小麦白粉病的遥感监测及捕捉器中孢子的Real-time PCR定量检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白粉病是我国小麦生产上重要的病害之一。本研究于2010年和2011年利用地面高光谱遥感和无人机数字图像对田间2种植密度下小麦白粉病的发生情况进行了研究,分析了其在白粉病为害后小麦产量、千粒重和籽粒蛋白质损失估计研究中的可行性,利用孢子捕捉器技术研究了空气中白粉菌分生孢子浓度的变化动态与病情的关系,开发了基于Real-time PCR技术的捕捉器中白粉菌孢子浓度的定量检测技术,这些研究结果为遥感、孢子捕捉和分子生物学等技术在白粉病监测预警中的应用奠定了科学基础。本文取得的主要结论如下:
     白粉病发生后在扬花期、灌浆初期和灌浆后期对2种植密度下田间小麦冠层近红外波段的光谱反射率产生了显著影响。红边斜率(dλred)、红边面积(SDr)及植被指数DVI和SAVI在2年度2种植密度下和病情指数存在显著地相关性。建立了扬花期、灌浆初期和灌浆后期基于冠层光谱参数的田间小麦白粉病病情的估计模型,所建模型的斜率在2种植密度下无显著差异,说明种植密度不影响冠层光谱参数对小麦白粉病发生程度的估计。
     在正常的小麦种植密度条件下,距地面200m、300m和400m无人机数字图像的颜色特征参数在2年度与田间小麦白粉病病情存在显著或极显著地相关性;在种植密度较小的条件下,距地面不同高度的无人机数字图像中仅G(绿)和I(亮度)在2年度与病情存在显著地相关性。2年度基于I所建的病情估计模型在正常种植密度下无显著差异。
     白粉病发生后对高感品种京双16产量、千粒重及籽粒蛋白质含量造成的损失分别可高达40%、16%和10%左右。可以选择扬花期SDr和dλred来估计白粉病发生后田间小麦的产量,灌浆后期的DVI和SDr可估计病害发生后小麦的千粒重和蛋白质含量。距地面不同高度数字图像的颜色特征参数与产量、千粒重和蛋白质含量存在显著地相关性。
     空气中白粉菌的分生孢子浓度首先逐渐增加,在灌浆期达到最大值后逐渐减小。空气中的分生孢子浓度和温度、太阳辐射及风速有关。时间序列分析结果表明,2年度空气中白粉菌分生孢子浓度均符合ARIMA(1,1,0)模型。分别建立了基于当期和7天前空气中孢子浓度、气象因子以及空气中孢子浓度和气象因子的病情指数的关系模型,其中以基于空气中孢子浓度所建模型更适合在生产上推广应用。
     在对捕捉带上孢子洗脱和破壁后,和试剂盒法相比,传统CTAB法的提取效率更高。Real-timePCR技术获得的孢子浓度和显微镜下计数获得的孢子浓度具有极显著地正相关性,且Real-timePCR技术具有特异性、准确性和工作效率高等优点,表明Real-time PCR技术可用于对捕捉带上病菌分子孢子的定量检测。
Wheat powdery mildew, caused by Blumeria graminis f. sp. triciti, is a destructive foliar disease inChina. In this study, hyperspectral canopy reflectance spectra and digital images acquired fromunmanned air vehicle (UAV) was used to detect wheat powdery mildew at two plant density levels in2010and2011. Also the using of canopy reflectance and digital images in wheat yield,1000-kernelweight and protein content estimation was studied. Dynamics in concentrations of Bgt conidia and itsrelationship to local weather conditions and disease index in wheat was analyzed, and disease predictionmodels based on field data was constructed. Airborne spores of Bgt quantification method usingreal-time PCR were developed. These results provide scientific foundation for the application of remotesensing, spore trap and molecular biology technique in Monitoring and Early Warning in wheatpowdery mildew. The main results were as follows:
     The canopy reflectance of wheat at two plant density levels at anthesis, early milk and late milkstage was influenced by powdery mildew in2010and2011, especially at NIR region. Red edge slope(dλred), the area of the red edge peak (SDr), DVI and SAVI have significant correlations with diseaseindexes at two plant density levels in both years. Disease detection models were constructed based onspectral parameters for both density levels at anthesis, early milk and late milk stage in two years.Moreover, there was no significant difference in slope of the constructed models between two densitylevels in both years. This indicated that plant densities didn’t affect the use of spectral parameters inwheat powdery mildew estimation.
     At normal plant density level, color features and their combinations extracted from digital imagesfrom200m,300m and400m above the ground have significant correlations with disease indexes inboth years. While at low plant density level, only G (green) and I (intensity) have significantcorrelations with disease indexes in both years. There was no significant difference between diseaseindexes estimation models based on I in both years at normal plant density level.
     Loss of yield,1000-kernel weight and protein content of wheat could reach as high as40%,16%and10%for Jingshuang16(susceptible cultivar) when disease occurred. dλredand the area of the SDr atanthesis stage could be used to estimation wheat yield when powdery mildew occurred. DVI and SDr atlate milk stage could be used to estimation1000-kernel weight and protein content after powderymildew occurred. Color features extracted from digital images200m,300m and400m above theground were significantly correlated with yield,1000-kernel weight and protein content.
     Conidia increased gradually with time. The highest conidial concentrations in the air wereobserved at milk stage. The concentrations of Bgt conidia in the air were correlated with temperature,solar radiation and wind speed. Time series analysis, using autoregressive integrated moving average(ARIMA)(p, d, q) models, showed that each of the three season’s data can be fitted with ARIMA (1,1,0) models. Three sets of models were derived by inoculum only, by weather variables only, and by both inoculum and weather variables to the disease index. And there was no significant difference betweenmodels using inoculum only in2010and2011. Model derived by inoculum are more suitable inproduction practice.
