桑树多倍体育种材料诱变创制及优系选育研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桑树是重要的经济林木树种,桑叶是唯一能使家蚕正常新陈代谢的饲料:桑果,即桑椹,具有较高营养价值和保健作用,发展前景广阔。桑树多倍体特别是三倍体植株具有高产,优质,抗逆性强的特点,受到广大育种科技工作者的重视。三倍体桑树品种一般是由优良的四倍体与优良的二倍体杂交后,经选择、培育而获得。自然界的野生四倍体桑树极少,且野生性状强,经济性状较差,不能满足人工三倍体新桑品种选育亲本的要求,人工选配的二倍体杂种F_1植株,经秋水仙碱诱导获得优良四倍体桑植株,因有杂交优势及多倍体效应,具有较高的产叶量,可直接应用于生产,也可用作培育三倍体新桑品种的亲本。因此,四倍体育种亲本材料多由人工诱变创制获取。人工创造四倍体桑育种亲本材料,目前国内外主要采用物理的辐射诱变处理;化学的秋水仙碱诱导处理和生物的杂交技术获得,这三条途径主要在大田进行,受天气,季节影响,周期长。因此本论文主要进行两方面研究,一是采用桑树组织培养与秋水仙碱诱导相结合,在试管内诱导获取人工四倍体桑育种材料,拟克服大田实验的不足之处:二是在大田通过秋水仙碱诱导经杂交选育而成的二倍体桑品种优良单株的萌动冬芽,从中选育出果叶兼用的四倍体桑优系,拟解决农民栽桑经济效益单一的问题。并分析了该四倍体新桑品系与二倍体亲本间,在形态性状、解剖结构及生理生化上的变异,其主要研究结果如下:
     1.桑树离体高效再生组培体系的研究
     本研究以提高桑树离体再生植株频率,建立稳定的桑树组织培养技术体系为研究目的,以桑树种胚为材料,自来水冲洗,用0.1%的HgCl_2消毒8 min,无菌水洗4-5次,每次约1 min。消毒后种子放在摇床上或者平摊在灭菌过的培养皿中发芽。用解剖刀切割下胚轴和子叶,并且把下胚轴分成约1.5mm长的上、中、下三段作为外植体,接种在MS培养基附加3 mg·L~(-1)BA+0.3 mg·L~(-1) IAA+30 g·L~(-1)葡萄糖+7 g·L~(-1)琼脂粉的培养基中,进行愈伤组织和不定芽诱导。实验结果表明,三段下胚轴之间的不定芽诱导率存在显著差异,下胚轴上段,即靠近胚芽的一段诱导率最高,获得了78.7±2.1%的不定芽诱导率:中段次之,不定芽诱导率为39.5±7.996;下段,即靠近胚根的一段褐化严重,基本上诱导不出不定芽。再以下胚轴上段为外植体,接种在MS培养基添加不同的生长素IAA、2,4-D、NAA、以及不同浓度激素组合中,进行愈伤组织和不定芽的诱导。实验结果表明,在桑树组织培养中,细胞分裂素3.0m g·L~(-1) BA与生长素0.3 mg·L~(-1) IAA组合对桑树不定芽诱导是最有效的,不定芽的诱导率达到77.6±5.9%;2,4-D诱导的愈伤组织生长快,白色疏松,较难分化出不定芽:AgNO_3对不定芽的诱导有促进作用。适当降低生长素的浓度有利于提高增殖培养的增殖系数。在生根培养中,无机盐的浓度和生长素对生根影响较大,较高的无机盐浓度降低生根率并且延长生根时间,无机盐浓度太低,根系柔弱,影响移栽成活率;在1/2MS+0.5 mg·L~(-1) IBA的固体培养基中生根率可以达到99%。移栽成活率也可达到95%以上。该实验结果将为桑树离体条件下诱导多倍体育种材料奠定了基础,也为桑树遗传转化提供了良好的转化受体技术体系。
     2.桑树组织培养诱导多倍体育种材料的研究
     本研究以在桑树离体的条件诱导多倍体育种材料为目的,以桑种子、下胚轴、子叶、不定芽为材料,设计了4个实验:(1)用0.15%、0.2%、0.25%的秋水仙碱溶液处理中桑5801与纳溪桑的杂交F_1种子24h、48h、96h,然后接种子叶、胚轴到诱导培养基中。(2)用0.05%、0.1%、0.2%的秋水仙碱溶液处理子叶20min、40min、60min以后接种到诱导培养基中。(3)以2-4 cm长的不定芽分别在0.1%、0.15%、0.2%的秋水仙碱溶液中浸泡2天和3天,然后,用无菌水洗涤4-5次,转接入到新鲜的培养基中,无菌水浸泡作为对照。(4)以0.15%、0.2%、0.25%滴定不定芽的顶芽5天,早晚各一次,两周以后调查不定芽的变异率。实验结果表明,秋水仙碱溶液处理种子及子叶以后经过离体培养,都未获得再生植株;经过秋水仙碱处理过的不定芽生长缓慢,叶片发生畸变,经过体细胞染色体倍数性鉴定,进一步确定桑树四倍体及二倍体。另外,秋水仙碱的浓度是诱导桑树四倍体成功的关键,以0.2%的秋水仙碱浸泡2天后获得桑四倍体的诱导率为14%,以0.25%滴液5天获得了20%的诱导率。经过生根培养,移栽获得再生四倍体植株。该四倍体植株表现出叶片增大,锯齿加深,叶肉变厚,叶色深绿色等性状。既可以作为杂交亲本,也可以在生产上直接利用。这是国内首次在离体条件下,诱导获得的桑树多倍体植株,为桑树多倍体育种材料创制提供了一条新的途径。
     3.人工四倍体果叶兼用桑新品系的选育研究
     本研究以满足农民种桑需求,增加农民的亩桑产值,解决蚕农种桑养蚕收效单一,发展我国蚕桑产业为目的,以既产果,又产叶为主要育种目标,采用桑树细胞染色体工程,以我校保存的中桑5801号(二倍体,2n=2x=28)为材料,选育果叶兼用的新型人工多倍体桑树品种。
     经过观察、调查,从我校保存的中桑5801号中选出发芽早,结果多,生长势旺盛的优良单株,进行了繁殖。2005年2月22日至3月1日,分别用0.2%秋水仙碱溶液:2ppm6-BA+0.2%秋水仙碱溶液;2ppm6-BA+0.25%秋水仙碱溶液:2ppm6-BA+0.22%秋水仙碱溶液,每天早上8:00时,在桑树体细胞进行有丝分裂前一个小时,采用注射器,对11株,277个脱苞冬芽进行化学诱导处理,连续诱导处理8天,然后对诱导处理的冬芽进行培护管理。2005年5-6月,采用植物酶解去壁低渗法,对277个化学诱导处理冬芽的萌发新梢芽叶,逐个进行体细胞染色体倍数性鉴定。2005年12月20日-26日,我们把一个纯合四倍体(2n=4x=56),2个嵌合体的V1代枝条上的冬芽分别进行了冬季芽接:2006年3月进行嫁接成活率调查,嵌合体的嫁接成活率略高于纯合体株系。2006年5-6月,我们对纯合四倍体(2n=4x=56)V1代嫁接成活的植株,采用植物酶解去壁低渗法,逐一进行体细胞染色体倍数性复查,V1代嫁接成活的15个植株,全为纯合四倍体(2n=4x=56),命名为嘉陵30号。四倍体果叶兼用桑新品系嘉陵30号桑叶叶片增大,叶肉增厚,叶色加深,节间密,叶序紊乱,产叶量高:桑椹果粒大,紫黑色,果肉肥厚,味道鲜美可口,产果量也高。2006年12-2007年1月嫁接V2代冬芽,经过2007年培护管理,2008年重庆市桑树品种区域实验,桑椹产量达到777.5kg/667m~2·年,桑叶产量达到2136kg/667m~2·年。这一品种的育成推广,将增加农民收入,提高蚕农亩桑效益,增加蚕农收入,促使蚕桑产业可持续发展。
     4.桑树果叶兼用四倍体与无性系二倍体亲本形态性状及生化成分的比较分析
     本研究以了解桑树二倍体经过秋水仙碱诱导成四倍体以后,桑树形态性状,生化成分发生的变化为目的,以诱导获得的人工四倍体果叶兼用桑新品系及其无性系二倍体亲本为材料,从外形特征,桑叶产量,桑椹产量,桑叶蛋白质含量、可溶性糖含量、桑椹的氨基酸含量,抗氧化物酶活性作了比较实验。结果表明,四倍体新桑品系染色体数目增加一倍以后,桑叶的海绵组织增厚,桑叶单株产量提高19.05%,桑椹产量提高16.1%;桑叶蛋白质含量提高10.2%,可溶性糖含量提高10.7%;桑椹的氨基酸含量也明显提高,但不同的氨基酸含量增加的量不同,维生素C含量提高12.9%,多酚含量提高43.3%,总花青素含量提高34.1%,黄酮含量提高47.6%。四倍体桑叶可溶性蛋白质含量和抗氧化物酶活性都高于无性系二倍体亲本。据此推测,二倍体桑树染色体加倍以后,植株抗逆性有可能增强。其研究结果,为该人工四倍体材料在桑树多倍体育种中的应用,提供了较好的参考价值。
     5.桑树果叶兼用四倍体与无性系二倍体亲本光合生理特性及光合结构的研究
     光合速率是决定作物产量的重要因素,本研究拟从光合生理特性及光合结构阐明该多倍体桑表现出产叶量和产果量高于无性系二倍体亲本的原因为目的。以前面实验获得的人工四倍体新品系及其无性系二倍体亲本为材料,用便携式Li-6400光合测定仪测定光合速率日变化、光响应曲线及CO_2-光合曲线;石蜡切片,显微镜观察输导组织即导管和筛管:通过电镜观察气孔结构及叶绿体内部结构等方面进行研究。实验结果表明,四倍体桑在4月中旬的日变化情况与二倍体相似,均呈双峰曲线,峰值都出现在上午11:00和下午16:00左右,而四倍体桑的Pn全天都高于无性系二倍体亲本。四倍体桑的表观量子效率较无性系二倍体亲本高,分别为0.069和0.05;四倍体桑的光饱和点略小于无性系二倍体亲本,分别为329μmol·m~(-2)·s~(-1)和339μmol·m~(-2)·s~(-1);饱和光下四倍体桑的光合速率高于无性系二倍体亲本,分别为21.4μmol·m~(-2)CO_2·s~(-1)和15.7μmol·m~(-2)CO_2·s~(-1);四倍体桑的呼吸速率较无性系二倍体亲本高,分别为1.26μmol·m~(-2)CO_2·s~(-1)和1.16μmol·m~(-2)CO_2·s~(-1);四倍体桑的CO_2补偿点较无性系二倍体亲本低分别为60.56μmol·m~(-2)CO_2·s~(-1)和67.41μmol·m~(-2)CO_2·s~(-1);四倍体桑的CO_2饱和点比无性系二倍体亲本的CO_2饱和点低,分别为800μmol·m~(-2)CO_2·s~(-1)和900μmol·m~(-2)CO_2·s~(-1),在饱和CO_2下其同化速率分别为31.57μmol·m~(-2)CO_2·s~(-1),和31.78μmol·m~(-2)CO_2·s~(-1);四倍体桑的羧化效率(CE)较无性系二倍体亲本高,分别为0.096和0.067。这些实验结果表明,四倍体桑的光合性能较无性系二倍体亲本具有明显的优势。四倍体桑叶绿素含量显著高了二无性系二倍体亲本,四倍体桑的叶绿素a,叶绿素b两种色素的含量均较无性系二倍体亲本高,充分表明四倍体桑较二倍体桑能更好地适应或利用不同的光质成分,其光合能力也相应增强。四倍体桑的RuBP羧化活性极显著高于无性系二倍体亲本,这可能是四倍体桑的净光合速率高于二倍体桑的重要原因。四倍体桑与其无性系二倍体亲本的这些生理差异初步阐明了四倍体产叶量及产果量较无性系二倍体亲本高的生理机制。
