三维数据分析及其在色谱和荧光分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学计量学是一门新兴发展的化学学科分支。它运用数学、统计学、计算机科学等方法设计优化化学量测过程,并通过解析化学量测数据最大限度地获取化学及相关信息。分析手段的仪器化和化学体系的复杂化已成为现代分析化学的一个重要特征。化学计量学利用现代分析仪器所产生的庞大的量测信号,为复杂多组分化学体系的定性、定量分析提供了便利的研究手段。化学计量学二阶校正方法具有二阶优势,即使在未知干扰物共存下,依然能对复杂体系中感兴趣组分快速给出定量分析结果,可以解决传统的分离分析手段难以解决的问题,提高分析效率。化学计量学方法与现代分析仪器结合,以“数学分离”代替或者增强“化学分离”,显示出其快速、通用、可靠的特点。它将对各化学分支学科,其中特别是生物化学、食品化学、药物化学等学科带来较大的影响,为直接解决这些分支学科中的实际分析难题提供有力武器。本文作者通过利用LC×LC-DAD、HPLC-DAD及三维荧光光谱等现代分析仪器量测手段,结合化学计量学多维数据阵分析的新方法及新算法,在复杂多组分体系的定量分析方面进行了深入的研究。本论文主要涉及以下几个方面:
     1.高维量测数据中背景扣除新方法的研究(第二章)
     针对全二维联用色谱如LC×LC-DAD分析中的背景漂移问题,提出了一种扣除背景的新方法。该方法主要是基于三线性分解原理,对仪器响应数据进行交替三线性分解(ATLD)。在建模时,因样品包含背景漂移信息,如同其他样品组分,将背景漂移看作是一个组分或者因子来考察。该方法首先对原始数据进行三线性分解,然后提取背景组分的信息,并将其从原始数据中减掉,使得分析信号处于一平稳的基线上。同时考察背景漂移和分析组分的信息能明显提高数据质量。本章采用此方法分析了模拟数据以及实验数据中的背景漂移,结果表明该方法能有效地扣除LC×LC-DAD数据中的背景漂移,为进一步进行全二维色谱的定量分析奠定了良好的基础。该方法无需空白样品的分析,并且也无需事先知道样品组分的信息。
     2.复杂多组分体系的定量分析的研究(第三章-第六章)
     随着人们对食品质量与安全问题的日益关注,食品分析对检测方法的精确度、时效性要求越来越高,人们在不断地探索研究新技术并应用于食品检测。苏丹红并非食品添加剂,而是一种人工合成的红色染料,常作为一种工业染料,被广泛用于如溶剂、油、蜡、汽油的增色以及鞋、地板等增光方面。不幸的是,苏丹红常被作为增色剂添加入食品如辣椒粉中,严重危害人们的健康。本论文的第三章采用HPLC-DAD分析辣椒粉中苏丹红I和苏丹红Ⅱ,结合二阶校正方法对色谱量测数据进行解析。实验采用甲醇和0.5%(v/v)醋酸水溶液作为色谱条件,样品预处理简便快速。结果表明在辣椒粉中有未知干扰基质存在的情况下,采用二阶校正方法能对该混合物中的苏丹红I和苏丹红Ⅱ给出准确的色谱轮廓、光谱轮廓分辨以及满意的浓度预测。
     磺胺类(SAs)药物在奶牛业中的应用非常普遍。由于SAs在体内作用和代谢的时间比较长,在动物源性食品中容易残留,危及人体健康。论文的第四章采用HPLC-DAD检测与交替惩罚三线性分解(APTLD)算法相结合对牛奶中的磺胺类兽药残留进行了分析测定,尽管样品中组分分离不完全,并且存在大量干扰组分,但利用化学计量学二阶校正方法的“二阶优势”,仍然能对体系中感兴趣的磺胺组分给出准确的定量分析结果。化学计量学二阶校正方法的应用,为食品成分检测提供了新的检测途径。
     药物在体液中的分析是现代生物医学领域面临的一个重要问题,传统方法采用色谱分离技术来实现这一目的,通常情况下通过调整色谱柱或者色谱条件分离,但是在某些情况下完全分离是难于实现的,且体液中含有不可预测的基质及其他干扰物。
     糖皮质激素是由肾上腺皮质分泌的一类甾体激素,为维持生命所必需。超生理量的糖皮质激素具有抗炎、抗过敏和抑制免疫等多种药理作用,临床应用非常广泛。由于氢化可的松和波尼松龙两者结构相似,它们的光谱也很相似,色谱出峰时间接近,因此色谱分析很难达到完全分离。传统色谱分析方法大都需要内标,且其方法仅适合于尿液或者血液中氢化可的松或波尼松龙的测定。本论文的第五章采用甲醇和水作为高效液相色谱的分离条件对血浆和尿液中两种糖皮质激素氢化可的松和波尼松龙进行了同时快速测定,然后结合交替三线性分解(ATLD)算法解析色谱数据,结果满意。该方法无需采用内标,样品预处理简单。
     美托洛尔为第二代β1受体阻滞剂,临床上用于治疗各种类型高血压、冠心病、心律失常、甲亢等。针对荧光检测具有高灵敏度、高选择性以及检测成本低等特点,在第六章中我们利用美托洛尔的荧光特性,采用激发发射矩阵荧光结合三线性分解算法对美托洛尔的血药浓度进行了定量分析,实现了人血浆中美托洛尔的直接测定。该方法快速简便,无需繁琐的样品预处理,花费成本低廉,定量结果满意。为实现体液中美托洛尔的近实时快速分析打下了基础,为开展临床药理学研究及血药浓度监测提供了一种简便可靠的定量方法,对指导临床安全合理用药具有重要的意义。
     3.三维数据分析在药物动力学研究中的应用(第七章)
     研究药物与DNA的相互作用不仅对理解作用机制有很大意义,还可以指导新药的设计。然而,我们对药物小分子与DNA的相互作用机制知之甚少。本文第七章利用平行因子分析算法(PARAFAC)与荧光分析相结合,研究了吡柔比星(THP)、溴化乙锭(EB)与DNA的相互作用。采用PARAFAC处理可以很方便地得到激发发射光谱在不同的反应和平衡混合物中的相对浓度。从PARAFAC分析得到的光谱及浓度图表明,THP能竞争EB与DNA的结合位点,抑制EB和DNA的反应。分析结果表明,THP以嵌入方式与DNA发生相互作用,并且生成了不发荧光的络合物。这些结果对于进一步深入了解THP、EB与DNA作用时的竞争机制很有帮助。化学计量学方法的应用,使得研究药物与DNA的相互作用的直观解析成为可能。即使该混合物中存在着很复杂的化学平衡,也可以很方便地预测感兴趣的组分和DNA的相互作用机制。对有争议的药物小分子与DNA的作用机制的研究提供了有力的佐证,这对于进一步开展新型抗癌药剂的开发和抗癌机理研究具有重要的促进作用。
Chemometrics is a developing composite discipline of chemistry. The main focus of chemometrics is on applying the methods of mathematics, statistics and computer sciences to extracting the optimal scheme for chemical measurements and to elucidating the data collected from chemical measurements. Two important characteristics of modern analytical chemistry are that instrumentation of analytical tools and complication of chemical system. Chemometrics uses the enormous signals generated by the modern analytical instruments, and provides a variety of convenient techniques for quantitative analysis of complex multi-component systems. Especially, second-order calibration methodologies have the second-order advantage, allowing analyte concentrations to be estimated even in the presence of uncalibrated interferents. The chemometric methodologies coupled with analytical instruments can improve or replace the“chemical separation”with“mathematical separation”, displaying the characteristic of fast and universal, dependable. It gives active impact on these disciplines of chemistry, especially biochemistry and food chemistry and pharmaceutical chemistry, and also provides a variety of powerful techniques to resolve difficult problems of complex chemical systems. In this paper, the author utilized the instruments such as LCxLC-DAD and HPLC-DAD, EEMs coupled with multi-way data analysis methodologies, and did some work in the research of complex multi-component systems.
     1. The removal of background drift in LCxLC-DAD measurements (Chapter 2)
