四足机器人稳定行走规划及控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在地球陆地表面,有超过50%以上的面积为崎岖不平的山丘或沼泽,仅仅依靠轮式机械无法完全实现在这些自然环境中的移动。因此,设计和制造一个类似动物能够在自然环境中步行的机器,一直以来是人类追求的目标。正是这个原因,使得仿生足式机器人的研究成为机器人研究领域的热点之一。其中四足机器人由于其既有超于二足机器人的平稳性又避免了六足机器人机构的冗余和复杂性,在工程探险、反恐防爆、军事侦察等具有良好的应用前景,开展该方面的研究具有重要的实际应用价值及社会意义。
     本课题所研究的对象为足轮混合式四足机器人,其能很好的结合轮式机器人和足式机器人的优点,根据不同的环境变换轮式运动和足式运动两种运动方式,达到良好的运动灵活性和较高的移动速度的统一。论文主要针对两种运动形式中轮足锁定条件下的足式运动开展研究,在运动学分析、稳定性评价方法、步态规划、足力控制、嵌入式控制系统设计等方面寻求实用有效的设计方法。
     四足机器人具有时变的运动拓扑结构,论文首先针对机器人运动学特点及要求,提出了串并联结合分析的方法,分别对摆动腿及支撑腿的逆运动学进行了分析,解决了多足机器人无法建立整体运动学的问题。同时,为了准确的评定足式机器人的行走稳定性,论文采用支撑面压力中心至各足支撑点构成的多边型各边的最短距离来作为稳定性判定准则,并由此引出了重心最小稳定距离概念及相应的稳定裕度评定方法,讨论了干扰项、重心高度、支撑面姿态以及机器人质量等参数与稳定裕度的关系。
     在四足动物步态一般性描述框架下,根据不同的步态参数取值,结合机器人自身结构特点,论文规划了针对非平坦路面的间歇爬行步态和针对平坦路面的协调爬行步态,并对两种步态在稳定裕度、步行柔顺性等方面进行了对比仿真分析。最后对转弯步态和摆动足轨迹进行了规划,为机器人步态实验提供了理论依据。
     针对非结构环境,为了保持四足移动机器人躯体的预定位姿,并实现摆动足从自由空间到约束空间的良好过渡,本文建立了四足移动机器人的整体受力模型和虚拟悬挂模型,采用承载能力最优的约束条件对机器人足力分配进行了优化,提出了基于足力补偿的机器人躯体位姿偏差修正算法。同时论文结合改进的基于位置的阻抗控制策略,实现了摆动足从摆动相到支撑相的良好过渡和期望的足力跟踪问题。由于基于足力的机器人控制策略避免了计算复杂的多足机器人多刚体动力学,因而具有较高的实时性和可行性。
     最后,研制了四足机器人嵌入式分级递阶多关节运动控制系统,针对关节负载非线性特性,嵌入式系统采用带自调整权函数的模糊控制规则,实现了良好的关节速度跟踪。控制系统的集成化为足式机器人的离线控制奠定了基础。同时开展了关节速度位置跟踪测试、单足阻抗控制实验以及机器人在不同环境的间歇爬行步态、协调爬行步态行走实验,实验证明了理论分析的正确性。
About fifty percent of the surface of earch is covered by dene, marish, massif and so on. Though researchers have invent many kinds of wheeled machine, designing and manufacturing a legged robot like myriapod running in natural environment is still a huge challenge. So researches on legged robot have been always an important branch of robot field. Because of the stronger loading capacity and better stability than biped mobile robot as well as simpler structure than hexapod robot and eight-legged robot, research of quadruped mobile robot has glamourous future as platform for application of medical services, environmental monitoring, terrorism prevention, and other related areas.
     In view of the robot running environment, the structure of multi-motion mode, four legs and wheeled foots are adopted in this vehicle system. This robot can well combine the priorities of wheeled robot and legged robot, change motion mode to stability walking or fast wheeled driving according to different environments, so realize both flexibility and higher speed. This thesis focuses on quadruped motion research and seeks practical and efficient designing methods in the fields of kinematics analysis, stability criterion, gaits planning, foot force control and emebeded control system.