     从桑叶叶片和茎段的解剖结构来看,人工四倍体新桑品系的气孔变大,叶绿体的长度和宽度都明显高于无性系二倍体亲本,表现出巨大性。叶绿体内部淀粉粒增大,数量减少,基粒片层和基质片层都很丰富,基粒片层厚,并且垛叠疏松,排列有序,有利于光合速率的提高。无性系二倍体亲本的淀粉粒多,基粒片层薄,垛叠紧密,不利于光合速率。因而,无性系二倍体亲本的Pn偏低,这可能与叶绿体的结构有关。另外,四倍体桑的输导组织也有一定的变异,导管增粗,导管数增加。这些结构变异构成了人工四倍体新桑品系产叶量高、产果量高的结构基础。
Mulberry is an important economical woody plant. Its leaf is the main diet for silkworm. Mulerry fruits are eaten fresh and are also used in marmalades, juices, liquors natural dyes and in the cosmetics industry. The plant has also been used medicinally. The black and red mulberry fruits are healthier for human body because of high nutrient value and medical function. So the mulberry variety for fruit shows a good prosperity in productional application. Mulberry polyploid, especially triploids is welcomed because they have high yield, high-quality, disease-resistant, resists the going against strong, fine properties that adaptability is wide,etc. Breeding of artificial triploid in mulberry has become an important approach at home and abroad. Desirable triploids are being developed using induced superior tetraploids for hybridization with diploids. Most of natural tetriplods are unsuitable for superior tetraploid parents due to poor nutritional value and low propagation efficiency. So we have to get by artificial creation. At present, the main methods artificial tetraploid are Co-γradiation-induced mutation, Colchicine-induced mutation, crossbreeding in the field and are affected by environment easily. Most of the tetraploids by artificial diploid hybrid doubled have high yield and applied to the production. It is still an important way for polyploid breeding in mulberry through crossing the tetraploid with diploid and breeding triploid hybrid combinations by using induced tetraploid. So this study contains two sections: one section is in vitro induction of tetraploid in mulberry, the other section is selective breeding of artificial tetraploid with high leaf-yields and high fruit-yieds by Colchicine-induced in mulberry and a comparative study on morphological, anatomical Structure of stem and leaf, physiological and biochemical mechanism difference between tetraploid and diploid of mulberry. The main results were briefly summarized as follows:
     1. Establishment of in Vitro and Plant Regeneration System of Mulberry
     The aim of this study is to establish a rapid and efficient plant regeneration system ofmulberry through mulberry seed embryo. The seeds were collected during April-May every year from mature tree of Zhongsang5801×Naxi (Moms multicaulis Perr.) and preserved in 4℃refrigerator for providing explants at any time throughout the year. Seeds were washed and soaked for one day, and then their surfaces were sterilized in 70% alcohol for 1 min followed by 0.1% mercuric chloride for 8 min. Finally, the seeds were rinsed for 4-5 times in sterile distilled water for 1 min . The sterilized seeds were cultured in sterile distilled water on the rocking bed or placed on the moist filter paper in sterile Petri dishes. Seeds were germinated at 25±2℃using a 12 h photoperiod with a light intensity of 50μmol m-2 s-1 with fluorescent lights (40 W GE Deluxe Daylight bulbs). After 5 days, under aseptic conditions, germinated seedlings were cut with sharp scissors to produce segments of hypocotyls and cotyledons, the hypocotyl and cotyledonof every seedling was cut into three segments with 1.5mm long as explants. The result as follows: the optimum shoot inducing medium is MS+6-BA 3.0mg/L+IAA 0.3 mg/L+ dextrose 30 g/L + agar powder 0.4%. the optimum root inducing medium is MS+IBA0.5 mg/L. Addition of AgNO_3 to the medium promoted the differentiation percentage of (adventitious) shoots. shoot induction frequences of three segments of hypocotyl showed significant difference in the same media. The highest was the segment near the embryo bud 78. 7±2.1%, and the lowest was the segment near the embryo root 16±2.2%. The middle is 39.5±7.9%. the rooting rate was above 99.0% and the transplanting survival rate was above 95%.