     After spores were eluted and disrupted from tapes, the extraction efficiency of DNA usingtraditional CTAB method was higher compared with kit method. A significant linear relationshipbetween conidial concentrations counted with a compound microscope and those determined with thereal-time PCR assay was obtained, using the same samples of spore traps. Real-time PCR was specific,accurate and more efficiency when compared with compound microscope. The results demonstrated apotential method to quantitatively determine spore inoculum potential in traps by using real-time PCR.
引文
1蔡成静,王海光,安虎,等.小麦条锈病高光谱遥感监测技术研究.西北农林科技大学学报(自然科学版),2005,33(增刊):31-36
    2曹克强,王革新,李双悦,等.小麦白粉病中期预测模型的建立.河北农业大学学报,1994,17(1):57-61
    3曹乃倩,刘桂茹,杨学举.小麦抗白粉病基因定位及分子标记辅助育种综述.中国农学通报,2007,23(7):482-486
    4曹青,房辉,何有才,等.稻瘟病菌孢子传播的影响因素与田间捕捉方法.信阳农业高等专科学校学报,2004,14(3):7-9
    5曹学仁,赵文娟,周益林,等.2007年我国部分麦区小麦白粉菌对三唑酮的抗药性监测.植物保护,2008,34(6):74-77
    6曹学仁,周益林,段霞瑜,等.利用高光谱遥感估计白粉病对小麦产量及蛋白质含量的影响.植物保护学报,2009,36(1):32-36
    7曹学仁,周益林,段霞瑜,等.小麦白粉病有性时期闭囊壳在病害侵染循环中作用的初步研究.植物保护,2010,36(5):151-154
    8曹学仁.小麦白粉病高光谱遥感监测及空气中病菌孢子的时空动态[硕士学位论文].北京:中国农业科学院,2009
    9陈兵,王克如,李少昆,等.病害胁迫对棉叶光谱反射率和叶绿素荧光特性的影响.农业工程学报,2011,27(9):86-93
    10陈企村,段双科,李振岐.小麦慢白粉抗病性的组分和影响因素研究进展.麦类作物学报,2004,24(1):86-89
    11郭铌.植被指数及其研究进展.干旱气象,2003,21(4):71-75
    12郭洁滨,黄冲,王海光,等.基于高光谱遥感技术的不同小麦品种条锈病病情指数的反演.光谱学与光谱分析,2009,29(12):3353-3357
    13何家泌,宋玉立,张忠山,等.小麦白粉病及其防治Ⅰ小麦白粉病的分布、症状和危害.河南农业科学,1998,1:17-18
    14何世川,林代福,庞纯翠,等.贵州小麦白粉病初侵染源的探讨.植物保护学报,1984,11(3):214-216
    15胡同乐,甄文超,杨晓利,等.生长季苹果园冠层空气中斑点落叶病分生孢子飞散动态.河北农业大学学报,2002,25:57-60
    16黄木易,王纪华,黄文江,等.冬小麦条锈病的光谱特征及遥感监测.农业工程学报,2003,19(6):154-158
    17蒋金豹,陈云浩,黄文江,等.冬小麦条锈病严重度高光谱遥感反演模型研究.南京农业大学学报,2007,30:63-67
    18蒋金豹,陈云浩,黄文江.利用高光谱红边与黄边位置距离识别小麦条锈病.光谱学与光谱分析.2010,30(6):1614-1618
    19冷伟锋,王海光,胥岩,等.无人机遥感监测小麦条锈病初探.植物病理学报,2012,42(2):202-205
    20李继平,金社林,史延春,等.小麦白粉病菌有性时期在侵染循环中的作用.植物保护,2000,26(3):14-16
    21李继宇,张铁民,彭孝东,等.小型无人机在农田信息监测系统中的应用.农机化研究,2010,32(5):183-186
    22李健强.小麦被白粉菌侵染所致结构、化学变化及其与抗病性的关系.植物病理学报,1997,27(4):289-292
    23李振岐.麦类病害.北京:中国农业出版社,1997
    24刘君丽,司乃国.小麦白粉病化学防治现状及发展方向.农药,2002,4:15-16
    25刘良云,黄木易,黄文江,等.利用多时相的高光谱航空图像监测冬小麦条锈病.遥感学报,2004,8(3):275-281
    26刘良云,宋晓宇,李存军,等.冬小麦病害与产量损失的多时相遥感监测.农业工程学报,2009,25(1):137-143
    27刘万才,邵振润.我国小麦白粉病大区流行的气候因素分析.植保技术与推广,1998,18(1):3-7
    28刘孝坤.我国小麦白粉病研究的进展.农牧情报研究,1989,8:1-10
    29刘逸卿.小麦白粉菌无性世代在侵染循环中的作用.植物病理学报,1985,15(3):191-192
    30刘占宇,石晶晶,王大成,等.稻干尖线虫病胁迫水稻叶片波谱响应特征及识别研究.光谱学与光谱分析.2010,30(3):710-714
    31罗菊花,黄文江,顾晓鹤,等.基于PHI影像敏感波段组合的冬小麦条锈病遥感监测研究.光谱学与光谱分析,2010,30(1):184-187
    32骆勇.植物病害分子流行学概述.植物病理学报,2009,39(1):1-10
    33马瑞升,孙涵,林宗桂,等.微型无人机遥感影像的纠偏与定位.南京气象学院学报,2005,28(5):632-639
    34马志强,刘国容,张小凤,等.小麦白粉病对三唑酮抗药性的监测方法.南京农业大学报,1996,19:38-41
    35梅安新,彭望琭,秦其明,等.遥感导论.北京:高等教育出版社,2001
    36乔红波,简桂良,邹亚飞,等.枯萎病对不同抗性棉花光谱特性的影响.棉花学报,2007,19(2):155-158
    37乔洪波,周益林,白由路,等.地面高光谱和低空遥感监测小麦白粉病初探.植物保护学报,2006,33(4):341-344
    38乔洪波.麦蚜和白粉病遥感监测技术研究[博士学位论文].北京:中国农业科学院,2009
    39邵振润,刘万才,姜瑞中.豫北麦区小麦白粉病中期测报技术研究.植物保护,1996,22(6):11-14
    40盛宝钦,段霞瑜,向齐君,等.我国北方11省(区)、直辖市小麦白粉病菌寄主范围研究.中国农业科学,1995,28(6):52-57
    41石进,马盛安,蒋丽雅,等.航空遥感技术监测松材线虫病的应用.中国森林病虫,2006,25(1):18-20
    42宋玉立,何文兰.小麦白粉病及其防治: Ⅸ小麦白粉病预测预报.河南农业科学,1998,(9):16-19
    43苏祥瑶,刘文敏,李松岗,等.小麦白粉病流行的IRM建模研究.植物病理学报,1988,18(4):213-218
    44唐延林,黄敬峰.农业高光谱遥感研究的现状与发展趋势.遥感技术与应用,2001,16(4):248-251
    45陶庄. Box-Cox变换及其在STATA软件中的实现.数理医药学杂志,2007,20(3):380-383
    46王磊,白由路,卢艳丽,等.光谱数据变换对玉米氮素含量反演精度的影响.遥感技术与应用,2011,26(2):220-225
    47王丽,陈鹏,周益林,等.2009年我国部分麦区小麦白粉菌群体对三唑酮和嘧菌酯的敏感性测定.植物病理学报,2011,41(6):654-658
    48王爽,黄冲,孙振宇,等.基于高光谱遥感估测条锈病下的混种小麦产量分析.农业工程学报,2010,26(7):199-204
    49王爽,马占鸿,孙振宇,等.基于高光谱遥感的小麦条锈病胁迫下的产量损失估计.中国农学通报,2011,27(21):253-258
    50吴明藻,燕嗣皇,胡贵棋.小麦白粉菌的越冬越夏及有关生物学特性研究.贵州农业科学,1984,3:31-36
    51吴曙雯,王人潮,陈晓斌,等.稻叶瘟对水稻光谱特性的影响研究.上海交通大学学报(农业科学版),2001,20(1):73-76
    52夏烨,周益林,段霞瑜,等.2002年部分麦区小麦白粉病菌对三唑酮的抗药性监测及苯氧菌酯敏感基线的建立.植物病理学报,2005,35(6):74-78
    53谢彩香,陈士林,林宗坚,等.无人机遥感技术应用于药用植物资源调查研究.中国现代中药,2007,9(6):4-5
    54徐豪,丁晓东,韩凝,等.旋翼无人机遥感图像几何纠正的初步研究.浙江农业学报,2009,21(1):63-65
    55闫小珍,苗国柱,张随贤,等.焦作小麦白粉病发生程度的气候预测方法.中国农业气象,2010,31(1):121-124
    56杨定斌,刘孝坤,宋凤仙,等.北京地区小麦白粉病初侵染源的研究.植物保护学报,1996,23(4):300-304
    57杨鹏,张荣,段霞瑜,等.2008年我国主要麦区白粉菌群体对三唑酮和喹氧灵的敏感性监测.植物病理学报,2010,40(4):404-410
    58杨若林,刘建云,吕欣,等.白粉菌侵染对小麦叶片显微及超微结构的影响.西北植物学报,2001,21(2):293-296
    59杨鑫.浅谈遥感图像监督分类与非监督分类.四川地质学报,2008,28(3):251-230
    60张良培,郑兰芬,童庆禧.利用高光谱对生物变量进行估计.遥感学报,1997,1(2):111-114
    61张志德,李振岐.小麦白粉菌有性时期的寿命、成熟和作用.西北农业大学学报,1986,14(2):52-61
    62周益林,段霞瑜,程登发.利用移动式孢子捕捉器捕获的孢子量估计小麦白粉病田间病情.植物病理学报,2007,37(3):307-309
    63朱海荣,段霞瑜,周益林,等.小麦白粉病菌基因组DNA的微量提取及ISSR-PCR反应体系的优化.植物保护,2010,36(3):125-129
    64朱述龙,张占睦.遥感图像获取分析.北京:科学出版社,2000
    65祝锦霞,陈祝炉,石媛媛,等.基于无人机和地面数字影像的水稻氮素营养诊断研究.浙江大学学报(农业与生命科学版),2010,36(1):78-83
    66Adams G. C., Gottwald T. G., Leach C. M. Environmental factors initiating liberation of conidia ofpowdery mildews. Phytopathology,1986,7:1239-1245