     A novel technique for removal of three-dimensional background drift in comprehensive two-dimensional (2D) liquid chromatography coupled with diode array detection (LCxLC-DAD) data was proposed. The basic idea is to perform trilinear decomposition on the instrumental response data, which is based on the alternating trilinear decomposition (ATLD) algorithm. In model construction, the background drift is modeled as one component or factor as well as the analytes of interest, hence, the drift is explicitly included into the calibration. The method involves performing trilinear decomposition on the raw data, then extracting the background component and subtracting this background data from the raw data, leaving the analytes’signal on a flat baseline. Simultaneous evaluation of three-dimensional background drift and true signals may improve the quality of the data. This method has been applied to the determination and removal of three-dimensional background drifts in simulated multidimensional data as well as experimental comprehensive two-dimensional liquid chromatographic data. It was shown that this technique yields a good removal of background drift, without the need to perform a blank chromatographic run, and requires no prior knowledge about the sample composition.
     2. The quantitative analysis of complex multi-component systems (Chapter 3 to 6)
     With the increasing attention on the quality and security of food, analytical measurements with high accuracy and efficiency are required urgently. New analytical techniques are investigated and applied in food analysis. Sudan dyes are synthetic colorants and are widely used in household products such as waxes, floor and shoe polishes. Unfortunately, Sudan dyes are used as synthetic colorants in food illegally. In Chapter 3, the Sudan dyes in hot chilli samples were analyzed with HPLC-DAD. With second-order calibration methodologies such as the self-weight alternating trilinear decomposition (SWATLD), the satisfactory prediction results has be obtained even in the presence of uncalibrated intertering components. The sample preparation was based on solvent extraction, and internal standard was not required. Quantification was carried out with simple mobile phase.
     Sulfonamides constitute a group of drugs which are widely used in veterinary. Their metabolizing process are slow in animal body, thus, residues of these drugs may remain in food of animal origin. In Chapter 4, a new method based on the use of HPLC-DAD coupled with the alternating penalty trilinear decomposition (APTLD) was applied to the rapid determination of sulfonamides in milk samples. Though the chromatographic and spectral peaks of the components were highly overlapped, the good quantitative results have been obtained owing to the second-order advantage. The application of second-order calibration methodologies provides a new technique to food analysis.
     Drug analysis in body fluids is an important issue in biomedical field. Chromatographic separation techniques are usually used in drug analysis. In some complex multi-component systems, it is difficult to get completely separation of the components, and inaccuracy results could be obtained. However, the application of second-order calibration methodologies can improve or replace the“chemical separation”with“mathematical separation”, displaying the characteristic of fast and universal, dependable.
     Glucocorticoids are important in predicting against shock, stress, inflammation, etc. It plays an important role in human physiology, and is being a useful marker for the diagnosis under pathologic conditions. Due to the structural similarity between cortisol and prednisolone, it is not surprising that the two analytes have similar spectral profiles and close retention time. In Chapter 5, second-order calibration based on ATLD is employed to determine the concentration of cortisol and prednisolone in body fluids from HPLC-DAD data. In this work, solvent extraction was used in sample preparation, since it is simple and convenient. A simple mobile phase consisting of methanol and water was used. Though heavily overlapped chromatographic peaks of the analytes and interferences were obtained and the spectra of these species were also overlapped, the powerful ATLD algorithm can resolve the overlapped peaks into corresponding chromatographic, spectral and concentration profiles even in the presence of unknown coeluting interferences.
     Metoprolol, aβ1-selectiveβ-adrenergic receptor-blocking agent, is clinically used in the treatment of arrhythmia, angina pectoris and hypertension. As direct spectrofluorimetric analysis has the characteristic of high sensitivity and selectivity, as well as its relative low cost, in Chapter 6, a new spectrofluorimetric method for the direct quantitive analysis of metoprolol in plasma is presented. It is based on the use of EEMs and second-order calibration algorithms. This methodology enables accurate and reliable measurement of the analyte concentration, even in the presence of unknown and uncalibrated fluorescent components. Simple sample pretreatment step was required.