     2. In Vitro Induction of Tetraploid in Mulberry
     The aim of this study is induction of tetraploid in mulberry in vitro. Seed, hypocotyl, cotyledon and multiple shoot was tested as explants. This paper designed 4 experiments: (1) seeds of crossbreed variety were treated with three different concentrations (0.15, 0.2 and 0.25%) of colchicine for 24h, 48h, 96h. (2) cotyledons were treated with three different concentrations (0.05, 0.1 and 0.2%) of colchicine for 20min, 40min, 60min. (3) multiple shoots(2-4cm) were treated with three different concentrations (0.1, 0.15 and 0.2%) of colchicine for 2 days or 3 days by impregnation (4) By using dropping liquid, multiple shoots(2-4cm) were treated with three different concentrations (0.5, 0.2and 0.25%) of colchicine for 5 days, twice every day. The result shows: tetraploidy plantlet induced only in multiple shoots; The combination of concentration of colchicine and explants might be the key factor. Tetraploidy at a frequency of 14% was obtained using 0.2% colchicine for 2d by impregnation, And the frequency of tetraploidy was 20% when 0.2% colchicine for 5d by using dropping liquid. The leaves of tetraploid that developed from colchicine treated buds were distorted while the upper newly formed leaves were large, thick and dark green, with stronger venation and deeper serration. The length and breadth of the leaves were also greater in colchicine-induced plants (20.4±0.9 cm and 17.1±0.1 cm) compared with that of untreated plants (16.7±1.1 cm and 12.8±1.7 cm). The tetraploids can be used not only as tetraploid parents but also as practical variety. This is the first report on in vitro induction of tetraploid in mulberry in China. Thus, it provides a new and efficient path for mulberry polyploid breeding.
     3. Induction of Tetraploid in Mulberry for Fruit and Leaf
     This study is in order to meet peasant's demand, increase income per hm~2 in economic benefit to develop secriculture industry. The objective is to select and breed new variety with not only high leaf-yields but also high fruit-yields in mulberry. Based on long term surveying on the local mulberry resources. Zhongsang 5801 is the better diploidy parent, Its leaf is bigger and good quality and its fruit has a nice taste. We injected colchicine solution into winter bud in mulberry for 8d by the concentration of 2ppm6-BA+0.2%,2ppm6-BA+0.22%,2ppm6-BA+0.25% on Feb 22,2005 After 1 month, we identified and separated 1 tetraploid bud from 277 injected buds and propagated the tetraploid by grafting and matched cultivation managemen in Dec,2005. The tetraploid plant of muberry showed better economic properties than the diploidy parents. The mean leaf yield reached a higher level to 2088kg/667m~2 and fruit yield reached 777. 5kg/667m~2 in Chongqing regional test from in 2008, 34.7% in leaf and 46.57% in fruit higher than that of the control variety "Hongguo 2" in 2008; So this way will increase the income of farmers and strengthen their enthusiasm of planting mulberry to raise silkworm. It leads to sustainable development of sericulture.
     4. Comparison of Growth and Physiological Indices between Diploid and Tetraploid Mulberry Plants
     The comparative study of growth and physiological indices between diploid and tetraploid mulberry plants were carried out. The difference were evaluated for leaf character, leaf yield, fruit yield, chemical composition, soluble protein content, total sugar content; Amino acid, Vc, polyphenol, anthocyanin and flavone of fruit and the activity of POD, SOD. The results have shown statistically significant diferences between tetraploid and diploids for all the parameters. mulberry leaf yield increased 19.05% and the mulberry fruit yield increased 16.1% of titraploid than of diploid ; the content of prtain and soluble sugar in the mulberry leaves was 10.2% and 10.7% higher than diploid; The anti-oxidative substance such as Vc, polyphenol, anthocyanin and flavone in tetraploid were 12.9%, 43.3%, 34.1%, 47.6% higher than in diploid. The activity of POD, SOD in tetaploid were significantly higher than that in diploid . So we speculated that Tetraploids induced from hybrid seedling diploid were much stronger growing and stronger stress resistance. The researches provided some useful information of polyploid breeding.
     5. Photosynthetic Physiological Characteristics and Photosynthetic Structure of Tetraploid and Diploid
     The aim of this study is to elucidate the physiological mechanism of stronger growing in tetraploid than that in diploid. Under field cultivation conditions, Photosynthetic pigment (chlorophll-a, chlorophll-b) contents per unit area leaf of mulberry increased with increasing ploidy. There was significant difference between tetraploid and diploid. Net photosynthetic rate (Pn) of different ploidy watermelon showed(?)midday depression' phenomenon in April. The Pn diurnal changes varied as atwo-peaked curve, its values reached at 11:00 am. and 16:00 pm.; The Pn of first peak was higher than the second. The Pn was 4x>2x . The critical points of light saturation and maximum photosynthetic rate, apparent quantum yield (AQY), carboxylation efficiency is 329umol·m~(-2)·s~(-1), 21.4μmol·m~(-2)·s~(-1), 0.069, 0.096 respectively in tetraploid and 339 umol·m~(-2)·s~(-1), 15.7μmol·m~(-2)·s~(-1), 0.05, 0.067 respectively in diploid. The tetraploid shows significant superior photosynthetic character. The abilitly of carboxylation of tetraploid was one time higher than diploid, which may be closely related to net photosynthetic rate.