    67Allen P. J. Changes in the metabolism of wheat leaves induced by infection with powdery mildew.American Journal of Botany,1942,29:425-435
    68Audsley E., Milne A., Paveley N. A foliar disease model for use in wheat disease managementdecision support systems. Annals of Applied Biology,2005,147:161-172
    69Ausmus B. S., Hilty J. W. Reflectance studies of healthy, maize dwarf mosaic virus-infected, andHelminthosporium maydis-infected corn leaves. Remote Sensing of Environment,1972,2:77-81
    70Aylor D. E. Relative collection efficiency of Rotorod and Burkard spore samplers for airborneVenturia inaequalis ascospores. Phytopathology,1993,83:1116-1119
    71Aylor D. E., Francis J. F. Dispersion of spores released from an elevated line source within a wheatcanopy. Boundary-Layer Meteorology,1989,46:251-273
    72Aylor D. E., Lukens R. J. Liberation of Helminthosporium maydis spores by wind in field.Phytopathology,1974,64:1136-1138
    73Baenziger E. S., Kilpatrick R. A., Moseman J. G. Reduced root and shoot growth caused byErysiphe graminis tritici in related wheat grown in nutrient solution culture. Canadian Journal ofBotany,1979,57:1345-1348
    74Basso B., Cammarano D., Vita P. D. Remotely sensed vegetation indices: theory and applicationfor crop management. Rivista Italiana di Agrometeorologia,2004,1:36-53
    75Bauriegel E., Giebel A., Geyer M., et al. Early detection of Fusarium infection in wheat usinghyper-spectral imaging. Computers and Electronics in Agriculture,2011,75:304-312
    76Bennett F. G. A. Resistance to powdery mildew in wheat: a review of its use in agriculture andbreeding programmes. Plant Pathology,1984,33:279-300
    77Blackmer T. M., Schepers J. S., Varvel G. E., et al. Analysis of aerial photography for nitrogenstress within corn fields. Agronomy Journal,1996,88:729-733
    78Blanco C., Santos B. D. L., Barrau C., et al. Relationship among concentrations of Sphaerothecamacularis conidia in the air, environmental conditions, and the incidence of Powdery mildew instrawberry. Plant Disease,2004,88(8):878-881
    79Blanco C., Santos B. D. L., Romero F. Relationship between concentrations of Botrytis cinereaconidia in air, environmental conditions, and the incidence of grey mould in strawberry flowers andfruits. European Journal of Plant Pathology,2006,114(4):415-425
    80Bowen K. L., Everts K. L., Leath S. Reduction in yield of winter wheat in North Carolina due topowdery mildew and leaf rust. Phytopathology,1991,81(5):503-511
    81Box G. E. P., Cox D. R. An analysis of transformations. Journal of the Royal Statistical Society,Series B,1964,26:211-252
    82Box G. E. P., Jenkins G. M. Time series analysis, forecasting, and control. San Francisco:Holden-Day,1976
    83Bravo C., Moshou D., West J. Early disease detection in wheat fields using spectral reflectance.Biosystems Engineering,2003,84(2):137-145
    84Broge N.H., Leblanc E. Comparing prediction power and stability of broadband and hyperspectralvegetation indices for estimation of green leaf area index and canopy chlorophyll density. RemoteSensing of Environment,2000,76:156-172
    85Brouwer M., Lievens B., Van Hemelrijck W., et al. Quantification of disease progression of severalmicrobial pathogens on Arabidopsis thaliana using real-time fluorescence PCR. FEMSmicrobiology letters,2003,228(2):241-248
    86Bustin S. A., Benes V., Nolan T., et a1. Quantitative real-time RT-PCR-a perspective. Journal ofMolecular Endocrinology,2005,34:597-601
    87Calderon C., Ward E., Freeman J., et al. Detection of airborne inoculum of Leptosphaeriamaculans and Pyrenopeziza brassicae in oil seed rape crops by polymerase chain reaction (PCR)assays. Plant Pathology,2002,51(3):303-310
    88Carisse O., Bacon R., Lefebvre A. Grape powdery mildew (Erysiphe necator) risk assessmentbased on airborne conidium concentration. Crop Protection,2009,28:1306-1044
    89Carisse O., Tremblay D. M., Lévesque C. A., et al. Development of a TaqMan real-time PCR assayfor quantification of airborne conidia of Botrytis squamosa and management of Botrytis leaf blightof onion. Phytopathology,2009,99:1273-1280
    90Chen B., Li S. K., Wang K. R. Spectrum characteristics of cotton canopy infected with verticilliumwilt and applications. Agricultural Sciences in China,2008,7(5):561-569
    91Chen B., Li S. K., Wang K. R., et al. Evaluating the severity level of cotton Verticillium usingspectral signature analysis. International Journal of Remote Sensing,2012,33(9):2706-2724
    92Chrenová J., Mi ieta K., evková J. Monitoring of Ambrosia pollen concentration in theatmosphere of Bratislava (Slovakia) during years2002-2007. Aerobiologia,2010,26:83-88
    93Danielsen S., Munk L. Evaluation of disease assessment methods in quinoa for their ability topredict yield loss caused by downy mildew. Crop Protection,2004,23(3):219-228