     3. Three-way data analysis in the research of pharmaceutical dynamics process (Chapter 7)
     The study of interactions between drugs and DNA are significant not only in understanding the mechanism of interaction, but also in giving a good guidance for designing new drugs. However, the mechanisms of interactions between molecules and DNA were still little known. In this study, the competitive interactions of THP and EB with DNA were investigated with fluorescent spectrophotometry. Spectroscopic studies, including fluorescent spectra analysis and parallel factor analysis (PARAFAC) of excitation-emission three-way data array were carried out on the competitive interactions of the complex. With PARAFAC, the excitation and emission spectra as well as the relative concentrations of co-existing species in different reaction and equilibrium mixtures can be directly and conveniently obtained. The obtained results showed that THP competed against EB to bind to DNA. The results also indicated that the mode of binding of the complex to DNA was intercalation action. It is valuable for providing a deeper insight into the interaction mechanism of THP and EB with DNA. The PARAFAC algorithm proved a convincing method for studying the competitive interactions of complex with DNA. The application of chemometric methods can provide more intuitionistic information for the mechanism study of drugs and DNA. It also provides a helpful verification for the controversial interaction mechanism between the drugs and DNA.
引文
[1]俞汝勤.化学计量学导论.长沙:湖南教育出版社, 1991
    [2]高鸿.分析化学前沿.北京:科学出版社, 1991
    [3]梁逸曾.白灰黑复杂多组份分析体系及其化学计量学算法.长沙:湖南科学技术出版社, 1996
    [4]梁逸曾,俞汝勤.分析化学手册(第十分册):化学计量学.北京:化工出版社, 2000
    [5]许禄,邵学广.化学计量学方法(第二版).北京:科学出版社, 2004
    [6]许禄.化学计量学:一些重要方法的原理及应用.北京:科学出版社, 2004
    [7]陆晓华.化学计量学.武汉:华中理工大学出版社, 1997
    [8]倪永年.化学计量学在分析化学中的应用.北京:科学出版社, 2004
    [9] Yu R Q. Chemometrics in China. Chemometrics and Intelligent Laboratory Systems, 1992, 14(1-3): 23-39
    [10] Kowalski B R. Analytical chemistry as an information science. Trends in Analytical Chemistry, 1981, 1(3): 71-74
    [11] Liang Y Z, Kvaleiam O M, Manne R. White, grey and black multicomponent systems-A classification of mixture problems and methods for their quantitative analysis. Chemometrics and Intelligent Laboratory Systems, 1993, 18(3): 235-250
    [12] H?skuldsson A. PLS regression methods. Journal of Chemometrics, 1988, 2(4): 211-228
    [13] Manne R. Analysis of two partial least squares algorithms for multivariate calibration. Chemometrics and Intelligent Laboratory Systems, 1987,1 :187-197
    [14] Kisner H J, Brown C W,Kavarnos G J. Mutltiple analytical frequencies and standards for the least-squares spectrometric analysis of serum-lipids. Analytical Chemistry, 1983, 55 (11): 1703-1707
    [15] Dief A S. Advanced Matrix Theory for Scientists and Engineers. Abacus Press, Tunbridge Wells & London, 1982
    [16] Thijssen P C, Kateman G. Optimal designs with information theory in least-suqares problems. Analytica Chimica Acta, 1984, 157: 99-115
    [17] Vandeginste B G M, Massart D L, Buydens L C M, et al. Handbook of Chemometrics and Qualimetrics: Part B, Amsterdam: Elsevier, 2003, 349-379
    [18] Malinowski E R. Factor Analysis in Chemistry, 3rd Edition, New York: Wiley, 2002, 73-130
    [19] Bro R. Multivariate calibration: What is in chemometrics for the analytical chemist? Analytica Chimica Acta, 2003, 500(1-2): 185-194
    [20] Booksh K S, Kowalski B R. Theory of analytical chemistry. Analytical Chemistry, 1994, 66(15): 782A-791A
    [21] Gemperline P. J. A prior estimates of the elution profiles of the pure components in overlapped liquid chromatography peaks using target factor analysis. Journal of Chemical Information and Computer Science, 1984, 24(4): 206-212
    [22] Vandeginste B. G. M,Derks W,Kateman G. Multicomponent self-modelling curve resolution in high-performance liquid chromatography by iterative target transformation analysis. Analytica Chimica Acta, 1985, 173: 253-264
    [23] Rutan S C, Brown S D. Adaptive kalman filtering used to compensate for model errors in multicomponent methods. Analytica Chimica Acta,1984, 160: 99-119
    [24] RutanS C, Brown S D. Estimation of first-order kinefc parameters using the extended kalman filter. Analytica Chimica Acta, 1985, 167: 23-37
    [25] Karstang T V, Kvalheim O. Multivariate prediction and background correction using local modeling and derivative spectroscopy. Analytical Chemistry, 1991, 63(8): 767-772.