     Because of changing motion topology structure of quadruped robot, the inverse kinematics of swing leg and supporting leg are studied by combining series and parallel analysis methods. At the same time, in order to exactly evaluate the robot stability and stability margin while walking, one general criteria is proposed, which adopts the minimal distance from supporting edge to center of pressure on ground to estimate robot walking stability. For convenience, the conception of minimal stability distance is introduced and the relations between stability and parameters such as disturb elements, height of center of gravity, obliquity of supporting plane and mass of robot are discussed.
     Based on the combination of characteristic analysis of animal gait and our robot structure, discontinuous crawl gait for uneven surface and coordinated crawl gait for even surface are proposed with different gait variable value. Meanwhile, two kinds of gaits are compared and analyzed by simulation in the aspect of stability margin and body compliance. At last, turning gait and sway track planning is introduced which provides theory base for later experiments.
     To maintain quadruped robot scheduled posture on rough terrain and realize good transition of sway leg from free space to constraints space, the whole force model and virtual suspension model of quadruped robot is established. The foot force distribution is optimized and robot posture amending algorithm is proposed based on foot force compensating. Besides, the paper applies improved impedance control based on foot position to make legs achieve good transition from sway status to supporting status and expected force tracking. Such methods avoid computing complicated multi-body dynamics, so has characteristics of high real-time and feasibility.
     Finally, the embedded hierarchical control system of quadruped robot is proposed. In view of nonlinear of joint load, the embedded controller adopts algorithm of fuzzy regulation with modifiable function and realizes good joint speed tracking. The integration of control system lays the foundation for quadruped robot remote control. At the same time, several experiments such as joint speed and position tracking experiment, one leg impedance experiment, walking experiments on even and uneven plane are carried out. The experiment result confirmed the validity of the designing and theoretical analysis of the robot system.
引文
1 王田苗,刘进长. 机器人技术主题发展战略的若干思考. 中国制造业信息化. 2003.11
    2 施拉夫特.服务机器人.机器人技术与应用.1997(1):3-5
    3 国家中长期科学和技术发展规划纲要(2006-2020)
    4 干东英, 甘建国. 步行机器人述评. 机械工程. 1990,(4)
    5 刘静, 赵晓光, 谭民. 腿式机器人的研究综述. 机器人. 2006,28(1):81-88
    6 R.S.Mosher. Test and Evaluation of a Versatile Walking Truck. Proc. Off-Road Mobility Research Symp, 1968:359-379
    7 R. B. McGhee. Some Finite State Aspects of Legged Locomotion. Math.Biosci., 1968: 67–84,
    8 McGhee, R. B. Robot Locomotion. Neural control of locomotion. 1976: 237-264.
    9 Tanie K. Humanoid Robot and Its Application Possibility. IEEE Int. Conf. on Multi-sensor Fusion and Integration for Intelligent Systems, 2003: 213 - 214
    10 Berns.K, Ilg.W, Deck.M, Dillmann.R. The Mammalian-like Quadrupedal Qalking Machine BISAM. 5th International Workshop on Advanced Motion Control, Coimbra., 1998: 429 - 433
    11 Berns.K, Ilg.W, Deck.M, Albiez.J, Dillmann.R. Mechanical Construction and Computer Architecture of the Four-legged Walking Machine BISAM., IEEE/ASME Transactions on Mechatronics, 1999: 32 - 38
