,105(2): 224-231.
    5. Weber AI, Kaufman PL, Hubbard WC. Morphology of single ganglion cells in the glaucomatous primate retina [J]. Invest Ophthalmol Vis Sci.1998,39(12):2304-2320.
    6. Glovinsky Y, Quigley HA, Pease ME. Foveal ganglion cell loss is size dependent in experimental glaucoma [J]. Invest Ophthalmol Vis Sci.1993,34(2):395-400.
    7. Guedes V, Schuman JS, Hertzmark E, et al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes [J]. Ophthalmology.2003,110(1):177-189.
    8. Wollstein G, Schuman JS, Price LL, et al. Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields [J]. Am J Ophthalmol.2004,138(2):218-225.
    9. Tan Ou, Chopra Vikas, Lu ATH, et al. Detection of macular ganglion cell loss in glaucoma by Fourier-Domain optical coherence tomography [J]. Ophthalmology.2009,116(12): 2305-2314.
    10. Garas A, Vargha P, Hollo G. Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomography [J]. Ophthalmology.2010,117(4):738-746.
    11. Mardin CY, Horn FK, Jonas JB, et al. Preperimetric glaucoma diagnosis by confocal scanning laser tomography of the optic disc. British Journal of Ophthalmology [J].1999, 83(3):299-304.
    12.李美玉.主编.青光眼学[M].北京:人民卫生出版社,2004:335.
    13. Kim NR, Lee ES, Seong GJ, et al. Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma [J]. Invest Ophthalmol Vis Sci.2010,51(9):4646-4651.
    14. Leung CK, Chong KK, Chan WM, et al. Comparative study of retinal nerve fiber layer measurement by StratusOCT and GDx VCC, Ⅱ:structure/function regression analysis in glaucoma [J]. Invest Ophthalmol Vis Sci,2005,46(10):3702-3711.
    15. Takagishi M, Hirooka K, Baba T, et al. Comparison of retinal nerve fiber layer thickness measurements using time domain and spectral domain optical coherence tomography, and visual field sensitivity [J]. J Glaucoma.2010,16. [Epub ahead of print]
    16. Lee JR, Jeoung JW, Choi J, et al. Structure-function relationships in normal and glaucomatous eyes determined by time-and spectral-domain optical coherence tomography [J]. Invest Ophthalmol Vis Sci.2010,51(12):6424-6430.
    17. Harwerth RS, Carter-Dawson L, Shen F, et al. Ganglion cell losses underlying visual field defects from experimental glaucoma [J]. Invest Ophthalmol Vis Sci.1999,40(10): 2242-2250.
    18. Harwerth RS, Carter-Dawson L, Smith EL, et al. Neural losses correlated with visual losses in clinical perimetry [J]. Invest Ophthalmol Vis Sci.2004,45(9):3152-3160.
    19. Viswanathan S, Frishman LJ, Robson JG, et al. The photopic negative response of the macaque electroretinogram:reduced by experimental glaucoma [J]. Invest Ophthalmol Vis Sci 1999,40(6):1124-1136.
    20. Viswanathan S, Frishman LJ, Robson JG. The uniform field and pattern ERG in macaques with experimental glaucoma [J]. Invest Ophthalmol Vis Sci 2000,41(9):2797-2810.
    21. Viswanathan S, Frishman LJ, Robson JG, et al. The photopic negative response of the flash electroretinogram in primary open angle glaucoma [J]. Invest Ophthalmol Vis Sci 2000, 42(2):514-522.
    22. Alberto Colotto, Benedetto Falsini, Tommaso Salgarello, et al. Photopic Negative Response of the Human ERG:Losses Associated with Glaucomatous Damage [J]. Invest Ophthalmol Vis Sci.2000,41 (8):2205-2211.
    23. Marmor MF, Holder GE, Seeliger MW, et al. Standard for clinical electroretinography (2004 update). Doc Ophthalmol.2004,108(2):107-114.
    24. Bloomfield SA. Effect of spike blockade on the receptive-field size of amacrine and ganglion cells in the rabbit retina [J]. J Neurophysiol.1996,75(5):1878-1893.
