PET/CT在脑胶质瘤放疗后复发与坏死鉴别诊断中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的鉴别脑胶质瘤放疗后复发与坏死有重要临床意义,本研究应用正电子发射断层显像/X线计算机断层成像(Positron emission tomography/X-ray computed tomography ,PET/CT)评价11C-蛋氨酸(11C-methionine ,MET)在脑胶质瘤放疗后复发与坏死的鉴别诊断中的作用,同时观察放疗后复发脑胶质瘤的治疗疗效。
     方法自2008年6月至2009年9月, 30例放疗后怀疑复发或坏死胶质瘤患者接受MET PET/CT检查。首次治疗时病理分级根据世界卫生组织(WHO)中枢神经系统分类方法,II级19例,III级9例,IV级2例。30例患者首次治疗均接受手术切除及辅助放疗,放疗剂量范围54-60Gy,中位剂量58Gy; 30例中17例接受了术后化疗。所有患者均接受MET PET/CT检查,放疗结束与PET/CT检查间隔时间范围5-90月,中位间隔时间13.5月。PET检查时患者年龄范围11-69岁,中位年龄41岁;男性21例,女性9例。PET/CT仪为Biograph HR16机型(Siemens,Germany),患者静脉注射740MBq的11C-MET后10分钟进行扫描,通过衰减校正后重建PET影像(3mm层厚)。蛋氨酸(MET)高代谢区被选做感兴趣区(Regions of interest,ROI),同时以同样大小的圆圈选定对侧灰质区多个ROIS,计算平均值,如果PET未发现异常,MRI异常区域相应的PET影像区域选定圆形ROI。SUV(标准摄取值)=(像素值/像素体积)(/注射的放射性核素活度/体积)×校正因子。L/N(the lesion-to-normal tissue ratio,病灶正常组织比)=病灶部位SUV平均值/对侧灰质SUV平均值。生存时间从PET/CT检查后开始计算。确立放疗后复发的诊断需根据手术切除或活检病理结果,放疗后坏死的诊断需根据手术病理结果或临床随访,在长时间(大于6个月)CT或MRI随访中显示病灶自发性缩小或稳定的患者诊断为放射性坏死。
     结果30例患者均接受一次PET/CT检查并随访至2010年3月(中位随访11月)。PET/CT诊断19例复发,11例坏死。19例PET检查后考虑复发患者接受手术切除或立体定向活检,18例病理明确诊断为胶质瘤复发, 1例手术切除诊断为放疗后坏死。18例病理证实复发患者中1例复发前病理诊断为星形胶质细胞瘤Ⅱ级,复发后病理诊断为少枝胶质瘤伴室管膜分化(WHOⅡ级);10例复发后病理诊断无改变;7例复发前病理诊断为星形胶质细胞瘤Ⅱ级,复发后病理诊断为星形胶质细胞瘤Ⅲ级。11例PET/CT诊断为放疗后坏死,经长期随访(>6个月)后临床症状稳定及MRI或CT影像诊断病灶无增大。根据以上结果用四格表计算MET PET鉴别脑胶质瘤放疗后复发与坏死的敏感性,特异性和准确性分别为100%,91.7%和96.7%。全组仅复发组3例活检后死亡(1例未治疗病情进展后死亡,1例立体定向放疗和1例化疗后病情进展死亡)。复发组18例1年生存率82%,生存时间5-15月,中位生存时间8.5月。复发后手术切除患者与立体定向活检患者的生存率有明显差异(P=0.002)。
     结论MET PET可有效鉴别脑胶质瘤放疗后复发与坏死;复发脑胶质瘤患者手术切除较活检生存获益的可能性更大。
Objective Differential diagnosis between tumor recurrence and radiation necrosis is important in the clinical management of glioma after radiotherapy.In this study,we evaluate the value of 11C-methionine positron emission tomography/ X-ray computed tomography (MET PET/CT) in differentiation of tumor recurrence from radiation necrosis and the therapeutic results of recurrent glioma.