    12 Albiez.J, Ilg.W, Luksch.T, Berns.K, Dillmann.R, Learning a Reactive Posture Control on the Four-legged Walking Machine BISAM. IEEE Int. Conf. on Intelligent Robots and Systems, 2001: 999 - 1004
    13 Ilg.W, Albiez.J, Jedele.H, Berns.K, Dillmann.R. Adaptive Periodic Movement Control for the Four Legged Ealking Machine BISAM IEEE Int. Conf. on Robotics and Automation, 1999: 2354 - 2359
    14 Berns.K, Ilg.W, Deck.M, Dillmann.R. Adaptive Control of the Four-Legged Walking Machine BISAM. IEEE Int. Conf. on Control Applications, 1998:428 – 432
    15 Villard C, Gorce P, Fontaine J.G.. Study of the Dynamic Behavior of RALPHY. IEEE Int. Conf. on Intelligent Robots and Systems, 1993: 1765 - 1770
    16 Guihard M, Gorce P. A Solution to Control the Dynamic Behaviour of a Pneumatic Quadruped Robot. IEEE Int. Conf. on Robotics and Automation, 1995: 1000 – 1005
    17 S. HIROSE, K. KATO. Study on Quadruped Walking Robot in Tokyo Institute of Technology-Past, Present and Future-Proc. of IEEE Int. Conf. on Robotics and Automation, San Francisco, CA. 2000:414~419
    18 S.Hirose, K.Yoneda and H.Tsukagoshi, “TITAN VII: Quadruped Walking and Manipulating Robot on a Steep Slope,” Proc. Int. Conf. on Robotics and Automation, Albuquerque, New Mexico, 1997:494-500
    19 S. Hirose and K. Kato, "Development of Quadruped Walking Robot with the Mission of Mine Detection and Removal," Proc. of the 1998 IEEE Int. Conf. on R&A, 1998:1713- 1718
    20 Kurazume R , Hirose S , Yoneda K. Feedforward and Feedback Dynamic T rot Gait Control for a Quadruped Walking Vehicle. IEEE Int . Conf . on Robotics and Automation , Korea , 2001:3172-3180
    21 Arikawa K, Hirose S. Development of Quadruped Walking Robot TITAN-VIII. IEEE Int. Conf. on Intelligent Robots and Systems,1996: 208 – 214
    22 Hiroshi Kimura. Three-dimensional Adaptive Dynamic Walking of a Quadruped-rolling Motion Feedback to CPGs Controlling Pitching Motion. Proc. of IEEE Robotics and Automation (ICRA), Washington D.C. 2002:2228~2233
    23 Yasuhiro Fukuoka. Adaptive Dynamic Walking of a Quadruped Robot 'Tekken' on Irregular Terrain Using a Neural System Model, Proc. of IEEE Robotics and Automation (ICRA). 2003:2037~2042
    24 Cordes S, Berns K, Leppanen I. Sensor Components of the Six-legged Walking Machine LAURON II. Proceedings 8th International Conference on Advanced Robotics, 1997: 71 – 76
    25 M. Frik, M. Guddat, D.C. Losch. Terrain Adaptive Control of the WalkingMachine Tarry II. Proc. European Mechanics Colloquium, 1998:108-115.
    26 P. Didier, M. Buehler. Stable Running in a Quadruped Robot with Compliant Legs. IEEE Int. Conf. on Robotics and Automation. San Francisco. 2000: 444~450
    27 S. A. James, P. Ioannis. Rotary Gallop in the Untethered Quadrupedal Robot Scout II. IEEE Int. Conf. on Intelligent Robots and Systems, Japan. 2004: 2556 – 2562
    28 胡贵钱, 王菊芬. 四足步行机器人力位混合控制的实验研究与分析. 实验技术与管理. 2004,21(5): 26~30
    29 席裕庚,程君实,陈佳品. 四足机器人对角小跑直线步行的虚拟模型. 上海交通大学学报. 2001,35(12): 1771~1775
    30 席裕庚,程君实,陈佳品. 基于虚拟模型的四足机器人直觉控制. 上海交通大学学报.2002,36(8): 1150~1154
    31 王新杰, 李培根, 陈学东. 四足步行机器人动力学模型及脚力分配的研究. 华中科技大学学报. 2005,33(12):12~15
    32 苏军. 多足步行机器人步态规划及控制的研究. 华中科技大学硕士论文. 2004:15~17
    33 T. Estier, Y. Crausaz, B. Merminod, M. Lauria, R. Piguet, R.Siegwart. An Innovative Space Rover with Extended Climbing Alilities, Proceedings of Space and Robotics 2000, Albuquerque, USA, 2000.
    34 M. Lauria, Y. Piguet. Octopus: An Autonomous Wheeled Climbing Robot. http://asl.epfl.ch/research/systems/Octopus/octopus.php. 2002.