    [26] Ho C -N, Christian G D, Davidson E R. Application of the method of rank annihilation to quantitative analyses of multicomponent fluorescence data from the video florometer. Analytical Chemistry, 1978, 50: 1108-1113
    [27] Sanchez E, Kowalski B R. Generalized rank annihilation factor analysis. Analytical Chemistry, 1986, 58(2): 496-499
    [28] ?hman J, Geladi P, Wold S. Residual bilinearization. Part l: Theory and algorithms. Journal of Chemometrics, 1990, 4:79-90
    [29] ?hman J, Geladi P, Wold S. Residual Bilinearization. Part 2: Application to HPLC-diode array data and comparison with rank annihilation factor analysis. Journal of Chemometrics, 1990, 4:135-146
    [30] Liang Y Z, Manne R, Kvalheim O M. Constrained background bilinearization. Chemometrics and Intelligent Laboratory Systems, 1992, 14(1-3): 175-184
    [31] Maeder M. Evolving factor analysis for the resolution of overlapping chromatographic peaks. Analytical Chemistry, 1987, 59(3): 527-530
    [32] Maeder M, Zuberbühler A D. The resolution of overlapping chromatographic peaks by evolving factor analysis. Analytica Chimica Acta, 1986, 181(2):287-291
    [33] Malinowski E R. Window factor analysis: Theoretical derivation and application to flow injection analysis data. Journal of Chemometrics, 1992, 6(1): 29-40
    [34] Kvalheim O M, Liang Y Z. Heuristic evolving latent projections: Resolving two-way multicomponent data. 1. Selectivity, latent-projective graph, data scope, local rank, and unique resolution. Analytical Chemistry, 1992, 64(8): 936-946
    [35] Liang Y Z, Kvalheim O M, Keller H R, et al. Heuristic evolving latent projections: Resolving two-way multicomponent data. 2. Detection and resolution of minor constituents. Analytical Chemistry, 1992, 64(8): 946-953
    [36] Xu Q S, Liang Y Z. On the equivalence of window factor analysis and orthogonal projection resolution. Chemometrics and Intelligent Laboratory Systems, 1999, 45(1-2): 335-338
    [37] Manne R, Shen H L, Liang Y Z. Subwindow factor analysis. Chemometrics and Intelligent Laboratory Systems, 1999, 45(1-2): 171-176
    [38] Sanchez E, Kowalski B R.Tensorial carlibration: II. Second-order carlibration. Journal of Chemometrics, 1988, 2(4): 265-280
    [39] Wilson B E, Sanchez E, Kowalski B R. An improved algorithm for the generalized rank annihilation method. Journal of Chemometrics, 1989, 3(3): 493-498
    [40] Li S, Hamilton C, Gemperline P J. Generalized rank annihilation method using similarity transformations. Analytical Chemistry, 1992, 64(6): 599-607
    [41] Faber K, Lorber A, Kowalski B R. Generalized rank annihilation method: Standard errors in the estimated eigenvalues if the instrumental errors are heteroscedastic and correlated. Journal of Chemometrics, 1997, 11(2): 95-109
    [42] Sánchez E, Kowalski B R. Tensorial resolution: A direct trilinear decomposition. Journal of Chemometrics, 1990, 4(1): 29-45
    [43] Li S, Gemperline P J. Eliminating complex eigenvectors and eigenvalues in multiway analysis using the direct trilinear decomposition method. Journal of Chemometrics, 1993, 7(1): 77-88
    [44] Lin Z, Booksh K S, Burgess L W, et al. A second-order fiber optic heavy metal sensor employing second-order tensorial calibration. Analytical Chemistry, 1994, 66(15): 2552-2560
    [45] Booksh K S, Lin Z, Wang Z, et al. Extension of trilinear decomposition method with an application to the flow probe sensor. Analytical Chemistry, 1994, 66(15): 2561-2569
    [46] Henshow J M, Burgess L W, Booksh K S, et al. Multicomponent determination of chlorinated hydrocarbons using a reaction-based chemical sensor. 1. Multivariate calibration of Fujiwara reaction products. Analytical Chemistry, 1994, 66(20): 3328-3336
    [47] Gui M, Rutan S C, Agbodian A. Kinetic detection of overlapped amino acids in thin-layer chromatography with a direct trilinear decomposition method. Analytical Chemistry, 1995, 67(18): 3293-3299
    [48] Harshman R A, Foundations of the PARAFAC procedure:Models and conditions for an‘explanatory’multi-modal factor analysis, UCLA Working Papers in Phonetics,1970, 16: 1-84
    [49] Carroll J D,Chang J J, Analysis of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Young" decomposition. Psychometrika,1970, 35: 283-319
    [50] Bro R. PARAFAC: Tutorial and applications. Chemometrics and Intelligent Laboratory Systems, 1997, 38(2): 149-171
    [51] Rayens W S, Mitchell B C. Two-factor degeneracies and a stabilization of PARAFAC. Chemometrics and Intelligent Laboratory Systems, 1997, 38(2): 173-181
    [52] Damiani P C, Nepote A J, Bearzotti M, et al. A test field for the second-order advantage in bilinear least-squares and parallel factor analyses: Fluorescence determination of ciprofloxacin in human urine. Analytical Chemistry, 2004, 76(10): 2798-2806
    [53] Linder M, Sundberg R. Precision of prediction in second-order calibration with focus on bilinear regression method. Journal of Chemometrics, 2002, 16(1): 12-27
    [54] Linder M, Sundberg R. Second-order bilinear calibration: The effects of vectorising the data matrices of the calibration set. Chemometrics and Intelligent Laboratory Systems, 2002, 63(2): 107-116
    [55] Saurina J, Hemandez-Cassou S, Tauler R. Multivariate curve resolution and trilinear decomposition methods in the analysis of stopped-flow kinetic data for binary amino acid mixtures. Analytical Chemistry, 1997, 69(13): 2329-2336
    [56] Juan A, Rutan S C, Tauler R, et al. Comparison between the direct trilinear decomposition and the multivariate curve resolution-alternating least squares methods for the resolution of three-way data sets. Chemometrics and Intelligent Laboratory Systems, 1998, 40(1): 19-32
    [57] Paatero P. Construction and analysis of degenerate PARAFAC models. Journal of Chemometrics, 2000, 14(3): 285-299
    [58] Tomasi G, Bro R. PARAFAC and missing values. Chemometrics and Intelligent Laboratory Systems, 2005, 75(2): 163-180