     Methods From June 2008 to September 2009, 30 patients who had previously been treated with radiotherapy were suspected to have recurrent glioma or radiation injury.MET PET was performed on these patients. According to the World Health Organization (WHO) classification, initial tumor histologies included 19 gradeⅡ, 9 gradeⅢand 2 gradeⅣ.30 patients had previously received operation and adjuvant radiotherapy,the dose of initial radiotherapy range from54 to60Gy(median dose 58Gy);only 17 received adjuvant chemotherapy after operation. The median time between initial radiotherapy and PET was 13.5 months,ranging from 5 to 90 months.There were 21 males and 9 females,the median patient age was 41 years ,ranging from 11 to 69 years. PET was carried out with Biograph HR16 scanner(Siemens,Germany),PET images were obtained as a static scan 10 minutes after injection of 740MBq MET.The PET images were reconstructed using measured attenuation reconstruction(3mm ).On PET scans,the portion of the tumor with the highest accumulation was selected as the region of interest(ROI),and several ROIs with the same diameter were located over the gray matter of the contralateral lobe.If no abnormality could be detected ,a circular ROI of the same size was located over the area corresponding to the MRI abnormality.The standardized uptake value(SUV) was caculated over the same tumor ROI as follows:SUV=[(pixel count/pixel volume)/(injected radioisotope activity/body weight)]×calibration factor. L/N(the lesion-to-normal tissue ratio )= SUVmean of the lesion/ SUVmean of the contrallateral gray matter. The survival time was calculated from the day of performing PET.The tumor recurrence was confirmed by correlating findings with subsequent histological analysis,the diagnosis of necrosis was based on histological analysis and the subsequent clinical follow-up(>6 months) and MRI/ CT in case without surgery or biopsy.
     Results The follow-up investigation continued to March 2010(the median time 11 months).19 recurrence and 11 radiation necroses were shown in PET images.There are 19 cases considered to have recurrent tumor were eveluated by histopathological findings,18 showed viable glioma and 1 showed necrosis .Within 18 recurrent cases,1 case whose initial tumor hisyology was WHO grade II was pathologically confirmed as having oligodendroglioma mixed with ependymoma;10 cases had the same hisyology after recurrence;7 cases whose initial tumor histology was WHO grade II was pathologically confirmed as having anaplastic astrocytoma. While 11 cases were considered to have radiation necrosis because they exhibited stable neurological sympotoms with no sign of massive enlargement of the lesion on follow-up MRI/CT after 6 months.According to a 2×2 factorial analysis,the sensitivity、specificity and accuracy of MET PET for detecting tumor recurrence were 100% and 91.7% and 96.7% respectively. The 1-year overall survival (OS) rates was 82%,and the median survival time 8.5 months (5-15 months) within the subset of patients with recurrent glioma.Only 3 patients died after biopsy(1 without further therapy,1 with SRS and 1 with chemotherapy). There was significant difference of survival time between craniectomy and biopsy in 18 recurrent cases(P=0.002).
     Conclusion PET is a powerful tool in differentiating brain tumor recurrence from radiation necrosis after radiotherapy and recurrent glioma may benefit more from craniectomy than biopsy.
引文
1. Kornblith PL,Walker M.Chemotherapy for malignant gliomas.J Neurosurg,1988,68(1):1-17.
    2. Burgman P, Odonoghue JA, Humm JL, et al. Hypoxia-induced increase in FDG up take in MCF7 cells. J Nucl Med, 2001, 42 (1) : 170 - 175.
    3. Herholz K, Rudolf J, Heiss WD, et al. FDG transport and phosphorylation in human gliomas measured with dynamic PET. J Neurooncol, 1992, 12 (2) : 159 - 165.
    4. Padma MV,Said S,Jacobs M,et a1.Prediction of pathology and survival by FDG PET in gliomas.J Neurooncol, 2003,64(3):227-237.
    5. Pirotte B,Goldman S,Massager N,et al. Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med, 2004, 45 (8) : 1293-1298.
    6. Chao ST, Suh JH, Raja S, et a1.The sensitivity and specifity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer,2001,96(3):191-197.
    7. Wong TZ, van der Westhuizen GJ, Coleman RE. Positron emission tomography imaging of brain tumors. Neuroimaging Clin N Am,2002,12(4):615-626.
    8. Ricci PE, Karis JP, Heiserman JE,et al. Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol,1998 ,19(3):407-413.
    9. Krohn KA, Mankoff DA, Muzi M, et al.True tracers: comparing FDG with glucose and FLT with thymidine .Nucl Med Biol, 2005 ,32(7):663-671.
    10. Hustinx R, Smith RJ, Benard F, et al.Can the standardized uptake value characterize primary brain tumors on FDG-PET?Eur J Nucl Med,1999 ,26(11):1501-1509.
    11. Kracht LW,Friese M,Herholz K,et a1.Methyl-[11c]-1- methionine uptake asmeasured by positron emission tomography correlates to microvessal density in patients with glioma.Eur J Nucl Med Mol Imaging,2003,30(6):868-873.