    94Daughtry C. S. T., Walthall C. L., Kim M. S., et al. Estimating corn leaf chlorophyll concentrationfrom leaf and canopy reflectance. Remote Sensing of Environment,2000,74:229-239
    95Devadas R., Lamb D. W., Simpfendorfer S., et al. Evaluating ten spectral vegetation indices foridentifying rust infection in individual wheat leaves. Precision Agriculture,2009,10:459-470
    96Drinkall M. J., Price T. V. Dispersal of Synchytrium psophocarpi in Papua New Guinea. PlantPathology,1983,32:229-237
    97Emberlin J., Savage M., Jones S. Annual variations in grass pollen seasons in London1961-1990:trends and forecast models. Clinical&Experimental Allergy,1993,23:911-918
    98Everitt J. H., Escobar D. E., Appel D. N., et al. Using airborne digital imagery for detecting oakwilt disease. Plant Disease,1999,83:502-505
    99Eversmeyer M. G., Kramer C. L., Burleigh J. R. Vertical spore concentrations of three wheatpathogens above a wheat field. Phytopathology,1973,63:211-218
    100Falacy J. S., Grove G. G., Mahaffee W. F., et al. Detection of Erysiphe necator in air samples usingthe polymerase chain reaction and species-specific primers. Phytopathology,2007,97:1290-1297
    101Filion M., St-Arnaud M., Jabaji-Hare S. H. Direct quantification of fungal DNA from soil substrateusing real-time PCR. Journal of Microbiological Methods,2003,53:67-76
    102Fraaije B. A., Butters J. A., Coelho J. M., et a1. Following the dynamics of strobilurin resistance inBlumeria graminis f. sp. tritici using quantitative allele-specific real-time PCR measurements withthe fluorescent dye SYBR green. Plant Patho1ogy,2002,51:45-54
    103Fraaije B. A., Cools H. J., Fountaine J., et al. Role of ascospores in further spread of QoI-resistantcytochrome b alleles (G143A) in field populations of Mycosphaerella graminicola. Phytopathology,2005,95:933-941
    104Franke J., Menz G. Multi-temporal wheat disease detection by multi-spectral remote sensing.Precision Agriculture,2007,8:161-172
    105Freeman J., Ward E., Calderon C., et al. A polymerase chain reaction (PCR) assay for the detectionof inoculum of Sclerotinia sclerotiorum. European Journal of Plant Pathology,2002,108:877-886
    106Friedrich S. Calculation of conidial dispersal of Erysiphe graminis within naturally infected plantcanopies using hourly meteorological input parameters. Zeitschrift für Pflanzenkrankheiten undPflanzenschutz,1995,102:337-347(in German)
    107Gamliel-Atinsky E., Sztejnberg A., Maymon M., et al. Inoculum availability and conidial dispersalpatterns of Fusarium mangiferae, the causal agent of mango malformation disease. Phytopathology,2009,99:160-166
    108Gates D. M., Keegan H. J., Schleter J. C., et al. Spectral properties of plants. Applied Optics,1965,4:11-20
    109Gayoso C., De Ilárduya O., Pomar F., et al. Assessment of real-time PCR as a method fordetermining the presence of Verticillium dahliae in different Solanaceae cultivars. EuropeanJournal of Plant Pathology,2007,118(3):199-209
    110Gent D. H., Nelsonb M. E., Farnsworthc J. L., et al. PCR detection of Pseudoperonospora humuliin air samples from hop yards. Plant Pathology,2009,58:1081-1091
    111Ginzinger D. G. Gene quantification using real-time quantitative PCR: an emerging technology hitsthe mainstream. Experimental Hematology,2002,30:503-512
    112Gitelson A. A., Kaufman Y. J., Stark R., et al. Novel algorithms for remote estimation of vegetationfraction. Remote Sensing of Environment,2002,80,76-87
    113Gitelson A. A., Merzlyak M. N., Chivkunova O. B. Optical properties and nondestructiveestimation of anthocyanin content in plant leaves. Photochemistry and Photobiology,2001,74(1):38-45.
    114Gitelson A. A., Zur Y., Chivkunova O. B., et al. Assessing carotenoid content in plant leaves withreflectance spectroscopy. Photochemistry and Photobiology,2002,75:272-281
    115Gong P., Pu R. L., Miller J. R. Correlating leaf area index of ponderosa pine with hyperspectralCASI data. Canadian Journal of Remote Sensing,1992,18:275-282
    116Govi G. Aerial diffusion of phytopathogenic fungi. Aerobiologia,1992,8:84-93
    117Graeff S., Link J., Claupein W. Identification of powdery mildew (Erysiphe graminis sp. tritici)and take-all disease (Gaeumannomyces graminis sp. tritici) in wheat (Triticum aestivum L.) bymeans of leaf reflectance measurements. Central European Journal of Biology,2006,1:275-288
    118Granke L. L., Hausbeck M. K. Dynamics of Pseudoperonospora cubensis sporangia in commercialcucurbit fields in Michigan. Plant Disease,2011,95:1392-1400
    119Gregory P. H., Hirst J. M. The summer air-spora at Rothamsted in1952. Journal of GeneralMicrobiology,1957,17:135-152