    25. Gotoh Y, Machida S, Tazawa Y. Selective loss of the photopic negative response in patients with optic nerve atrophy [J]. Arch Ophthalmol.2004,122(3):341-346.
    26.李明翰,吴德正,刘杏,等.视网膜电图明视负波反应在开角型青光眼中的临床应用价值[J].眼视光学杂志2006,8(5):273—277.
    27. Fortune B, Bui BV, Cull G et al. Inter-ocular and inter-session reliability of the electroretinogram photopic negative response (PhNR) in non-human primates [J]. Exp Eye Res.2004,78(1):83-93.
    28. Mortlock KE, Binns AM, Aldebasi YH, et al. Inter-subject, inter-ocular and inter-session repeatability of the photopic negative response of the electroretinogram recorded using DTL and skin electrodes [J]. Doc Ophthalmol.2010,121(2):123-134.
    29. Hoon Dong Kim, Joo Youn Park, Young-Hoon Ohn. Clinical applications of photopic negative response (PhNR) for the treatment of glaucoma and diabetic retinopathy [J]. Korean J Ophthalmol 2010,24(2):89-95.
    30. Shigeki Machida, Yasutaka Gotoh, Yoshibaru Toba, et al. Correlation between photopic negative response and retinal nerve fiber layer thickness and optic disc topography in glaucomatous eyes [J]. Invest Ophthalmol Vis Sci.2008,49(5):2201-2207.
    31. Jung Woo Cho, Kyung Rim Sung, Suhwan Lee, et al. Relationship between visual field sensitivity and macular ganglion cell complex thickness as measured by spectral domain optical coherence tomography (RTVue-100 SD OCT) [J]. Invest Ophthalmol Vis Sci.2010, 51(12):6401-6407.
    32. Quigley HA, Addicks EM, Green WR. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy [J]. Arch ophthalmol 1982,100(1):135-146.
    33. Sommer A, Katz J, Quigley HA, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss [J]. Arch Ophthamol 1991,109(1):77-83.
    34. Quigley HA, Katz J, Derick RJ, et al. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage [J]. Ophthalmology 1992, 99(1):19-28.
    1. Quigley HA, Nickells RW, Kerrigan LA, et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis [J]. Invest Ophthalmol Vis Sci,1995, 36(5):774-786.
    2. Nork TM. Acquired color vision loss and a possible mechanism of ganglion cell death in glaucoma [J]. Trans Am Ophthalmol Soc,2000,98(1):331-363.
    3. Poinoosawmy D, Nagasubramanian S, Gloster J. Colour vision in patients with chronic simple glaucoma and ocular hypertension [J]. Br J Ophthalmol,1980,64(11):852-857.
    4. Stiefelmeyer S, Neubauer AS, Berninger T, et al. The multifocal pattern electroretinogram in glaucoma [J]. Vision Res,2004,44(1):103-112.
    5. Hoeve JN, Murdock TJ, Heatley GA, et al. Increased latency of early multifocal ERG response in glaucoma [J]. Invest Ophthalmol Vis Sci,2000,41 (3):S520.
    6. Panda S, Jonas JB. Decreased photoreceptor count in human eyes with secondary angle-closure glaucoma [J]. Invest Ophthalmol Vis Sci,1992,33(8):2532-2536.
    7. Kendell KR, Quigley HA, Kerrigan LA, et al. Primary open-angle glaucoma is not associated with photoreceptor loss [J]. Invest Ophthalmol Vis Sci,1995,36(1):200-205.
    8. Nork TM, ver Hoeve JN, Poulsen GL, et al. Swelling and loss of photoreceptors in chronic human and experimental glaucomas [J]. Arch Ophthalmol,2000,118(2):235-245.
    9. Kumar A, Sinha S. Optical coherence tomography [J]. Ophthalmology,2008,115(2): 417-418.
    10. Ota M, Tsujikawa A, Murakami T, et al. Foveal photoreceptor layer in eyes with persistent cystoid macular edema associated with branch retinal vein occlusion [J]. Am J Ophthalmol, 2008,145(2):273-280.
    11. Chen TC, Cense B, Pierce MC, et al. Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging [J]. Arch Ophthalmol,2005, 123(12):1715-1720.