    12. Tsuyuguchi N, Sunada I, Iwai Y,et a1.Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J Neurosurg,2003,98(5):1056-1064.
    13. Tsuyuguchi N,Takami T,Sunada I, et a1.Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery in malignant glioma.Ann Nucl Med,2004,18(4):291-296.
    14. Van Laere K,Ceyssens S,Van Calenbergh F,et a1.Direct comparision of 18F-FDG and 11c-methionine PET in suspected recurrence of glioma : sensitivity ,inter-observer variability and prognostic value.Eur J Nucl Med Mol Imaging,2005,32(1):39-51.
    15. Terakawa Y, Tsuyuguchi N, Iwai Y, et a1.Diagnostic accuracy of 11c-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med, 2008,49(5):694–699.
    16.潘中允主编。PET诊断学。北京:人民卫生出版社,2005,41-193.
    17. Langleben DD, Segall GM. PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med, 2000 ,41 (11):1861–1867.
    18. Barker FG 2nd, Chang SM, Valk PE, et al. 18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer, 1997, 79 (1):115–126.
    19. Di Chiro G, Oldfield E, Wright DC, et al. Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors:PET and neuropathologic studies. AJR Am J Roentgenol ,1988,150(1):189–197.
    20. Mirzaei S, Knoll P, Kohn H. Diagnosis of recurrent astrocytoma with fludeoxyglucose F18 PET scanning. N Engl J Med, 2001, 344(26):2030–2031.
    21.孙爱君,孙磊,王荣福等。18F-FDG PET鉴别脑肿瘤放射治疗后复法与坏死的价值。中国医学影像技术,2004,20(10):1484-1486。
    22. Thompson TP, Lunsford LD,Kondziolka D. Distinguising recurrent tumor and radiation necrosis with positron emission tomography versus stereotactic biopsy. Stereotact Funct Neurosurg,1999 ,73(1-4):9-14.
    23. Ogawa T,Kanno I,Shishido F,et al.Clinical value of PET with 18F-fluorodeoxyglucose and L-methyl-11C-methionine for diagnosis of recurrent tumor and radiation injury.Acta Radiol ,1991,32(3):197-202.
    24.王广丽;张成琪。11C-蛋氨酸PET-CT在脑胶质瘤中的应用。医学影像学杂志,2006,16(5):522-524。
    25. Sonoda Y,Kumabe T,Takahashi T,et al.Clinical usefulness 11C-MET PET and 201TISPECT for differentiation of recurrent gllioma from radiation necrosis. Neurol Med Chir (Tokyo),1998,38(6):342-348.
    26. Singhal T,Narayanan TK,Jain V,et al.11C-L-Methionine Positron Emission Tomography in the Clinical Management of Cerebral Gliomas. Mol Imaging Biol, 2008,10(1):1-18.
    27.曾广绥,罗柏宁.放射性脑病的发病机理和MRI表现。影像诊断与介入放射学, 2002, 11(1):57- 58.
    28. Salcman M. Resection and reoperation in neuro-oncology: rationale and approach. Neurol Clin ,1985,3(4):831-842.
    29. Young B, Oldfield EH, Markesbery WR, et al.Reoperation for glioblastoma. J Neurosurg,1981;55(6):917-921.
    30. Ammirati M, Galicich JH, Arbit E, et al.Reoperation in the treatment of recurrent intracranial malignant gliomas. Neurosurgery,1987,21(5):607-614.
    31. Harsh GR 4th, Levin VA, Gutin PH. Reoperation for recurrent glioblastoma and anaplastic astrocytoma. Neurosurgery ,1987;21(5):615-621.
    32. Fadul C, Wood J, Thaler H, et al. Morbidity and mortality of craniotomy forexcision of supratentorial gliomas. Neurology ,1988;38(9):1374-1379.
    33. Tenney JH, Valhov D, Salcman M, et al.Wide variation in risk of wound infection following clean neurosurgery: implications for preoperative antibiotic prophylaxis. J Neurosurg ,1985,62(2):243-247.
    34. Rostomily RC, Spence AM, Duong D, et al: Multimodality management of recurrent adult malignant gliomas: results of a phase II multiagent chemotherapy study and analysis of cytoreductive surgery. Neurosurgery ,1994,35(3):378–388.
    35. Barker FG 2nd, Chang SM, Gutin PH, et al.Survival and functional status after resection of recurrent glioblastoma multiforme.Neurosurgery ,1998,42(4):709–720.