    [59] Wu H L, Shibukawa M, Oguma K. An alternating trilinear decomposition method with application to calibration of HPLC-DAD for simultaneous determination of overlapped chlorinated aromatic hydrocarbous. Journal of Chemometrics, 1998, 12(1): 1-26
    [60] Jiang J H, Wu H L, Chen Z P, et al. Coupled vectors resolution method for chemometric calibration with three-way data. Analytical Chemistry, 1999, 71(19): 4254-4262
    [61] Jiang J H, Wu H L, Li Y, et al. Alternating coupled vectors resolution (ACOVER) method for trilinear analysis of three-way data. Journal of Chemometrics, 1999, 13(6): 557-578
    [62] Jiang J H, Wu H L, Li Y, et al. Three-way data resolution by alternating slice-wise diagonalization (ASD) method. Journal of Chemometrics, 2000, 14(1): 15-36
    [63] Li Y, Jiang J H, Wu H L, et al. Alternating coupled matrics resolution method for three-way array analysis. Chemometrics and Intelligent Laboratory Systems, 2000, 52(1): 33-43
    [64] Chen Z P, Wu H L, Yu R Q. On the self-weighted alternating trilinear decomposition algorithm - the property of being insensitive to excess factors used in calculation. Journal of Chemometrics, 2001, 15(5): 439-453
    [65] Chen Z P, Li Yang, Yu R Q. Pseudo alternating least squares algorithm for trilinear decomposition. Journal of Chemometrics, 2001, 15(3): 149-167
    [66] Chen Z P, Wu H L, Li Y, et al. A novel constrained PARAFAC algorithm for second-order linear calibration. Analytica Chimica Acta, 2000, 423(1): 187-196
    [67] Xie H P, Chu X, Jiang J H, et al. Competitive interactions of adriamycin and ethidium bromide with DNA as studied by full rank parallel factor analysis of fluorescence three-way array data. Spectrochimica Acta Part A, 2003, 59(4):743-749
    [68] Cao Y Z, Chen Z P, Mo C Y, et al. A PARAFAC algorithm using penalty diugonalization error (PDE) for three-way data array resolution. The Analyst, 2000, 125(12): 2303-2310
    [69] Xia A L, Wu H L, Fang D M, et al. Alternating penalty trilinear decompositionfor second-order calibration with an application to interference-free analysis of excitation-emission matrix fluorescence data, Journal of Chemometrics, 2005,19(2): 65-76
    [70] Hu L Q, Wu H L, Ding Y J, et al. Alternating asymmetric trilinear decomposition for three-way data arrays analysis, Chemometrics and Intelligent Laboratory Systems, 2006, 82(1-2):145-153
    [71] Wu H L,Yu R Q, Oguma K. Trilinear component analysis in modern analytical Chemistry, Analytical Sciences, 2001, 17: i483-i486
    [72] Nikolajsen R P H, Booksh K S, Hansen A M, et al. Quantifying catecholamines using muti-way kinetic modeling. Analytica Chimica Acta, 2003, 475(1-2): 137-150
    [73] Goicoechea H C, Yu S J, Olivieri A C, et al. Four-way data coupled to parallel factor model applied to environmental analysis: Determination of 2,3,7,8-tetrachloro-dibenzo-para-dioxin in highly contaminated waters by solid-liquid extraction laser-excited time-resolved shpol’skii spectroscopy. Analytical Chemistry, 2005, 77(8): 2608-2616
    [74] Xia A L, Wu H L, Li S F, et al. Alternating penalty quadrilinear decomposition algorithm for an analysis of four-way data arrays. Journal of Chemometrics, 2007,21(3-4): 133-144
    [75] Moore A W, Jorgenson J W. Median filtering for removal of low-frequency background drift. Analytical Chemistry, 1993, 65(2): 188-191
    [76] Andrew K N, Rutan S C, Worsfold P J. Application of Kalman filtering to multivariate calibration and drift correction. Analytica Chimica Acta, 1999, 388(3): 315-325
    [77] Vogt F, Rebstock K, Tacke M. Correction of background drifts in optical spectra by means of“pseudo principal components”. Chemometrics and Intelligent Laboratory Systems, 2000, 50(2): 175-178
    [78] Furusj? E, Danielsson L G. Target testing procedure for determining chemical kinetics from spectroscopic data with absorption shifts and baseline drift. Chemometrics and Intelligent Laboratory Systems, 2000, 50(1): 63-73
    [79] Boelens H F M, Dijkstra R J, Eilers P H C, et al. New background correction method for liquid chromatography with diode array detection, infrared spectroscopic detection and Raman spectroscopic detection. Journal of Chromatography A, 2004, 1057(1-2): 21-30
    [80] Andersson G G, Dable B K, Booksh K S. Weighted parallel factor analysis forcalibration of HPLC-UVrVis spectrometers in the presence of Beer’s law deviations. Chemometrics and Intelligent Laboratory Systems, 1999, 49(2): 195–213
    [81] JiJi R D, Booksh K S. Mitigation of rayleigh and raman spectral interferences in multiway calibration of excitation-emission matrix fluorescence spectra. Analytical Chemistry, 2000, 72(4): 718-725
    [82] Chen Z P, Yu R Q.Mitigating model deficiency in three-way data analysis by the combination of background constraining and iterative correcting techniques. Analytica Chimica Acta, 2003, 487(2): 171-180
    [83] Rinnan ?, Booksh K S, Bro R. First order Rayleigh scatter as a separate component in the decomposition of fluorescence landscapes. Analytica Chimica Acta, 2005, 537 (1-2): 349-358
    [84] Bahram M, Bro R, Afkhami C S A. Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation. Journal of Chemometrics, 2006, 20(3-4): 99-105
    [85] Bouveresse D J R, Benabid H, Rutledge D N. Independent component analysis as a pretreatment method for parallel factor analysis to eliminate artefacts from multiway data. Analytica Chimica Acta, 2007, 589(2): 216-224
    [86] Tucker L R. Some mathematical notes on three-mode factor analysis. Psychometrika, 1966, 31(3): 279-311
    [87] Kroonenberg P M, Leeuw de J. Principal components analysis of three-mode data by means of alternating least-squares algorithms. Psychometrika, 1980, 45(1): 69-97
    [88] Smilde A K, Bro R, Geladi P. Multi-way Analysis: Applications in the Chemical Sciences, New York: Wiley, 2004, 23-34
    [89] Bro R, Kiers H A L. A new efficient method for determining the number of components in PARAFAC modes. Journal of Chemometrics, 2003, 17(5): 274-286.