    120Grove G. G. Meteorological factors affecting airborne conidia concentrations and the latent periodof Podosphaera clandestina on sweet cherry. Plant Disease,1998,82:741-746
    121Guan J., Nutter Jr. F. W. Relationships between defoliation, leaf area index, canopy reflectance, andforage yield in the alfalfa-leaf spot pathosystem. Computers and Electronics in Agriculture,2002,37:97-112
    122Haboudane D., Miller J. R., Tremblay N., et al. Integrated narrow-band vegetation indices forprediction of crop chlorophyll content for application to precision agriculture. Remote Sensing ofEnvironment,2002,81:416-426
    123Haboudane D., Tremblay N., Miller J. R., et al. Remote estimation of crop chlorophyll contentusing spectral indices derived from hyperspectral data. IEEE Transaction on Geoscience andRemote Sensing,2008,46:423-437
    124Hansen J. G. Use of multispectral radiometry in wheat yellow rust experiments. EPPO Bulletin,1991,21:651-658
    125Hansen P. M., Schjoerring J. K. Reflectance measurement of canopy biomass and nitrogen status inwheat crops using normalized difference vegetation indices and partial least squares regression.Remote Sensing of Environment,2003,86:542-553
    126Hardwicka N. V., Jonesb D. R., Slough J. E. Factors affecting diseases of winter wheat in Englandand Wales,1989-98. Plant Pathology,2001,50:453-462
    127Hikishima M., Canteri M. G., Godoy C. V., et al. Relationships among disease intensity, canopyreflectance and grain yield in the Asian soybean rust pathosystem. Tropical Plant Pathology,2010,35(2):99-103
    128Hinzman L. D., Bauer M. E., Daughtry C.S.T. Effects of nitrogen fertilization on growth andreflectance characteristics of winter wheat. Remote Sensing of Environment,1986,19:47-61
    129Hirst J. M. An automatic volumetric spore trap. Annals of Applied Biology,1952,39:257-265
    130Hirst J. M., Storey I. F., Ward W. C., et al. The origin of apple scab epidemics in the Wisbech areain1953and1954. Plant Pathology,1955,4:91-96
    131Huang J. F., Apan A. Detection of Sclerotinia rot disease on celery using hyperspectral data andpartial least squares regression. Journal of Spatial Science,2006,51:129-142
    132Huete A. R. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment,1988,25:295-309
    133Hunt E.R., Cavigelli M., Daughtry C. S. T., et al. Evaluation of digital photography from modelaircraft for remote sensing of crop biomass. Precision Agriculture,2005,6(4):359-37
    134Inch S., Fernando W. G. D., Gilbert J. Seasonal and daily variation in the airborne concentration ofGibberella zeae (Schw.) Petch spores in Manitoba. Canadian journal of plant pathology,2005,27:357-363
    135Inman A. J., Fitt B. D. L., Todd A. D., et al. Ascospores as primary inoculum for epidemics ofwhite leaf spot (Mycosphaerella capsellae) in winter oilseed rape in the UK. Plant Pathology,1999,48(3):308-319
    136Javier S. M. D., Miguel J., Jiménez J. A., et al. Allergenic pollen and pollinosis in Madrid. Journalof Allergy and Clinical Immunology,1995,96:15-23
    137Jeger M. J. Relating disease progress to cumulative numbers of trapped spores: apple powderymildew and scab epidemics in sprayed and unsprayed orchard plots. Plant Pathology,1984,33:517-523
    138Jenkyn J. F. A comparison of seasonal changes in deposition of spores of Erysiphe graminis ondifferent trapping surfaces. Annals of Applied Biology,1974,76:257-267
    139Jensen T., Apan A., Young F., et al. Detecting the attributes of a wheat crop using digital imagery.Computers and Electronics in Agriculture,2007,59(1-2):66-77
    140Johnson D. A., Alldredge J. R., Hamm P. B., et al. Aerial photography used for spatial patternanalysis of late blight infection in irrigated potato circles. Phytopathology2003,93:805-812
    141Jordan C. F. Derivation of leaf area index from quality of light on the forest floor. Ecology,1969,50:663-666
    142Kaczmarek J., Jêdryczka M., Fitt B. D. L., et al. Analyses of air samples for ascospores ofLeptosphaeria maculans and L.biglobosa by light microscopy and molecular techniques. Journal ofApplied Genetics,2009,50(4):411-419
    143Karcher D. E., Richardson M. D. Quantifying turfgrass color using digital image analysis. CropScience,2003,43:943-951
    144Karolewski Z., Kaczmarek J., Jedryczka M., et al. Detection and quantification of airborneinoculum of Pyrenopeziza brassicae in Polish and UK winter oilseed rape crops by real-time PCRassays, Grana,2012, DOI:10.1080/00173134.2011.65340
    145Kaufman Y. J., Tanre D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS.IEEE Transactions on Geoscience and Remote Sensing,1992,30,261-270
    146Khan J., Qi A., Khan M. F. R. Fluctuations in number of Cercospora beticola conidia inrelationship to environment and disease severity in sugar beet. Phytopathology,2009,99:796-801