    35 I. Lepp?nen, S. Salmi, A. Halme. WorkPartner, HUT Automation’s New Hybrid Walking Machine. First international symposium, Brussels, Belgium, 1998:26-28
    36 S. Guccione, G. Muscato, The Wheeleg Robot. IEEE Robotics and Automation Magazine, 2003(12):33-43.
    37 H. Adachi, N. Koyachi, T. Arai, A. Shimizu, Y. Nogami. Mechanism and Control of a Leg-Wheel Hybrid Mobile Robot. Proceedings of the IEEE/ RSJ International Conference on Intelligent Robots and Systems, 1999: 1792-1797.
    38 R.B. Meghee. Some finite state Aspects of Legged Locomotion. Mathemtical Bios. 1968(12)
    39 R. Tomovic, R. B. Meghee. A finite state Approach to the Synthesis of Bioengineering Control System IEEE Trans On Human Factors in Electronics. 1968.
    40 R.B. Meghee and A.A. Franck. On the Stability Properties of Quadruped Creeping Gaits. Mathematical Biosciences. 1968(3)
    41 S.M. Song, B.S. Choi. The Optimally Stable Ranges of 2n-Legged Wave Gaits. IEEE Trans On Systems, Man and Cybernetics, 1990,20(4): 888~902
    42 H.Igarashi, M.Kakikura. Adaptive Gait for a Quadruped Robot on 3D Path Planning, IEEE Int. Conf. Robotics and Automation, 2003:2049-2054
    43 陈佳品, 程君实, 冯 萍. 四足机器人对角小跑步态的研究. 上海交通大学学报. 1997,31(6):18~23
    44 何冬青, 马培荪, 曹冲振. 四足机器人对角小跑起步姿态对稳定性的影响. 上海交通大学学报. 2005,39(6):880~883
    45 K. Yoneda, H. Iiyama, S. Hirose. Intermittent Trot Gait of a Quadruped Walking Machine Dynamic Stability Control of an Omnidirectional Walk. IEEE Int. Conf. on Robotics and Automation. Minnesota. 1996:3002~3007
    46 S. Hirose , K. Yoneda. Dynamic And Static Fusion Control Of Quadruped Walking Vehicle. IEEE Int. Workshop. on Intelligent Robots and Systems. Tsukuba, 1989:199~204
    47 D.A. Messuri, and C.A. Klein. Automatic Body Regulation for Maintaining Stability of Legged Vehicle During Rough Terrain Locomotion. IEEE J. Robotics and Automation. 1985: 132-41
    48 E.G. Papadopoulos, D.A. Rey. A New Measure of Tipover Stability Margin for Mobile Manipulators, Proc. IEEE Int. Conf. on Robotics and Automation, 1996:3111-3116
    49 Hirose S H. A Study of Design and Control of a Quadruped Walking Vehicle. The Int. J. of Robotics Research. 1984, 3(2):113~133
    50 Pack D J, Kang H S. An Omnidirectional Gait Contorl Using a Graph Search Method for a Quadruped Walking Robot. IEEE Int. Conf. on Robotics and Automation, Nagoya, Japan, 1995:988~994
    51 王新杰, 李培根, 陈学东. 四足步行机器人关节位姿和稳定性研究. 中国机械工程. 2005,16(17):1561~1567
    52 伍科布拉托维奇著, 步行机器人和动力型假肢. 马培荪, 沈乃熏译. 科学出版社, 1983
    53 张永学, 麻亮, 强文义. 基于地面反力的双足机器人期望步态轨迹规划.哈尔滨工业大学学报. 2001, 33(1): 4~7
    54 杨东超, 汪劲松, 刘 莉. 基于 ZMP 的拟人机器人步态规划. 机器人. 2001,23(6):504~509
    55 K. Yoneda, S. Hirose. Dynamic and Static Fusion Gait of a Quadruped Walking Vehicle on a Winding Path. IEEE Int. Conf. on Robotics and Automation, Nico, France, 1992:143~149
    56 K. Yoneda, K. Yoneda, S. Hirose. Feedforward and Feedback Dynamic Trot Gait Control for Quadruped Walking Vehicle. Kluwer Academic Publishers. 2002,(1):1~30
    57 Ahikiko. Three-dimensional Adaptive Dynamic Walking of a Quadruped- rolling Motion Feedback to CPGs Controlling Pitching Motion, Proc. of IEEE Robotics and Automation (ICRA), 2002.5