     Observation of the morphology and anatomy of tetraploid showed that leaf palisade and sponge tissue thickened, the stoma become larger, the number of chloroplast in per guard cell increased. Convex lens observed that the number of starch grain in each cell reduced in tetraploid and the number of basal granules and basal granule layers of leaf of grape in greenhouse were higher than diploid. These basal granule layers are highly ordered and uniform to improve the photosynthetic rate. Forthermore, structure of conducting tissue was studied and the number of vessel increased and the vessel in tetraploid was bigger than diploid. These structural change constitute the physiological mechanism of improvement of yield in tetraploid.
引文
[1] 裴新澍.植物多倍体育种[J].植物学通报,1962,12:6-13
    [2] 沈显生.浅析植物多倍体现象[J].生物学杂志,1995,5:8-11
    [3] 余凤英,凌绪柏.中粒种咖啡小孢子染色体加倍方法的研究[J].热带作物学报,1990,11(1):45-54
    [4] 王丽艳,梁国鲁.植物多倍体的形成途径及鉴定方法[J].生物技术,2004,(1):61-62
    [5] 周广芳.秋水仙碱在诱导果树多倍体中的应用[J].落叶果树,1991,3:50
    [6] 曾云中,左小明,吴雷昌,等.原生质体电融合构建酵母多倍体的研究[J].微生物学报,1995,35(4):264-270
    [7] 郭文武,邓秀新,史永忠.柑桔细胞电融合参数选择及种间体细胞杂种植株再生[J].植物学报,1998,40(5):417-424
    [8] 陈如珠,李耿光,张兰英.红江橙胚乳愈伤组织诱导和三倍体植株再生[J].植物学报,1991,33(11):848-854
    [9] 王大光,张进仁.从胚乳培养再生三倍体柑桔植株[J].中国科学,1978,(4):247-250
    [10] 曾宪松,张树珍,张银东,等.离体培养橡胶树体细胞诱导纯多倍性无性系方法的研究初报[J].热带作物学报,1997,18(2):15-20
    [11] Adelberg J W, Rhodes B B, Skorupskaculture H T. Generation tetraploid melons from tissue culture [J]. Hortscience 1990,25(9):276-301
    [12] Ezura H, Amagai H Oosawa K, Efficient production of tetraploid in regeneratedplats, a universal phenomenon, in tissue culture of melon(Cucumis melo L)[J]. Plant Science ,1992,85:. 209-213
    [13] Kunitake H, Nakashima T, Mori K, et al. Somacionai and chromosomal effects of genotype,ploidy and culture duration in Asparagus officinalis L.Euphytica, 1998,102: 309-316
    [14] 郭启高,宋明,杨天秀,等.西瓜子叶组织培养中四倍体的产生及鉴定[J].西南农业大学学报,2000,22(4):298-300
    [15] 朱登云,田慧琴,蒋金火,等.杜仲成熟干胚乳愈伤组织的诱导和植株再生[J].农业生物技术学报,1998,6:307-312
    [16] 周朴华,何立珍,刘选明.组织培养中用秋水仙碱诱发黄花菜同源四倍体的研究[J].中国农业科学,1995,28(1):49-55
    [17] 常月梅.果树多倍体鉴定进展[J].山西林业科技.2000,3(1):1-4
    [18] 李懋学,张赞平.作物染色体及研究技术[M].北京:中国农业出版社,1996,6-9
    [19] ZhangX-P,Rhodes B B.Determination of watermelon Ploidy level using Flow Cytometry C[J]. G C Report,1994,17:102-105
    [20] 张有做,楼程富,周金妹,等.不同倍性桑品种基因组DNA多态性比较[J].浙江农业大学学报,1998,24(1):79-81
    [21] Mark E S. Development and application of RFLPs in Polyploids[J].Crop Sci ,1992,32:1086-1091
    [22] 裴新澍.多倍体诱导与育种[M].上海:上海科学技术出版社,1963:163-164
    [23] 刘选明,周朴华,何立珍.四倍体黄花菜花蕾性状和营养成分分析[J].园艺学报,1995,22(2):191-192
    [24] 宋文昌.张玉华.水稻四倍化及其对农艺性状和营养成分的影响[J].作物学报,1992,18(2):137-144
    [25] 王建军,殷丽青,张伟萍,等.莳菜四倍体的特征及田间耐热性[J].上海农业学报,1998,14(2):35-40
    [26] 刘文革,王鸣,阎志红.蔬菜作物多倍体育种研究进展[J].长江蔬菜,2003(1):29-33
    [27] 朱军.普通遗传学[M]北京:中国农业出版社.2006,129
    [28] 黄群策.水稻无融合生殖种质筛选的策略[J].福建农业大学学报,1999,28(2):130-134
    [29] 黄群策,孙敬三.植物多倍性在作物育种中的展望[J].科技导报,1997(7):53-55
    [30] Ramsey J , Schemske D W. Pathways, mechanisms , and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst, 1998 29:467-501
    [31] 谭素英主编,全国无子西瓜科研协作组组编.无子西瓜栽培与育种,北京:中国农业出版社,2001 16-26
    [32] V(?)n(?)l(?). Polyploidization and early screening of rhododendron hybrids, Euphytica, 2000,112(3):239-244
    [33] 于文艳,刘世琦,梁庆玲,等.大蒜二倍体与四倍体生长和生理指标的比较研究[J].山东农业科学,2008,2:42-44
    [34] 柴兴容,童莉,王欣,等.甜瓜四倍体育种及其生产利用研究[J].中国西瓜甜瓜,1998,14(3):16-19
    [35] 刘文革,阎志红,王鸣.不同染色体倍性西瓜植株光合色素的研究[J].中国西瓜甜瓜,2003,(1):1-3
    [36] 刘庆忠,刘鹏,赵红军,孙玉刚.同源四倍体皇家嘎啦苹果的生物学及光合生理特性研究[J].中国农业科学,2002,35(12):1573-1578
    [37] 郑思乡,郡明芳,李宗道,李连云.不同倍性苎麻同工酶及光合作用的研究[J].中国麻作,1999,21(2):1-4
    [38] 蒋观敏,罗耀武,李葫浩.同源四倍体高粱不育系和保持系的生物学及生理特性研究[J].作物学报,2000,26(4):444-448
    [39] Garrett M K. Control of photorespiration and RuDP carboxylase/oxygenase level in ryegrass cultivars[J]. Nature . 1978,274:913-915
    [40] Austin R B, Morgan C L. Flag leaf photosynthesis of Triticum aestivum and related diploid and tetraploid species[J]. Ann Bot. 1982,49:177-189
    [41] 吴源英,张荣铣,魏锦城.小麦叶片叶肉细胞及叶绿体的形态、结构和光合速率的关系[J].南京师范大学学报(自然科学版),1992,15:95-102
    [42] Ketsa S, Uthairatanakij A, Prayurawong A Senescence of diploid and tetraploid cut inflorescences of Dendrobium 'Caesar'[J].ScientiaHorticulturae.2001,91:133-141
    [43] 傅亚萍,颜红岚,李玲方,等.不同染色体倍性水稻植株光合特性的研究[J].中国水稻科学,1999,3(3):157-160