    147Knipling E.B. Physical and physiological basis for the reflectance of visible and near-infraredradiation from vegetation. Remote Sensing of Environment,1970,1:155-159
    148Kobayashi T., Kanda E., Kitada K., et al. Detection of rice panicle blast with multispectralradiometer and the potential of using airborne multispectral scanners. Phytopathology,2001,91(3):316-323
    149Kobayashi T., Kanda E., Naito S., et al. Ratio of rice reflectance for estimating leaf blast severitywith a multispectral radiometer. Journal of General Plant Pathology,2003,69:17-22
    150Koltin Y., Kenneth R. The role of the sexual stage in the over-summering of Erysiphe graminis DC.f. sp. hordei Marchal under semi-arid conditions. Annals of applied Biology,1970,65,263-268
    151Larsolle A., Muhammed H. H. Measuring crop status using multivariate analysis of hyperspectralfield reflectance with application to disease severity and plant density. Precision Agriculture,2007,8:37-47
    152Last F. T. The spore content of air within and above mildew infested cereal crops. Transactions ofthe British Mycological Society,1955,38:453-464
    153Lee W. S., Alchanatis V., Yang C., et al. Sensing technologies for precision specialty cropproduction. Computers and Electronics in Agriculture,2010,74:2-33
    154Lee Y. J. Aerial photography for the detection of soil-borne disease. Canadian Journal of PlantPathology,1989,11:173-176
    155Li X. H., Lee W. S., Li M. Z., et al. Spectral difference analysis and airborne imaging classificationfor citrus greening infected trees. Computers and Electronics in Agriculture,2012,83:32-46
    156Li Y. Use of second derivatives of canopy reflectance for monitoring prairie vegetation overdifferent soil backgrounds. Remote Sensing Environment,1993,44(1):81-87
    157Lorenzen B., Jensen A. Changes in spectral properties induced in barley by cereal powdery mildew.Remote Sensing of Environment,1989,27:201-209
    158Luo Y., Ma Z., Reyes H. C., Morgan D. P., et al. Quantification of airborne spores of Moniliniafructicola in stone fruit orchards of California using real-time PCR. European Journal of PlantPathology,2007,118:145-154
    159Ma B. L., Dwyer L. M., Costa C., et al. Early prediction of soybean yield from canopy reflectancemeasurements,2001,93(6):1227-1234
    160Ma Z., Luo Y., Michailides T. J. Nested PCR assays for detection of Monilinia fructicola in stonefruit orchards and Botryosphaeria dothidea from pistachios in California. Journal ofPhytopathology,2003,151:312–322
    161Ma Z., Michailides T. J. A real-time PCR assay for the detection of azoxystrobin-resistantAlternaria populations from pistachio orchards in California. Crop Protection,2004,23:1259-1263
    162Mahlein A. K., Steiner U., Dehne H. W., et al. Spectral signatures of sugar beet leaves for thedetection and differentiation of diseases. Precision Agriculture,2010,11:413-431
    163Malthus T. J., Maderia A. C. High resolution spectroradiometry: Spectral reflectance of field beanleaves infected by Botrytis fabae. Remote Sensing of Environment,1993,45:107-116
    164Martins L. M., Lufinha M. I., Marques C. P., et al. Small format aerial photography to assesschestnut ink disease. For. Snow Landsc. Res.,2001,76,3:357-360
    165Melinda S., Christine R., Estelle L. An evaluation of two methods used for microscopic analysis ofairborne fungal spore concentrations from the Burkard spore trap. Aerobiologia1,1999,15(1):9-18
    166Meredith D. S. Spore dispersal in Alternaria porri (Ellis) Neerg. on onions in Nebraska. Annals ofApplied Biology,1966,57:67-73
    167Mewes T., Franke J., Menz G. Spectral requirements on airborne hyperspectral remote sensing datafor wheat disease detection. Precision Agriculture,2011,12:795-812
    168Molina R. T., Rodriguez A. M, Palacios I. S. Sampling in aerobiology. Differences betweentraverses along the length of the slide in Hirst spore traps. Aerobiologia1,1996,12(3):161-166
    169Mondal S. N., Gottwald T. R., Timmer L. W. Environmental factors affecting the release anddispersal of ascospores of Mycosphaerella citri. Phytopathology,2003,93(8):1031-1036
    170Moran M. S., Inoue Y., Barnes E. M. Opportunities and limitations for image-based remote sensingin precision crop management. Remote Sensing of Environment,1997,61:319-346
    171Moshou D., Bravo C., Oberti R., et al. Intelligent multi-sensor system for the detection andtreatment of fungal diseases in arable crops. Biosystems Engineering,2011,108:311-321
    172Moshou D., Bravo C., Wahlen S., et al. Simultaneous identification of plant stresses and diseases inarable crops using proximal optical sensing and self-organising maps. Precision Agriculture,2006,7:149-164