    36. Randes A A , Ermani M , Basso U , et al . Temozolomide as a secondline systemic regimen in recurrent high-grade glioma :a phase II study . Ann Onclo ,2001 , 12 (2) :255 - 257.
    37. Stupp R , Dietrich PY, Ostermann K, et al . Promising survival for patients with newly diagnosed glioblastoma multiform treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J Clin Onclo , 2002 ,20 (5) :1375 - 1382.
    38. Yung WK, Albright RE, Olson J, et al. A phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse. Br J Cancer 2000, 83(5):588–593.
    39. Wick W, Steinbach JP, Küker WM, et al. One week on/one week off: a novel active regimen of temozolomide for recurrent glioblastoma.Neurology,2004, 62(11):2113–2115.
    40. Veninga T, Langendijk HA, Slotman BJ, et al.Reirradiation of primary brain tumors: Survival, clinical response and prognostic factors.Radiother Oncol,2001,59(2):127-137.
    41. Combs SE, Widmer V, Thilmann C, et al. Stereotactic radiosurgery (SRS):Treatment option for recurrent glioblastoma multiforme (GBM). Cancer,2005,104(10):2168–2173.
    42. Shaw E, Scott C, Souhami L, et al: Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90–05. Int J Radiat Oncol Biol Phys, 2000, 47(2):291–298.
    43. Hudes RS,Corn BW,Werner-Wasik M,et al.A phase I dose escalation study of hypofractionated stereotactic radiotherapy as slavage therapy for persistent or recurrent malignant glioma.Int J Radiation Oncology Biol Phys,1999,43(2):293-298.
    44. Shepherd SF,Laing RW,Cosgrove VP,et al.Hypofractionated stereotactic radiotherapy in the management of recurrent glioma. Int J Radiat Oncol Biol Phys, 1997,37(2):393-398.
    45. Patel M,Siddiqui F, Jin JY,et al. Salvage reirradiation for recurrent glioblastoma with radiosurgery: radiographic response and improved survival. J Neurooncol, 2009,92(2):185–191.
    1. Shapiro WR, Green SB, Burger PC, et al. Randomized trial of three chemotherapy regimens and two radiotherapy regimens in postoperative treatment of malignant glioma. Brain Tumor Cooperative Group Trial 8001. J Neurosurg, 1989,71(1):1–9.
    2. Reni M, Cozzarini C, Panucci MG, et al. Irradiation fields and doses in glioblastoma multiforme: are current stantdards adequate? Tumori,2001, 87(2): 85- 90.
    3. Gross M W, Weber W A, Feldmann H J, et al. The value of F-18-fluorodeoxyglucose PET for the 3-D radiation treatment planning of malignant gliomas. Int J Radiat Oncol Biol Phys,1998,43(5):989-995.
    4. Grosu AL, Weber WA, Riedel E, et al. L-(Methyl-11C) Methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int J Radiat Oncol Biol Phys,2005,63(1):64-74.
    5. Grosu AL, Weber WA, Franz M, et al. Reirradiation of recurrent high grade gliomas using amino acids PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys, 2005,63(2):511-519.
    6. Miwa K, Shinoda J, Yano H, et al.Discrepancy between lesion distributions on methionine PET and MR images in patients with glioblastoma multiforme: insight from a PET and MR fusion image study. J Neurol Neurosurg Psychiatry,2004; 75(10):1457-1462.
    7. Grosu AL, Lachner R, Wiedenmann N, et al. Validation of a method for automatic image fusion (BrainLAB System) of CT data and 11C-methionine-PET data for stereotactic radiotherapy using a LINAC: first clinical experience. Int J RadiatOncol Biol Phys,2003; 56(5):1450-1463.
    8. Grossman S A, Batara J F. Current management of glioblastoma multiforme. Semin Oncol, 2004, 31(5): 635- 644.
    9. Brandes AA. State-of-the-art treatment of high-grade brain tumors. Semin Oncol, 2003, 30(6 Suppl 19): 4- 9.
    10. Carsten N, Nicolaus A, Nicole W, et al. Radiotherapy for high-grade gliomas. Strahlenther Oncol, 2004, 180(7): 401- 407.
    11. Kleinberg L, Slick T, Enger C, et al. Short course radiotherapy is an appropriate option for most malignant glioma patients. Int J Radiat Oncol Biol Phys,1997,38(1):31-36.
    12. Grosu AL,Feldmann HJ,Albrecht C,et al .3-Dimensional irradiation planning in brain tumors.The advantages of the method and the clinical results.Strahlenther Onkol ,1998,174(1):7- 13.