    [44] 许钢.二倍体四倍体大麦嫩叶蛋白质和维生素C含量比较(J].营养学报,200,22(3):282-283
    [45] 陈志强,刘文革,刘志敏,等.不同倍性西瓜果实维生素C含量比较研究[J].果树学报,2008,25(5):760-763
    [46] 向增旭,高山林.金银花同源四倍体的诱导与鉴定[J].中国中药杂志,2008,33(6):696-674
    [47] 刘选明,周朴华,何立珍.四倍体黄花菜花蕾性状和营养成分分析[J].园艺学报,1995,22(2):191-192
    [48] 张建军,殷丽青,张伟萍,等.漪菜四倍体的特征及田间耐热性[J].上海农业学报,1998,14(2):35-40
    [49] 刘惠吉,杨振兴.二倍体、四倍体白菜体细胞得质壁分离状况与抗性关系的研究[C].现代蔬菜科学论文集-纪念 李曙轩教授诞辰八十周年.上海:上海科学技术出版社,1998,67-69
    [50] 刘文革,阎志红,张红梅,等.不同倍性西瓜发芽种子成苗过程中的耐盐性研究[J].中国西瓜甜瓜,2002,(3):1-3
    [51] 张蜀宁,张振超,张红亮,等.低温胁迫对不同倍性不结球白菜生长及生理生化特征的影响[J],西北植物学报,2008,28(1)109-112
    [52] Dhawan O and Lavania U. Enhancing the productivity of secondary metabolites via induced polyploidy:a review[J].Euphytica. 1996 87:81-89
    [53] Albuzio A, Pettoli P, Cacco G Changes in gene expression from diploid to autotetraploid status of Lycopersicon esculentum[J]. Physiol Plant, 1978,44:77-80
    [54] 王同坤,于凤鸣,吴限策.玫瑰香葡萄二倍体与四倍体的三种生化指标比较研究[J].河北农业技术师范学院学报,1997,11(2):23-26
    [55] Demaggia A E, Lambrubos J. Polyploidy and gene dosage effects on peroxidase activity in ferns[J]. Biochem Genet, 1974,12:429-440
    [56] 谢小群,高山林.黄答过氧化物酶同工酶电泳和抗坏血酸过氧化物酶活性分析[J].植物资源与环境学报,2002,11(1): 5-8
    [57] 杨继.植物多倍体基因组的形成与进化[J].植物分类学报,2001,39(4):357-371
    [58] Reinisch A J, Dong J, Brubaker C L, Stelly D M, Wendel J F, Paterson A H. A detailed RFLP map of cotton, Gossypium hirsutum×G. barbadense: chromosome organization and evolution in a disomic polyploid genome[J]. Genetics, 1994,138:829-847
    [59] Weiss H and Malusrynska J .Chromosomal rearrangement in autotetraploid plants of Arabidopsis thalina[J]. Hereditas. 2000,133:255-261
    [60] Wendel J F. Genome evolution in polyploids. Plant Mol. Biol., 2000,225-249
    [61] 张有做,楼程富,周金妹,张鸿志,夏小明.不同倍性桑品种基因组DNA多态性比较.浙江农业大学学报,1998,24(1): 79-81
    [62] 王卓伟,余茂德,鲁成.桑树二倍体及人工诱导的同源四倍体遗传差异的AFLP分析.植物学通报,2002,19(2):194-200
    [63] 杨今后等.桑树多倍体及其育种研究进展.蚕业科学,1992(3):195-200
    [64] 朱勇 四川省桑属植物多倍体的研究[J],四川蚕业,1989(4):1-5
    [65] 关博夫.クフ科(Moraceae)植物の细胞学に研究.日蚕杂,1952,18(3): 195-201
    [66] 东城功.不同方法育成的三倍体桑特性比较[J].蚕丝试验场报告,1979,7(6):661-694
    [67] 杨今后,杨新华.桑辐射育种的研究Ⅲ多倍体的诱导及其鉴定[J].蚕业科学,1984,10(1):9-12
    [68] 潘一乐.桑树四倍体的诱导及其应用[J].蚕业科学.2004,30(1):6-10
    [69] 杨今后.桑树四倍体的诱导及其应用[J].蚕业科学,2004,30(1):6-10
    [70] 柯益富.桑树栽培及育种学[M].北京:中国农业出版社,1995,268
    [71] 大山胜夫.桑芽培养初报[J].日蚕杂,1968,46(3):135-138
    [72] #12
    [73] #12
    [74] 陈爱玉,倪国孚.桑树幼胚培养和试管苗快速繁殖技术的研究[J].蚕业科学,1989,15(4):173-176
    [75] 孔令汶,谭智达,卞元生等.影响桑树叶片培养不定芽形态分化主要因素的研究[J].蚕业科学,1995,21(2):67-71
    [76] 冈成美等.日蚕杂,1973,42(4):317-324
    [77] 押金健吴.桑下胚轴愈伤组织不定芽形成及幼苗育成[J].日本蚕丝科学与技术,1989,107(11):41-45
    [78] 林寿康,计东风,秦俊等.桑树花药培养获得单倍体植株[J].中国科学B辑,1987,3,280-287
    [79] Oka,S. and Ohyama.K.Plant physiol. 1985,119,455-460
    [80] #12
    [81] 管志文.农杆菌携带柞蚕抗菌肽基因转入桑树得研究[J].蚕业科学,1994,20(1):1-6
    [82] 杨海霞,朱祥瑞.桑叶保健制品开发利用研究进展[J].蚕桑通报,2003,19(1):72-79
    [83] Takuya Katsube , Naoto Imawaka , Yasuhiro Kawano , Yoshimitsu Yamazaki .Kuninori Shiwaku , Yosuke Yamanc. Antioxidant flavonol glycosides in mulberry (Morus alba L.) leaves isolated based on LDL antioxidant activityfJ]. Food Chemistry. 2006,91:25-31
    [84] Pei-Ni Chena, Shu-Chen Chub, Hui-Ling Chiouc, Wu-Hsien Kuoa, Chui-Liang Chiangb, Yih-Shou Hsieha Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line[J]. Cancer Letters, 2006,235: 248-259
    [85] 江苏新医学院,中药大辞典[M]上海:上海人民出版社,1997;196
    [86] 王萍,张云霞,刘敦华.桑椹的营养保健功能及功能性成分研究进展[J].中国食物与营养,2008,(8):57-59
    [87] Cieslik, E., Greda, A., & Adamus, W.. Contents of polyphenols in fruit and vegetables[J]. Food Chemistry, 2006, 94, 135-142
    [88] Lin, J. Y., & Tang, C. Y. Determination of total phenolics and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation[J].Food Chemistry,2007,101(1):40-147
    [89] Elmaci, Y., & Altug, T. Flavour evaluation of three black mulberry (Morus nigra) cultivars using GC/MS, chemical and sensory data[J]. Journal of the Science of Food and Agriculture, 2002, 82, 632-635
    [90] Qian, J.-Y, Liu, D., & Huang, A.-G. The efficiency of flavonoids in polar extracts of Lycium chinense Mill fruits as free radical scavenger[J]. Food Chemistry, 2004, 87, 283-288
    [91] Sass-Kiss, A., Kiss, J., Milotay, P., Kerek, M. M., & Toth-Markus, M. Differences in anthocyanin and carotenoid content of fruits and vegetables[J]. Food Research International, 2005,38, 1023-1029