    173Moshou D., Bravo C., West J., et al. Automatic detection of ‘yellow rust’ in wheat usingreflectance measurements and neural networks. Computers and Electronics in Agriculture,2004,44:173-188
    174Muhammed H. H. Hyperspectral crop reflectance data for characterizing and estimating fungaldisease severity in wheat. Biosystems Engineering,2005,91:9-20
    175Muhammed H. H., Larsolle A. Feature vector based analysis of hyperspectral crop reflectance datafor discrimination and quantification of fungal disease severity in wheat. Biosystems Engineering,2003,86(2):125-134
    176Nicolas H. Using remote sensing to determine of the date of a fungicide application on winterwheat. Crop Protection,2004,23(2):853-863
    177Nutter F. V. Detection and measurement of plant disease gradients in peanut with a multispectralradiometer. Phytopathology,1989,79:958-963
    178Nutter F. W., Tylka G. L., Guan J., et al. Use of remote sensing to detect soybean cystnematode-induced plant stress. Journal of Nematology,2002,34(3):222-231
    179Nutter Jr. F. W., Littrell R. H. Relationships between defoliation, canopy reflectance and pod yieldin the peanut-late leafspot pathosystem. Crop Protection,1996,15(2):135-142
    180Paulus A.O. Fungal diseases of strawberry. HortScience,1990,25:885-889
    181Persaud R. R., Lipps P. E. Virulence genes and virulence gene frequencies of Blumeria graminis f.sp. tritici in Ohio. Plant Disease,1995,79:494-499
    182Philpot W. D. The derivative ratio algorithm: avoiding at morphemic effects in remote sensing.IEEE Transaction on Geoscience and Remote Sensing,1991,29(3):350-357
    183Pinter Jr. P. J., Jackson R. D., Idso S. B., et al. Multidate spectral reflectance as predictors of yieldin water stressed wheat and barley. International Journal of Remote Sensing,1981,2(1):43-48
    184Polischuk V. P., Shadchina T. M., Kompanetz T. I., et al. Changes in reflectance spectrumcharacteristic of Nicotiana debneyi plant under the influence of viral infection. Archives ofPhytopathology and Plant Protection,1997,31(1):115-119
    185Qi J., Chehbouni A., Huete A. R., et al. A modified soil adjusted vegetation index. Remote Sensingof Environment,1994,48:119-126
    186Qin Z. H., Zhang M. H. Detection of rice sheath blight for in-season disease management usingmultispectral remote sensing. International Journal of Applied Earth Observation andGeoinformation,2005,7:115-128
    187Rabbinge R., Jorritsma I.T.M., Schans J. Damage components of powdery mildew in winter wheat.Netherand Journal of Plant Pathology,1985,91:235-247
    188Raun W. R., Solie J. B., Johnson G. V. In-season prediction of potential grain yield in winter wheatusing canopy reflectance. Agronomy Journal,2001,93(1):131-138
    189Ray S. S., Jain N., Arora R. K., et al. Utility of hyperspectral data for potato late blight diseasedetection. Journal of Indian Society of Remote Sensing,2011,39(2):161-169
    190Rinehart G. L., Cathoun J. H., Schabbenberger O. Remote sensing of stripe patch and dollar spot oncreeping bentgrass and annual bluegrass turf using visible and near-infrared spectroscopy.Australian Turfgrass Management,2002,4:4318-4320
    191Rogers S. L., Atkins S. D., West J. S. Detection and quantification of airborne inoculum ofSclerotinia sclerotiorum using quantitative PCR. Plant Pathology,2009,58:324-331
    192Rondeaux G., Steven M., Baret F. Optimization of soil-adjusted vegetation indices. RemoteSensing of Environment,1992,55(2):95-107
    193Rossi V., Giosuè S. A dynamic simulation model for powdery mildew epidemics on winter wheat.Bulletin OEPP/EPPO Bulletin,2003,33:389-396
    194Rouse J. W., Haas R. H., Schell J. A., et al. Monitoring vegetation systems in the Great Plains withERTS, in Third ERTS Symp., NASA SP-351, U.S. Gov. Printing Office, Washington, DC, Vol. I,1973,309-317
    195Royse D. J., Gregory L. V., Ayers J. E., et al. Powdery mildew of wheat: Relation of yieldcomponents to disease severity. Canadian Journal of Plant Pathology,1980,2:131-136
    196Ryo S., Noboru N., Kazunobu I. Remote sensing technology for vegetation monitoring using anunmanned helicopter. Biosystems Engineering,2005,90(4):369-379
    197Schepers H., Bouma E., Frahm J., et al. Control of fungal diseases in winter wheat withappropriate dose rates and weather-based decision support systems. Bulletin EPPO/OEPP Bulletin.1996,26:623-630
    198Sharp E. L., Perry C. R., Scharen, A. L., et al. Monitoring cereal rust development with a spectralradiometer. Phytopathology,1985,75(8):936-939
    199Shibayama M., Akiyama T. Estimating grain yield of maturing rice canopies using high spectralresolution reflectance measurements. Remote Sensing of Environment,1991,36(1):45-53
    200Sivapalan A. Effects of impacting rain drops on the growth and development of powdery mildewfungi. Plant Pathology,1993,42:256-263