    [90] Chen Z P, Liu Z, Cao Y Z, et al. Efficient way to estimate the optimum number of factors for trilinear decomposition. Analytica Chimica Acta, 2001, 444(2): 295-307
    [91] Louwerse D J, Smilde A K, Kiers H A L. Cross-validation of multiway component models. Journal of Chemometrics, 1999, 13(5): 491-510
    [92] Durell S R, Lee C H, Ross R T, et al. Factor analysis of the near-ultraviolet absorption spectrum of plastocyanin using bilinear, trilinear, and quadrilinearcalibration of HPLC-UVrVis spectrometers in the presence of Beer’s law deviations. Chemometrics and Intelligent Laboratory Systems, 1999, 49(2): 195–213
    [81] JiJi R D, Booksh K S. Mitigation of rayleigh and raman spectral interferences in multiway calibration of excitation-emission matrix fluorescence spectra. Analytical Chemistry, 2000, 72(4): 718-725
    [82] Chen Z P, Yu R Q.Mitigating model deficiency in three-way data analysis by the combination of background constraining and iterative correcting techniques. Analytica Chimica Acta, 2003, 487(2): 171-180
    [83] Rinnan ?, Booksh K S, Bro R. First order Rayleigh scatter as a separate component in the decomposition of fluorescence landscapes. Analytica Chimica Acta, 2005, 537 (1-2): 349-358
    [84] Bahram M, Bro R, Afkhami C S A. Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation. Journal of Chemometrics, 2006, 20(3-4): 99-105
    [85] Bouveresse D J R, Benabid H, Rutledge D N. Independent component analysis as a pretreatment method for parallel factor analysis to eliminate artefacts from multiway data. Analytica Chimica Acta, 2007, 589(2): 216-224
    [86] Tucker L R. Some mathematical notes on three-mode factor analysis. Psychometrika, 1966, 31(3): 279-311
    [87] Kroonenberg P M, Leeuw de J. Principal components analysis of three-mode data by means of alternating least-squares algorithms. Psychometrika, 1980, 45(1): 69-97
    [88] Smilde A K, Bro R, Geladi P. Multi-way Analysis: Applications in the Chemical Sciences, New York: Wiley, 2004, 23-34
    [89] Bro R, Kiers H A L. A new efficient method for determining the number of components in PARAFAC modes. Journal of Chemometrics, 2003, 17(5): 274-286.
    [90] Chen Z P, Liu Z, Cao Y Z, et al. Efficient way to estimate the optimum number of factors for trilinear decomposition. Analytica Chimica Acta, 2001, 444(2): 295-307
    [91] Louwerse D J, Smilde A K, Kiers H A L. Cross-validation of multiway component models. Journal of Chemometrics, 1999, 13(5): 491-510
    [92] Durell S R, Lee C H, Ross R T, et al. Factor analysis of the near-ultraviolet absorption spectrum of plastocyanin using bilinear, trilinear, and quadrilineardynamic programming as a pre-processing tool for PARAFAC modelling of liquid chromatography-mass spectrometry data. Journal of Chromatography A, 2002, 961(2): 237-244
    [104]孙剑奇,吴海龙,莫翠云等.交替三线性分解算法与反相高效液相色谱-二极管阵列检测方法相结合同时测定苯二酚的位置异构体.色谱, 2002, 20(5): 385-389
    [105]陆剑忠,吴海龙,孙翔宇等.交替三线性分解算法结合区域变量选择同时分辨和定量测定二甲基苯酚异构体复杂体系.分析化学, 2004, 32(10): 1278-1282
    [106]丁玉洁,吴海龙,方冬梅等.交替三线性分解算法与HPLC-DAD相结合用于硝基苯类化合物的二阶校正.高等学校化学学报,2005,26(7): 1255-1257
    [107] Faber N M, Bro R, Hopke P K. Recent developments in CANDECOMP/ PARAFAC algorithms: A critical review. Chemometrics and Intelligent Laboratory Systems, 2003, 65(1): 119-137
    [108] Gimeno R A, Comas E, MarcéR M, et al. Second-order bilinear calibration for determining polycyclic aromatic compounds in marine sediments by solvent extraction and liquid chromatography with diode-array detection. Analytica Chimica Acta, 2003, 498(1-2): 47-53
    [109] Comas E, Gimeno R A, FerréJ, et al. Using second-order calibration to identify and quantify aromatic sulfonates in water by high-performance liquid chromatography in the presence of coeluting interferences. Journal of Chromatography A, 2003, 988(2): 277-284
    [110] Comas E, Gimeno R A, FerréJ, et al. Quantification from highly drifted and overlapped chromatographic peaks using second-order calibration methods. Journal of Chromatography A, 2004, 1035(2): 195-202
    [111] Wiberg K, Sven P J. Parallel factor analysis of HPLC-DAD data for binary mixtures of lidocaine and prilocaine with different levels of chromatographic separation. Analytica Chimica Acta, 2004, 514(2): 203-209
    [112] Garc?á, Sarabia L, Ortiz M C, et al. Three-way models and detection capability of a gas chromatography–mass spectrometry method for the determination of clenbuterol in several biological matrices: the 2002/657/EC European Decision. Analytica Chimica Acta, 2004, 515(1): 55-63
    [113] Braga J W B, Bottoli C B G, Jardim I C S F, et al. Determination of pesticides and metabolites in wine by high performance liquid chromatography and second-order calibration methods. Journal of Chromatography A, 2007, 1148(2):200–210
    [114] Arroyo D, Ortiz M C, Sarabia L A, et al. Advantages of PARAFAC calibration in the determination of malachite green and its metabolite in fish by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2008, 1187(1-2): 1-10
    [115] Fraga C G, Corley C A. The chemometric resolution and quantification of overlapped peaks form comprehensive two-dimensional liquid chromatography. Journal of Chromatography A, 2005, 1096(1-2): 40-49
    [116] Sinha A E, Hope J L, Prazen B J, et al. Trilinear chemometric analysis of two-dimensional comprehensive gas chromatography–time-of-flight mass spectrometry data. Journal of Chromatography A, 2004, 1027(1-2): 269-277
    [117] Escandar G M, Faber N M, Goicoechea H C, et al. Second- and third-order multivariate calibration: data, algorithms and applications. Trends in Analytical Chemistry, 2007, 26(7): 752-765
    [118] Piccirilli G N,Escandar G M. Partial least-squares with residual bilinearization for the spectrofluorimetric determination of pesticides. A solution of the problems of inner-filter effects and matrix interferents. Analyst, 2006, 131(9): 1012-1020