    58 R. A. Brooks. A Robot that Walked: Emergent Behaviours from a Carefully Evolved Network. Neural Computation. 1989(1):253~262
    59 R. A. Brooks. Intelligence without Reason. 12th International Joint Conference on Artificial Intelligence. Sydney. 1991:569~595
    60 郑浩峻, 张秀丽, 李铁民. 基于 CPG 原理的机器人运动控制方法. 高技术通讯. 2003(7):64~69
    61 郑浩峻, 张秀丽, 关 旭. 基于生物中枢模式发生器原理的四足机器人. 清华大学学报. 2004,44(2):166~169
    62 K. Hiroshi, Y. Fukuoka. Biologically Inspired Adaptive Dynamic Walking in Outdoor Environment Using a Self-contained Quadruped Robot Tekken. IEEE Int. Conf. on Intelligent Robots and Systems, Sendai, Japan, 2004: 986 ~992
    63 陈学东, 周明浩, 孙 翊. 模块化多足步行机器人的运动控制系统研究. 中国机械工程. 2006,(5):1071~1074
    64 C.L. Shih, C.A. Klein. An Adaptive Gait for Legged Walking Machines over Rough Terrain. IEEE Trans. On Systems, Man, and Cybernetics, 1993, 23(4): 1150~1155
    65 C. A. Klein and R. L. Briggs. Use of Active Compliance in the Control of Legged Vehicles. IEEE Trans. Syst. Man, Cybern.1980,10(7):393-400
    66 D.M.Gorinevsky, A.Yu.Shneider. Force Control in Locomotion of Legged Vehicles over Rigid and Soft Surfaces. Int. J. Robotics Research. 1990, 9(2): 4~23
    67 P.V.Nagy, W.L.Whittaker, S.Desa. A Walking Prescription for Statically- Stable Walkers Based on Walk/Terrain Interaction. IEEE Int. Conf. Robotics and Automation, 1992:149-156
    68 K. Yoneda, H. Iiyama, and S. Hirose. Sky-Hook Suspension Control of Quadruped Walking Vehicle. Int. Conf. on Robotics and Automation, 1994: 999–1004
    69 Qingjiu Huang, Yasuyuki Fukuhara. Posture and Vibration Control Based on Virtual Suspension Model Using Sliding Mode Control for Six-Legged Walking Robot, Proceedings of the IEEE/RSJ. 2006:5232~5237
    70 陈学东,郭鸿勋,渡边桂吾. 四足机器人爬行步态的正运动学分析. 机械工程学报.2003,39(2): 8~12
    71 F. Hardarson. Stability Analysis and Synthesis of Statically Balanced Walking for Quadruped Robots. Doctoral thesis, Royal Institute of Technology, 2002:25~37
    72 Z. Chang-de. Kinematics and Dynamics of Robotic Systems with Multiple Closed Loops. Doctoral thesis, University of Illinios, 1992:88~110
    73 李霞, 谢涛, 陈维山. 基于神经网络的双足机器人逆运动学求解. 机械设计, 2003,20(4):30~40
    74 Michele L, Giovanni M. Kinematics, Dynamics and Control of a Hybrid Robot Wheeleg. Robotics and Autonomous System. 2003:161~180
    75 陈海伟, 高勇. 模块化可重构三腿并联机器人的运动学控制. 机械工程学报, 2005,41(8)
    76 黄真, 孔令富, 方跃法. 并联机器人机构学理论及控制. 机械工业出版社.1996:29-35
    77 付京逊, 冈萨雷斯. 机器人学·控制·传感技术·视觉·智能. 中国科学技术出版社. 1995:23~87
    78 蔡自兴. 机器人学. 清华大学出版社. 2000:51-54
    79 徐轶群, 万隆君. 四足步行机器人腿机构及其稳定性步态控制. 机械科学与技术. 2003,22 (1): 86~91
    80 Schmiedel ER J P. The Mechanics of and Robotic Design for QuadrupedalGalloping. Ph. D. Dissertation. The Ohio State University, 2001:1~12
    81 Quadruped Locomotion - Musings About Running Dogs and Other 4-Legged Creatures URL:http://www.oricomtech.com
    82 张金超. 四足移动机器人平地稳定行走步态的研究. 哈尔滨工业大学硕士学位论文. 2005:22~23
    83 LEE T T, SHIN C L.A study of the Gait Control of a Quadruped Walking Vehicle. IEEE Journal of Robotics and Automation. 1986, 2(2):61~68.