    201Smith L. P., Davies R. R. Weather conditions and spore trap catches of barley mildew. PlantPathology,1973,22:1-10
    202Steddom K., Heidel G., Jones D., et al. Remote detection of rhizomania in sugar beets.Phytopathology,2003,93(6):720-726
    203Steven M. D., Biscoe P. V., Jaggard K. W. Estimation of sugar beet productivity from reflection inthe red and infrared spectral bands. International Journal of Remote Sensing,1983,4(2):325-334
    204Sutton T. B., Jones A. L. Analysis of factors affecting dispersal of Podosphaera leucotricha conidia.Phytopathology,1979,69:380-383
    205Tadesse K., Hundie B. Patterns of urediospore movement and monitoring epidemics of stem rust(Puccinia graminis f.sp.tritici) on durum wheat in southeastern Ethiopia. East African Journal ofSciences,2009,3(2):121-132
    206Taubenhaus J. J., Ezekiel W. N., Neblette C. B. Airplane photography in the study of cotton root rot.Phytopathology,1929,19:1025-1029
    207Tooley P. W., Martin F. N., Carras M. M., et a1. Real-time fluorescent polymerase chain reactiondetection Phytophthora ramorum and Phytophthora pseudosyringae using mitochondrial generegions. Phytopathology,2006,96:336-345
    208Trapero-Casas A., Navas-Cortés J. A., Jiménez-Díaz R. M. Airborne ascospores of Didymellarabiei as a major primary inoculum for Ascochyta blight epidemics in chickpea crops in southernSpain. European Journal of Plant Pathology,1996,102(3):237-245
    209Tucker C. J. Red and photographic infrared linear combinations for monitoring vegetation. RemoteSensing of Environment,1979,8:127-150
    210Van de Wouw A.P., Stonard J. F., Howlett B. J., et al. Determining frequencies of avirulent allelesin airborne Leptosphaeria maculans inoculum using quantitative PCR. Plant Pathology,2010,59:809-818
    211Vandemark G., Barker B. Quantifying Phytophthora medicaginis in susceptible and resistant alfalfawith a real-time fluorescent PCR assay. Journal of Phytopathology,2003,151(11-12):577-583
    212Wallen V. R, Jackson H. R. Aerial photography as a survey technique for the assessment ofbacterial blight of field beans. Canadian Plant Disease Survey,1971,51:163-169
    213West J. S., Atkins S. D., Emberlin J., et al. PCR to predict risk of airborne disease. Trends inMicrobiology.2008,16:380-387
    214West J. S., Bravo C., Oberti R., et al. The potential of optical canopy measurement for targetedcontrol of field crop disease. Annual Review of Phytopathology,2003,41:593-614
    215Williams R., Ward E., McCartney H. A. Methods for integrated air sampling and DNA analysis forthe detection of airborne fungal spores. Applied and Environmental Microbiology,2001,67:2453-2459
    216Willocquet L., Clerjeau M. An analysis of the effects of environmental factors on conidial dispersalof Uncinula necator (grape powdery mildew) in vineyards. Plant Pathology,1998,47:227-233
    217Winton L. M., Stone J. K., Watrud L. S., et al. Simultaneous one-tube quantification of host andpathogen DNA with real-time polymerase chain reaction. Phytopathology,2002,92:112-116
    218Wolfe M S. Trying to understand and control powdery mildew. Plant Pathology,1984,33(4):451-466
    219Xu X. M., Butt D. J. Ridout U. S. Temporal patterns of airborne conidia of Podosphaeraleucotricha, causal agent of apple powdery mildew. Plant Pathology,1995,44:944-955
    220Xu X. M., Harris D. C, Berrie A. M. Modeling infection of strawberry flowers by Botrytis cinereausing field data. Phytopathology,2000,90:1367-1374
    221Yang C. H., Everitt J. H., Fernandez C. J. Comparison of airborne multispectral and hyperspectralimagery for mapping cotton root rot. Biosystems Engineering,2010,107:131-139
    222Yang C. M. Assessment of the severity of bacterial leaf blight in rice using canopy hyperspectralreflectance. Precision Agriculture,2010,11,61-81
    223Zadoks J. C. The role of epidemiology in modern phytopathology. Phytopathology.1974,64:918-923
    224Zeng X. W., Luo Y., Zheng Y. M. Detection of latent infection of wheat leaves caused by Blumeriagraminis f. sp. tritici using nested PCR. Journal of Phytopathology,2010,58(4):227-235
    225Zhang M. H., Qin Z. H., Liu X., et al. Detection of stress in tomatoes induced by late blight diseasein California, USA, using hyperspectral remote sensing. International Journal of Applied EarthObservationand Geoinformation,2003,4:295-310
    226Zijlstra C., Van Hoof R A. A multiplex real-time polymerase chain reaction (TaqMan) assay for thesimultaneous detection of Meloidogyne chitwoodi and M. fallax. Phytopathology,2006,96:1255-1262
    227Zubillaga M., Urricariet S. Assessment of nitrogen status in wheat using aerial photography.Communications in Soil Science and Plant Analysis,2005,36(13-14):1787-179

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700