    12. Srinivasan VJ, Monson BK, Wojtkowski M, et al. Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography [J]. Invest Ophthalmol Vis Sci,2008,49(4):1571-1579.
    13.樊宁,黄丽娜,成洪波,等.STRATUS OCT测量正常人视网膜神经纤维层的厚度[J]. 眼科,2007,16(4):237-240.
    14.楚艳华,王文吉,姜春辉,等.人眼后极部视网膜光感受器细胞分布特征[J].中华眼底病杂志,2007,23(6):429-432.
    15. Curcio CA, Kenneth RS, Robert EK. Human photoreceptor topography [J]. J Comp Neu, 1990,292(4):497-523.
    16. Sterberg GA. Topography of the rods and cones in the human retina [J]. Acta Ophthalmol, 1935,13(6):1-97.
    17. Wygnanski T, Desatnik H, Quigley HA, et al. Comparison of ganglion cell loss and cone loss in experimental glaucoma [J]. Am J Ophthalmol 1995,120(2):184-189.
    18. Ishikawa H, Stein DM, Wollstein G, et al. Macular segmentation with optical coherence tomography [J]. Invest Ophthalmol Vis Sci,2005,46(6):2012-2017.
    19. Kolomiets B, Dubus E, Simonutti M, et al. Late histological and functional changes in the P23H rat retina after photoreceptor loss [J]. Neurobiol Dis.2010,38(1):47-58.
    20. Choi SS, Zawadzki RJ, Lim MC, et al. Evidence of outer retinal changes in glaucoma patients as revealed by ultrahigh-resolution in vivo retinal imaging [J]. Br J Ophthalmol. 2011,95(1):131-41.
    21. JS Werner, JL Keltner, RJ Zawadzki, et al. Outer retinal abnormalities associated with inner retinal pathology in nonglaucomatous and glaucomatous optic neuropathies. Eye.2011; 25(3):279-289.
    22.孔祥梅,孙兴怀,郭文毅,等.自适应光学系统在青光眼视网膜毛细血管中的观察[J].中国眼耳鼻喉杂志2008,8(4):226-233.
    23. Stiefelmeyer S, Neubauer AS, Berninger T, et al. The multifocal pattern electroretinogram in glaucoma [J]. Vision Research 2004,44(1):103-112.
    24. Ver Hoeve JN, Murdock TJ, Heatley GA, et al. Increased latency of early multifocal ERG response in glaucoma [J]. Invest Ophthalmol Vis Sci 2000,41(1):S520.
    25. DC Hood. Assessing Retinal Function with the Multifocal Technique [J]. Progress in Retinal and Eye Research 2000,19(5):607-646.
    26.吴乐正主编,临床多焦视觉电生理学[M].北京:北京科学技术出版社2004:52.
    27. Ver Hoeve JN, Kim CBY, Heatley GA, et al. Delay of an early multifocal ERG wave feature in experimental glaucoma [J]. Invest Ophthalmol Vis Sci 2001,42(1):S148.
    28. Wilkerson CL, Kim CBY, Kaufman PL, et al. Acute elevation of intraocular pressure increases multifocal ERG amplitude [J]. Invest. Ophthalmol Vis Sci 2001,42(2):S147.
    29. Raz D, Seeliger MW, Geva AB, et al. The effect of contrast and luminance on mf-ERG responses in a monkey model of glaucoma [J]. Invest Ophthalmol Vis Sci 2002,43(6): 2027-2035.
    30. DC Hood, LJ Frishman, S Saszik, et al. Retinal Origins of the Primate Multifocal ERG: Implications for the Human Response [J]. Invest Ophthalmol Vis Sci.2002,43(5): 1673-1685.
    31. Lakowski R, Drance SM. Acquired dyschromatopsias:the earliest functional losses in glaucoma [J]. Doc Ophthalmol Proc Ser 1979,19(1):159-165.
    32. Poinoosawmy D, Nagasubramanian S, Gloster J. Colour vision in patients with chronic simple glaucoma and ocular hypertension [J]. British Journal of Ophthalmology,1980, 64(11):852-857.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700