    84 满洁, 张玉茹, 罗杨宇. 步行机动力学与控制集成仿真方法. 机械设计. 2001(8):33~35
    85 何冬青, 马培荪, 四足机器人动态步行仿真及步行稳定性分析. 计算机仿真. 2005,22(2):146~149
    86 杨东超, 汪劲松, ADAMS 在拟人机器人研究中的运用. 机器人技术与应用, 2001,(4):21-231
    87 S. Ma, T. Tomiyama, Hideyuki Wada.Omni-directional Walking of a Quadruped Robot. IEEE/RSJ Conference on Intelligent Robots and Systems. 2002:2610-2613
    88 I. Hiroshi, T. Machida, F. Harashima. Free Gait for Quadruped Robots with Posture Control. AMC, Istanbul, Turkey, 2006:433~439
    89 陈峰, 费燕琼, 赵锡芳. 机器人的阻抗控制. 控制与决策. 2005(12):46~49
    90 刘伊威, 金明和, 杨 磊. HIT_DLR 灵巧手单手指的阻抗控制. 机械与电子. 2005(10):62~65
    91 谢宗武. HIT-1 机器人灵巧手柔顺控制的研究. 哈尔滨工业大学博士学位论文. 2003:59~69
    92 D. Surdilovic. Contact Stability Issues in Position Based Impedance Control: Theory and Experiments. Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota-April 1996:1675-1680.
    93 D. Surdilovic. Robust Robot Compliant Motion Control Using Intelligent Adaptive Impedance Approach. IEEE Int. Conf. On Robotics and Automation. Michigan, 1999:2128~2133.
    94 D. Surdilovic. Contact Transition Stability in the Impedance Control. IEEE International Conference on Robotics and Automation., 1997:847~852.
    95 许宏岩, 王树国, 付宜利. 仿生机器人体系结构的研究. 机械工程师.2004(1)
    96 G. Saridis. Toward the Realization of Intelligent Controls. IEEE Int. Conf. On Robotics and Automation. 1979:1115~1133.
    97 陈东良.仿生机器蟹两栖步行机理与控制方法研究. 哈尔滨工程大学博士学位论文. 2006:49~50
    98 董春, 徐文力. 仿人手臂动力学控制实验平台的设计与实现. 机器人, 2004,26(1):23~26.
    99 J Z Xiao, H. Dulimarta. DSP Solution for Wall-climber Micro-robot Control Using TMS320LF2407 Chip. IEEE Midwest Symposium on Circuits and Systems. Faro, Portugal. 2000:1348~1351
    100 刘和平等. TMS320LF2407DSP 结构、原理及应用. 北京航空航天大学出版社. 2002
    101 林建伟. 电机驱动用 H 桥组件 LMD18200 的应用. 国外电子元器件. 1998,(9):10~12.
    102 张筱磊, 李士勇. 实时修正函数模糊控制器组合优化设计. 哈尔滨工业大学学报, 2003, 35(1): 8~12.
    103 L R Lin, H P Huang. DSP-based Fuzzy Control of a Multifingered Robot Hand. IEEE International. Conference on Intelligent Systems for the 21st Century. Canada. 1995: 3672~3677
    104 李士勇著, 模糊控制.神经控制和智能控制论. 哈尔滨工业大学出版社, 1996:250~294

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700