    13. Grafr R, Hildebrandt B, Tilly W, et al. Dose-escalated conformal radiotherapy of glioblastomas--results of a retrospective comparison applying radiation doses of 60 and 70 Gy. Onkologie,2005, 28(6- 7):325- 330.
    14. Chan JL, Lee SW, Frass BA , et al. Survival and failure patterns of high-grade gliomas after three-dimensional conformal radiotherapy.J Clin Oncol, 2002, 20(6): 1635- 1642.
    15. Nakagawa K, Aoki Y, Fujimaki T, et al. High-dose conformal radion therapy influenced the pattern of failure but did not improve survival in glioblastoma multiforme. Int J Radiat Oncol Biol Phys, 1998, 40(5): 1141- 1149.
    16. Chan M F,Schupak K,Burman C,et al. Comparison of intensity-modulated radiotherapy with three-dimensional conformal radiation therapy planning for glioblastoma multiforme. Med Dosim, 2003, 28(4): 261-265.
    17. Cardinale RM, Bendict SH, Wu QW, et al. A comparison of three stereotactic radiotherapy techniques ; ARCS vs. noncoplanar fixed fields vs. intensitymodulation.Int J Radiat Oncol Biol Phys,1998,42(2):431-436.
    18. Iuchi T, Hatano K, Narita Y, et al. Hypofractionated high-dose irradiation for the treatment of malignant astrocytomas using simultaneous integrated boost technique by IMRT. Int J Radiat Oncol Biol Phys,2006, 64(5): 1317-1324.
    19. Stewart L A. Chemotherapy in adult high-grade glioma: a systematic review and meta -analysis of individual patient data from 12 randomised trials. Lancet, 2002, 359(9311): 1011- 1018.
    20. Stupp R, Mason W P, van den Bent M J, et al. Radiotherapy plus concomitant and adjuvant temozolomode for glioblastoma. N Engl J Med, 2005,352(10): 987- 996.
    21. Shaw EG, Daumas-Duport C, Scheithauer BW, et al.Radiation therapy in the management of low-grade supratentorial astrocytomas. J Neurosurg, 1989, 70 (6):853- 861.
    22. Shaw EG, Tatter SB, Lesser JL,et al. Current controversies in the radiotherapeutic management of adult low-grade glioma. Semin Oncol, 2004, 31(5): 653- 658.
    23. Karim A B, Afra D, Cornu P, et al. Randomized trial on the efficacy of radiotherapy for cerebral low-grade glioma in the adult: European Organization for Research and Treatment of Cancer Study 22 845 with the Medical Research Council Study BRO4: an interim analysis. Int J Radiat Oncol Biol Phys, 2002, 52(2): 316- 324.
    24. van den Bent MJ, Afra D, de Witte O,et al. Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial.Lancet,2005,366(9490):985-990.
    25. Pignatti F, van den Bent M, Curran D, et al. Prognosticfactors for survival in adult patients with cerebral lowgrade glioma. J Clin Oncol 2002,20(8):2076- 2084.
    26. Shaw E, Arusell R, Scheithauer B, et al. Prospective randomized trialof low- versus high- dose radiation therapy in adults with supratentorial low- grade glioma: initial report of a North Central Cancer TreatmentGroup/Radiation Therapy Oncology Group/Eastern CooperativeOncology Group study. J Clin Oncol, 2002, 20(9): 2267-2276.
    27. Brown PD, Buckner JC, O' Fallon JR, et al. Effects of radiotherapy on cognitive function in patients with low-grade glioma measured by the folstein mini-mental state examination. J Clin Oncol, 2003, 21(13): 2519- 2524.
    28. Jalali R, Budrukkar A, Sarin R, et al. High precision conformal radiotherapy employing conservative margins in childhood benign and low-grade brain tumours. Radiother Oncol, 2005, 74(1): 37- 44.
    29. Eyre HJ, Crowley JJ, Townsend JJ, et al. A randomized trial of radiotherapy versus radiotherapy plus CCNU for incompletely resected low-grade gliomas: a Southwest Oncology Group study. J Neurosurg,1993, 78(6): 909- 914.
    30. Shaw E G, Wang M, Coons S, et al. Final report of Radiation Therapy Oncology Group (RTOG) protocol 9802: Radiation therapy versus RT + procarbazine,CCNU, and vincristine (PCV) chemotherapy for adult low-grade glioma. JCO, 2008, 26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700