    [92] Sezai Ercisli & Emine Orhan. Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits[J]. Food Chemistry. 2007,1031380-1384
    [93] 何雪梅,廖森泰.桑树资源综合利用进展及开发对策[J].蚕业科学,2005,31(1):4-7
    [94] 田中真.桑的综合利用:桑椹的生产和利用.日本蚕丝新闻,1988,9,14
    [95] 杨德铨.桑果开发利用的可行性研究[J].蚕桑通报,1991,22(1):58-60
    [96] 宋大可.新疆药桑果汁化学成分及药用价值的探讨,1994,25(4):34
    [97] 胡隆基.天然色素桑椹红的提取、毒理及应用研究.蚕业资源综合利用研究论文集,1990,159
    [98] 刘长青.河北省果桑品种资源调查初报[J].河北林学院学报,1986(1):119-121
    [99] 唐翠明,罗国庆,刘学铭等.广东果桑资源桑椹性状初步研究[J].蚕业科学,2003,29(3):295-298
    [100] 唐翠明.罗国庆.果用桑品种育种研究概况[J].蚕桑通报,2004,35(2):1-6
    [101] 王淑侠.推荐几个果用桑品种[J].陕西蚕业,1994,(4):35
    [102] 储一宁.云南果用桑资源与开发[J].云南蚕桑通讯,1995,(3):28
    [103] 吴添金.果桑品系之性状比较与采果分析[J].蚕蜂年报,1992,(6):33
    [104] 小山朗夫.采椹用桑品种的育成和利用[J].蚕丝科学和技术,1993,32(6):48-50
    [105] 小山朗夫.桑新品种の育成と今後の展望[J].夕情报,2003,5.1
    [106] 李卫国,杨吉华,冀宪领等.不同桑树品种水分生理特性的研究[J].蚕业科学,2003,29(1):24-27
    [107] 肖炳南.夏秋季桑树生长规律及桑叶水分、养分的变化[J].安徽农业通报,1998,4(2):27-30
    [108] 程嘉翎,王亚君.桑树的蒸腾作用及其与气象因子的关系分析[J].蚕业科学2004,30(2):123-128
    [109] 楼程富等.夏伐后不同桑品种的光合速率和桑叶形态的变化[J].日蚕53次讲演要旨,1983,11
    [110] Chakrabary et.al. Concrescenle of Photosynthetic Function in the mulberry foreign race. Geobios 1993, 20(4):200-205
    [111] 白田昭等.光合速率与叶绿素含量的桑品种差异[J].蚕丝昆虫研报,1991,(4):2340
    [112] 安连荣,张洪武.桑树光合作用特性的研究[J].蚕业科学,2000,26(2):115-117
    [113] 牛岛忠广.用精密的光合作用测定箱测定桑叶的CO_2,H_2O收支情况[[J].日蚕52次讲演要旨.1982
    [114] 向仲怀,张孝勇,余茂德,等.采用随机扩增多态性DNA技术(RAPD)在桑属植物系统学研究的应用 初报蚕业科学,1995,21(4):203-208
    [115] Sharma A, Sharma R, Machii H. Assessment of genetic diversity in a Morus germplasm collection using fluorescence-based AFLP markers[J]. Theor Appl Genet, 2000,101:1049-1055
    [116] Vijayan K. and Chatterjee S.N. ISSR profiling of Indian cultivars of mulberry (Morus spp.) and its relevance to breeding programs. Euphytica, 2003,131:53-63
    [117] Vijayan K.Genetic relationships of Japanese and Indian mulberry(Morus spp.) genotypes revealed by DNA fingerprinting. Plant Syst Evol, 2004,243: 221 -232
    [118] Zhao Weiguo, Pan Yile. Genetic diversity of genus Morus revealed by RAPD markers in China. International Journal of Agriculture and Biology, 2004,6:950-954
    [119] Zhao Weiguo, Zhou Zhihua, Miao Xuexia, et al. Genetic relatedness among cultivated and wild mulberry (Moraceae: Morus) as revealed by inter-simple sequence repeat (ISSR) analysis in China. Can. J. Plant Sci.2006, 86: 251 -257
    [120] Zhang, Y, Chengfu, L, Jinmei, Z. et al. Pobmorphism studies on genomic DNA of diploids and polyploids in mulberry .J. ZhejiangAgric. Uniu 1998,24: 79-81
    [121] 林寿康.实用桑树育种学[M].四川科学技术出版社.成都,1989,209
    [122] 李存礼,余茂德.三倍体桑品种嘉陵16号选育的研究[J].中国农业科学.1994,27(6):61-66
    [123] 余茂德,敬成俊,吴存容,等.人工三倍体桑树新品种嘉陵20.号的选育[J].蚕业科学,2004,30(3):225-229
    [124] 杨今后,杨新华,骆承军,等.人工三倍体桑品种丰田2号的育成[J].蚕业科学,2006,32(3):307-311
    [125] 梁明芝,孔日彦,杜建勋,等.桑树多倍体育种资源及研究进展[J].山东蚕业,2004,(4):8-14
    [126] Zhang ZH, Dai HY, Xiao M, Liu X (2008) In vitro induction of tetraploids in Phlox subulata L. Euphytica 159:59-65
    [127] Gu XF, Yang AF,.Meng H, Zhang JR (2005) In vitro induction of tetraploid plants from diploid Zizyphus jujube Mill. cv. Zhanhua Plant Cell Rep. 24: 671-676
    [128] Chakraborti SP, Vijayan K, Roy BN, Qadri SM (1998) In vitro induction of tetraploidy in mulberry (Morus alba L), Plant Cell Reports 17: 799-803
    [129] 王琳清.诱发突变与作物改良,北京,原子能出版社,1995-“杨今后、杨新华,人工三倍体大中华桑的育成,61-65”
    [130] 郝建超.果桑的优良品种[J].果农之友,2003,12,15
    [131] Bapat, V.A.,Mhtre,M.,Rao,P.S., Propagetion of Morus indica L.(mulberry) by encapsulated shoot buds.Plant Cell Rep. 1987,6,393-395
    [132] Ohyama,K,Oka,S.,Mulberry.In:Bonga,J.M.,Durzan,D.J(Eds.) Cell and Tissue Culture in Forestry, vol.3.Nijhoff/Junk Publishers,Dordrecht,pp. 1987,272-284
    [133] Nakamura Y, Watanabe S, Miyake N, Kohno H, Osawa T (2003) Dihydrochalcones: evaluation as novel radical scavengingantioxidants. Journal of Agricultural and Food Chemistry51:3309-3312
    [134] Jain.A.K., Dandin, S.B., Sengupta, K., In vitro propagation through axillary bud multiplication in different mulberry genotypes. Plant Cell Rep. 1990,8:737-740
    [135] Sharma, K.K.,Thorpe, T. A., In vitro propagation of mulberry (Morus alba. L.) through nodal segments. Scientia Hortic. 1990,42(4): 307-320