    [119] Nahorniak M L, Booksh K S, Optimizing the implementation of the PARAFAC method for near-real time calibration of excitation-emission fluorescence analysis. Journal of Chemometrics, 2003, 7(11): 608-617
    [120] Bosco M V, Garrido M, Larrechi M S. Determination of phenol in the presence of its principal degradation products in water during a TiO2-photocatalytic degradation process by three-dimensional excitation–emission matrix fluorescence and parallel factor analysis. Analytica Chimica Acta, 2006, 559(2): 240-247
    [121] Pedersen D K, Munck L, Engelsen S B. Screening for dioxin contamination in fish oil by PARAFAC and N-PLSR analysis of fluorescence landscapes. Journal of Chemometrics, 2002, 16(8-10): 451-460
    [122] Wentzell P D, Nair S S, Guy R D. Three-Way Analysis of Fluorescence Spectra of Polycyclic Aromatic Hydrocarbons with Quenching by Nitromethane. Analytical Chemistry, 2001, 73(7): 1408-1415
    [123] Arancibia J A, Olivieri A C, Escandar G M. First- and second-order multivariate calibration applied to biological samples: determination of anti-inflammatories in serum and urine. Analytical Bioanalytical Chemistry, 2002, 374(3): 451-459
    [124] Wu H L, Long N, Fang Y F, et al. Simultaneous determination of salicylic acid and gentisic acid by excitation-emission fluorescence based on alternating trilinear decomposition. Analytical Laboratory, 2002, 21(2): 44-47
    [125] Sena M M, Trevisan M G, Poppi R J. Combining standard addition method and second-order advantage for direct determination of salicylate in undiluted human plasma by spectrofluorimetry.Talanta, 2006, 68(5): 1707-1712
    [126] Hergert L A, Escandar G M. Spectrofluorimetric study of theβ-cyclodextrin–ibuprofen complex and determination of ibuprofen in pharmaceutical preparations and serum. Talanta, 2003, 60(2-3): 235-246
    [127] Arancibia J A, Escandar G M. Two different strategies for the fluorimetric determination of piroxicam in serum. Talanta, 2003, 60(6): 1113-1121
    [128] Haimovich A, Orselli R, Escandar G M, et al. Spectroscopic bilinear least-squares methods exploiting the second-order advantage. Theoretical and experimental study concerning accuracy, sensitivity and prediction error.Chemometrics and Intelligent Laboratory Systems, 2006, 80(1): 99-108
    [129] Cao Y Z, Mo C Y, Long J G, et al. Spectrofluorometric resolution of closely overlapping drug mixtures using chemometrics methods. Analytical Sciences, 2002, 18(3), 333-336
    [130] Pe?a de la A M, Mansilla A E, Díez N M, et al. Second-order calibration of excitation-emission matrix fluorescence spectra for the determination of N-phenylanthranilic acid derivatives. Applied Spectroscopy. 2006, 60(3): 330-338
    [131] Pe?a de la A M, Díez N M, Gil D B, et al. Simultaneous determination of flufenamic and meclofenamic acids in human urine samples by second-order multivariate parallel factor analysis (PARAFAC) calibration of micellar-enhanced excitation–emission fluorescence data. Analytica Chimica Acta, 2006, 569(1-2): 250-259
    [132] Trevisan M G., Poppi R J. Determination of doxorubicin in human plasma by excitation–emission matrix fluorescence and multi-way analysis. Analytica Chimica Acta, 2003, 493(1): 69-81
    [133] Mahedero M C, Díaz N M, de la Pe?a A M, et al. Strategies for solving matrix effects in the analysis of sulfathiazole in honey samples using three-way photochemically induced fluorescence data. Talanta, 2005, 65(3): 806-813
    [134] de la Pe?a A M, Mansilla A E, Go′mez D G, et al. Interference-Free Analysis Using Three-Way Fluorescence Data and the Parallel Factor Model.Determination of Fluoroquinolone Antibiotics in Human Serum . Analytical Chemistry, 2003, 75(11): 2640-2646
    [135] Damiani P C, Nepote A J, Bearzotti M, et al. A Test Field for the Second-Order Advantage in Bilinear Least-Squares and Parallel Factor Analyses: Fluorescence Determination of Ciprofloxacin in Human Urine. Analytical Chemistry, 2004, 76(10): 2798-2806
    [136] Giménez D, Sarabia L A, Ortiz M C. The maintenance of a PARAFAC calibration and the second-order property: application to the determination of ciprofloxacin in presence of enrofloxacin by excitation–emission fluorescence. Analytica Chimica Acta, 2005, 544(1-2): 327-336
    [137] Giménez D, Sarabia L A, Ortiz M C. Identification and quantification of enrofloxacine in poultry feeding water through excitation emission fluorescence and three-way PARAFAC calibration. Analyst, 2005, 130(12): 1639-1647
    [138] Mansilla A E, de la Pe?a A M, Gómez D G, et al. Photoinduced spectrofluorimetric determination of fluoroquinolones in human urine by using three- and two-way spectroscopic data and multivariate calibration. Analytica Chimica Acta, 2005, 531(2): 257-266
    [139] Valverde R S, García M D G, M. Galera M, et al. Highly collinear three-way photoinduced spectrofluorimetric data arrays modelled with bilinear least-squares: Determination of tetracyclines in surface water samples.Talanta, 2006, 70(4): 774-783
    [140] Mansilla A E, de la Pe?a A M, Ca?ada F C D, et al. Determinations of fluoroquinolones and nonsteroidal anti-inflammatory drugs in urine by extractive spectrophotometry and photoinduced spectrofluorimetry using multivariate calibration. Analytical Biochemistry, 2005, 347(2): 275-286
    [141] Fang D M, Wu H L, Ding Y J, et al. Interference-free determination of fluoroquinolone antibiotics in plasma by using excitation–emission matrix fluorescence coupled with second-order calibration algorithms. Talanta, 2006, 70(1): 58-62
    [142] da Silva J C G E, Leit?o J M M, Costa F S, et al. Detection of verapamil drug by fluorescence and trilinear decomposition techniques. Analytica Chimica Acta, 2002, 453(1): 105-115