    [136] 谈建中,楼程富.用桑绿色腋芽培养再生植株[J].浙江农业大学学报,1997,23(3):357-358
    [137] Yadav,U.,Madan,L.,Jaiswal,V.S., Micropropagation of Morus nigra L.from shoot tip and nodal explant of mature trees.Sci.Hort. 1990,44:61-67
    [138] Pattnaik, S.K., Sahoo, Y, Chand, P.K., 1996. Micropropagation of a fruit tree, Morus australis Poir. Syn. M. acidosa Griff.. Plant Cell Rep. 15, 841-845
    [139] Pattnaik,S.K.,Chand,P.K.,1997.Rapid clonal propagation of three mulberries,Morus cathyana Hemsl.,Mihou Koiz. And M.serrata Roxb.,through in vitro culture of apical shoot buds and nodal explants from mature trees.Plant Cell Rep. 16,503-508
    [140] D.S.Vijaya Chitre and GPadmaja, Seasonal influence on axillary bud sprouting and micropropagation of elite cultivars of mulberry. Scientia Horticulturae .2002,92:55-68
    [141] Somika BHATNAGAR, Anita KAPUR,Paremjit KHURANA, TDZ-Mediated Diffemtiation in ommercially Valuable Indian Mulberry, Morus indica Cultivars K2 and DD. Plant Biotechnology, 2000,18(1):61 -65
    [142] 林寿康,秦俊,杨今后等.桑树花药离体培养研究,蚕业科学,1981,7(2):76-78
    [143] Mhatre M, Bapat VA, Rao PS (1985) Regeneration of plantlets from the culture of leaves and axillary buds in mulberry(Morus indica L).Plant Cell Rep.4: 78-80
    [144] Patel, G.K., Bapat, V.A., Rao, P.S., In vitro culture of organ explants of Morus india: Plant regeneration and fruit formation in axillary bud culture .Z .Pflanzenphysiol, 1983, 111:465-468
    [145] Yuxiu zhang, Jin Xu, Lu Han et al. Efficient shoot regeneration and agrobacterium-mediated transformation of Brassica juncea. Plant Molecular Biology Reporter,2006,24,255a-255i
    [146] Khan MA, Rashid H, Ansar M et al. High frequecy shoot regeneration and Agrobacterium-mediate transformation DNA transfer in Canola (Brassica napus). Plant Cell Tissu Organ Cult, 2003,75:223-231
    [147] Nadolska-Orczyk A, Orczyk W Study of the factors influencing Agrobacterium-mediated transformation of pea (Pisumsativum L.). Mol Breeding ,2000,6:185-194
    [148] 押金健吾.桑下胚轴愈伤组织不定芽形成及幼苗育成[J].日本蚕丝科学与技术,1989,107(11):41-45
    [149] 张和禹,李东升,林青松.桑下胚轴愈伤组织诱导分化的研究[J].安徽农业科学,2003,31(5):776-777
    [150] 张国英,刘美娟等.不结球白菜“苏州青”下胚轴、子叶高频再生技术研究[J].北方园艺,2004,(1):44-45
    [151] Xiaoping Wei, Xiaoping Gou, Tong Yuan , Scott D. Russ A highly efficient in vitro plant regeneration system and Agrobacterium-mediated transformation in Plumbago zeylanica[J]. Plant Cell Rep, 2006,25: 513-521
    [152] 张兴翠,周昌华,殷家明,等.药用百合的多倍体诱导及快速繁殖[J].西南农业大学学报,2003,25(1):14-17
    [153] 张和禹,赵正龙.桑下胚轴愈伤组织诱导及分化过程中内源激素的变化[J].蚕业科学,2000.26,(1):1-4
    [154] 王晓佳宋明编著.植物组织培养学.(M).重庆:西南农业大学,1999
    [155] Gamborg OL, MurshigeT, Thorpe TA Vasil IK Plant tissue culture media[J]. In Vitro 1976, 12:473-478
    [156] 李雪梅,刘熔山.小麦幼穗胚性愈伤组组诱导及分化过程中内源激素的作用[J].植物生理学通讯1994,30(4):255-259
    [157] B.P. Carelli, S. Echeverrigaray. An improved system for the in vitro propagation of rose cultivars[J], Scientia Horticulturae. 2002,92 69-74
    [158] 陈军营,文付喜,何盛莲,等.ABA和AgNO_3对小麦幼胚愈伤组织诱导和分化的影响(J].麦类作物学报,2006.26(2):46-48
    [159] 钟名其,楼程富,谈建中,等.AgNO_3对桑叶片培养不定芽分化的影响[J].浙江大学学报,2000,26(1):97
    [160] Roustan J P, Lallo TA, Fallo TJ. Inhibition of ethylene p roduction and stimulation of carrot somatic embryogenesis by salicylic acid[J]. Biologia Plantarum, 1990, 32 (4): 273
    [161] 杨金富.桑(Morus)离体再生体系的建立及生理生化研究[D].[硕士学位论文],重庆:西南农业大学,2002
    [162] Chi G L, L in W S, Lee J E, et al. Role of polyamines on de novo shoot morphogenesis from cotyledons of Brassicacatn pestris ssp. pekinensis (Lour) Olsson in vitro[J]. Plant Cell Rep, 1994, 13: 323
    [163] Yang S F, Hoffman NE. Ethylene biosynthesis and its regulation in higher p lants[J]. Annu Rev Plant Physiol, 1984 (35): 55
    [164] 杨今后,杨新华.桑树多倍体及其育种研究进展[J].蚕业科学,1992,18(3):195-201
    [165] 杨今后,杨新华.桑辐射育种的研究Ⅲ多倍体的诱导及其鉴定[J].蚕业科学,1984,10(1):9-12
    [166] 王侠剑等.桑树多倍体植株育成初报[J].蚕业科学,,1981,7(2):83-86
    [167] 孙晓霞,张美波.桑树四倍体植株的育成[J].蚕业科学,1989,15(1):60-61
    [168] 郭启高,张钟灵,周虹,等.秋水仙碱诱导生姜多倍体的研究明.西南农业大学学报,2000,22(5):400-402
    [169] 周嘉裕,卿人韦,兰丽琼,等.辣椒离体细胞多倍体的诱导研究[J].四川大学学报(自然科学版),2002,39(4):706-749
    [170] 赵改荣,李玉红,等.称猴桃多倍体的研究[J].果树科学,1998,15(3):273-276
    [171] 陈素萍,王莉,宋秀清.党参多倍体育种的研究[J].中草药,1991,22(5):224-226
    [172] 王锦秀,李健,王立英,等.枸杞同源四倍体诱导新方法初报[J].宁夏农林科技,1998(6):1-4
    [173] 曾宪松,张树珍,张银东,等.离体培养橡胶树体细胞诱导纯多倍体无性系方法的研究初报[J].热带作物学报,1997,18(2):15-19
    [174] Das BC, Prasad DN, Sikdar AK. Colchicine induced tetraploids of mulberry. Caryologia, 1970,23:283-293
    [175] Dwivedi NK, Sikdar AK, Dandin SB, Sastri CR, Jolly MS Induced tetraploidy in mulberry. Ⅰ: Morphological, anatomical and cytological investigations in cultivar 'RFS-135'. Cytologia, 1986,51:393-401
    [176] 张兴翠,梁国鲁,扬光伟,等.芦荟的快速繁殖与多倍体诱导[J].中国中药杂志,2001,26(8):538-540
    [177] 陈伯君,高山林,卞云云.黄岑组织培养同源四倍体的诱导[J].植物资源与环境学报,2000,9(2):9-11
    [178] 谭德冠,庄南生, 黄华孙.刚果1 2号桉离体组织的多倍体诱导[J].热带作物学报,2005,26(2):50-54
    [179] 郑思乡,罗彗敏,董延瑜,等.组织培养在苎麻多倍体研究中的应用初报[J],湖南农业大学学报,1995,21(4):361-365
    [180] 刘庆忠,赵红军,刘腆.秋水仙素处理离体叶片获得皇家嘎拉苹果四倍体植株[J].果树学报,2001,18(1):7-10
    [181] 张峻莲.秋水仙碱处理对当归愈伤组织生长的影响[J].草业科学,1995,12(6):63-67
    [182] 林寿康,何大彦,施炳坤,等. 实用桑树育种学[M].成都:四川科学技术出版社,1989,210
    [183] 杨今后,杨新华,骆承军.两种不同亲本材料诱导的桑四倍体产叶量性状的差异[J].浙江农业学报,1999,11(1):42-46
    [184] 杨今后,杨新华.桑树人工三倍体育种的研究[J].蚕业科学,1989,15(2):65-67
    [185] Osborntc , Pires JC , Birchler J A , et al. Understanding echanisms of novel gene expression in polyploids[J] . Trends in Genetics ,2003 ,19 (3) .141 - 147
    [186] Yang JH, Lou CF. A Comparative study on morphological and histological diferences among diferent ploids of mulberry(Morus spp. )[J]. Science of Cericulture, 2002,28(1 ):8-14
    [187] 高鹤娟.食品卫生检验法(理化部分)[M].北京.卫生部食品卫生监督检验所,1987,27-28
    [188] 郑小坚,陆小平.桑树组织总糖含量蒽酮比色法测定技巧[J].广西蚕业,2002,39(1):8-9
    [189] 徐清渠,龚玲娣.软饮料中可溶性固形物的测定方法(GB12143.1-89)(S).中国食品工业标准汇编.北京:中国标准出版社。1997.208-211
    [190] 龚玲娣,徐清渠.食品中总酸的测定方法(GB/T12456-90)(S).中国食品工业标准汇编.北京:中国标准出版社,1997,678-681
    [191] 王晶英.植物生理生化技术与原理[M].高校教育出版社,北京,2003,22-23
    [192] 李合生.植物生理生化实验原理与技术[M].中国农业出版社,北京,2000,184
    [193] 张志良.植物生理学实验指导(第三版)[M].北京:高等教育出版社,1990
    [194] 于文艳,刘世琦,梁庆玲.大蒜二倍体与四倍体生长和生理指标的比较研究[J].山东农业科学,2008,2:42-44
    [195] 苏超,朱光义,陈旗.人工无性系四倍体桑品种陕桑402的选育[J].蚕业科学, 32(1):95-98
    [196] 邓文,叶伟彬,徐有海,等.桑树人工四倍体鄂桑2号的选育研究[J].湖北农业科学,2005,3:75-78
    [197] 徐惠,金研铭,张春祥,等.向日葵叶片可溶性糖含量的研究[J].吉林农业大学学报,2000,22(1):23-25
    [198] 熊正英,张全江.维生素C抗氧化作用及其在运动中的应用[J].陕西师范大学学报,1998,26(4):109-112
    [199] LiuD L, YuBC, SunY Y. Effects ofthetemperature stress on SOD and CAT activities and their isozymes of rice seedling[J]. Central China Normal Univ,1994,28(4):525-528
    [200] 赵艳.四倍体大麦嫩叶中SODCAT和可溶性蛋白质含量的分析[J].中国粮油学报,2001,16(5)33-35
    [201] 唐宁,汪福源,高山林.白术同源四倍体农艺性状和抗氧化酶活性的研究[J].药物生物技术,2006,13(6):442-445
    [202] 张夏楠,高山林.何首乌同源四倍体的诱导及生理指标的测定[J].植物资源与环境学报,2006,15(4):33-37
    [203] 彭锐,张明.多倍体及其在中药材生产上的应用[J].重庆中草药研究,2000, (41):14
    [204] 许大全.光合作用效率[M].上海科学技术出版社,2002,39
    [205] 王忠.植物生理学[M].北京:中国农业出版社,2002,170
    [206] Niinemets U .Components of leaf dry mass per area thickness and density alter leaf photosynthetic capacity in reverse directions in woody plants. New phytologist, 1999,144:35-47
    [207] Andrews TJ, Lorimer GM, Rubisco: structure, mechanism and prospects for improvement. In: Hatch MD, Boardman NK(eds). The Biochemistry of Plants Vol 10. New York: Academic Press,1987,131-218
    [208] Bemacchi CJ, Singsaas EL, Pimental C, Portis AR, Long SP. Improved temperature response functions for models of Rubisco- limited photosynthesis. Plant Cell Environ, 2001,24:253-259
    [209] Garrett M K. Control of photorespiration and RuDP carboxylase/oxygenase level in ryegrass cultivars. Nature, 1978,274,913-915
    [210] Austin R B, Morgan C L. Flag leaf photosynthesis of Triticum aestivum and related diploid and tetraploid species. Ann Bot., 1982., 49: 177-189
    [211] Arnon DI. Copper ensymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris[J]. Plant physiol 1949, 24:
    [212] 上海市植物生理学会.现代植物生理学实验指南[M].北京:科学出版社,1999,117-116
    [213] 李国珍.染色体及其研究方法.北京:科学出版社.1985,224-226
    [214] 蒋道松,梁曾恩妮,李玲.二倍体与四倍体盾叶薯蓣叶片叶绿素和过氧化物酶及过氧化氢酶的比较[J].湖北农业大学学报(自然科学版),2006,32(5):491-493
    [215] 王忠.植物生理学[M].北京:中国农业出版社,2002,174
    [216] 侯喜林,徐明宇,张蜀宁.不结球白菜不同倍性材料间光合特性差异研究[A].中国园艺学会第十届会员代表大会暨学术讨论会论文集(C):2005
    [217] 高妙真,赵景义,徐宝荣.二,四倍体甜菜生物学特性的研究[J].中国甜菜糖业,1997,(1):8-12
    [218] 张振贤,郭延奎,邹琦.遮阴对生姜叶片显微结构及叶绿体超微结构的影响[J].园艺学报,1999,26(2):96-100
    [219] 李海云,王秀峰,魏珉,等.含氯化肥对黄瓜叶片激素含量及叶绿体超微结构的影响[J].园艺学报,2003,30(5):598-600
    [220] 王忠.植物生理学[M].北京:中国农业出版社,2002,131
    [221] 汪卫星,李春燕,向素琼,等.番木瓜四倍体的诱导及形态学分析[J].果树学报,2008,25(1):115-118

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700