    [143] Escandar G M, Gómez D G, Mansilla A E, et al. Determination of carbamazepine in serum and pharmaceutical preparations using immobilization on a nylon support and fluorescence detection. Analytica Chimica Acta, 2004, 506(2):161-170
    [144] Xie H P, Jiang J H, Chu X, et al. Competitive interaction of the antitumor drug daunorubicin and the fluorescence probe ethidium bromide with DNA as studied by resolving trilinear fluorescence data: the use of PARAFAC and its modification Analytical and Bioanalytical Chemistry, 2002, 373(3): 159-162
    [145] Ni Y N, Lin D Q, Kokot S. Synchronous fluorescence and UV–vis spectrometric study of the competitive interaction of chlorpromazine hydrochloride and Neutral Red with DNA using chemometrics approaches. Talanta, 2005, 65(5): 1295-1302
    [146] Silva L C, Trevisan M G, Ronei J, et al. Direct determination of propranolol in urine by spectrofluorimetry with the aid of second order advantage. Analytica Chimica Acta, 2007, 595(1-2): 282-288
    [147] Ghasemi N, Niazi A. Determination of captopril in pharmaceutical preparation and biological fluids using two- and three-way chemometrics methods. Chinese Chemical Letters, 2007, 1(4): 427-430
    [148] Andersen C M, Bro R. Practical aspects of PARAFAC modeling of fluorescence excitation-emission data. Journal of Chemometrics, 2003, 17(4): 200-215
    [149] Christensen J, Povlsen V T, S?rensen J. Application of Fluorescence spectroscopy and chemometrics in the evaluation of processed cheese during storage. Journal of Dairy Sciecce, 2003, 86: 1101-1107
    [150] Andersen C M, Vishart M, Holm V K. Application of fluorescence spectroscopy in the evaluation of light-induced oxidation in cheese. Journal of Agricultural and Food Chemistry, 2005, 53(26): 9985-9992
    [151] Christensen J, Becker E M, Frederiksen C S. Fluorescence spectroscopy and PARAFAC in the analysis of yogurt. Chemometrics and Intelligent Laboratory Systems, 2005, 75(2): 201-208
    [152] Lozano V A, Iba?ez G A, Olivieri A C. Three-way partial least-squares/residual bilinearization study of second-order lanthanide-sensitized luminescence excitation-time decay data: Analysis of benzoic acid in beverage samples. Analytica Chimica Acta, 2008, 610(2): 186-195
    [153] Díez R, Sarabia L, Ortiz M C. Rapid determination of sulfonamides in milk samples using fluorescence spectroscopy and class modeling with n-way partial least squares. Analytica Chimica Acta, 2007, 585(2): 350-360
    [154] Hart S J, JiJi R D, Light emitting diode excitation emission matrix fluorescence spectroscopy. Analyst, 2002, 127(12): 1693-1699
    [155] Moberg L, Robertsson G, Karlberg B. Spectrofluorimetric determination of chlorophylls and pheopigments using parallel factor analysis. Talanta, 2001, 54(1): 161-170
    [156] Ni Y N, Cai Y J. Simultaneous synchronous spectrofluorimetric determination of vitamin B1, B2 and B6 by PARAFAC. Spectroscopy and Spectral Analysis, 2005, 25(10): 1641-1644
    [157] Niazi A, Yazdanipour A, Ghasemib J, et al. Determination of riboflavin in human plasma by excitation-emission matrix fluorescence and multi-way analysis. Journal of the Chinese Chemical Society, 2006, 53(2): 503-510
    [158] Riu J, Bro R. Jack-knife technique for outlier detection and estimation of standard errors in PARAFAC models. Chemometrics and Intelligent Laboratory Systems, 2003, 65(1): 35-49
    [159] Zhang F, Zhang Q Q, Wang W G, et al. Synthesis and DNA binding studies by spectroscopic and PARAFAC methods of a ternary copper(II) complex. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184(3): 241-249
    [160] Mansilla A E, de la Pen?a A M, Goicoechea H C, et al. Two multivariate strategies applied to three-way kinetic spectrophotometric data for the determination of mixtures of the pesticides carbaryl and chlorpyrifos. Applied Spectroscopy, 2004, 58(1): 83-90
    [161] Amigo J M, Juan A D, Coello J, et al. A mixed hard- and soft-modelling approach for the quantitative determination of oxipurines and uric acid in human urine. Analytica Chimica Acta, 2006, 567(2):236-244
    [162] Pistonesi M, Centurión M E, Band B S F, et al. Journal Of Pharmaceutical And Biomedical Analysis, 2005, 36(2): 541-546
    [163] Ni Y, Huang C F, Kokot S.Application of multivariate calibration and artificial neural networks to simultaneous kinetic-spectrophotometric determination of carbamate pesticides. Chemometrics and Intelligent Laboratory Systems, 2004, 71(2): 177-193
    [164] Amigo J M, Juan A D, Coello J, et al. A mixed hard- and soft-modelling approach to study and monitor enzymatic systems in biological fluids. Analytica Chimica Acta, 2006, 567(2): 245-254
    [165] Amigo J M, Coello J, Maspoch S. Three-way partial least-squares regression for the simultaneous kinetic-enzymatic determination of xanthine and hypoxanthine in human urine. Anal Bioanal Chem, 2005, 382(6): 1380-1388
    [166] Guterres M V, Volpe P L, Ferreira M C. Multiway calibration for creatininedetermination in human serum using the Rafféreaction. Applied. Spectroscopy, 2004, 58(1): 54-60
    [167] Navea S, Juan A D, Tauler R. Three-way data analysis applied to multispectroscopic monitoring of protein folding. Analytica Chimica Acta, 2001, 446(1-2): 185-195
    [168] Nazi A, Ghasemi J, Yazdanipur A, PARAFAC decomposition of three-way kinetic-spectrophotometric spectral matrices based on phosphomolymbdenum blue complex chemistry for nitrite determination in water and meat samples. Analytical Letters, 2005, 38(14): 2377-2392
    [169] García R A, Damiani P C, Olivieri A C. Different strategies for the direct determination of amoxicillin in human urine by second-order multivariate analysis of kinetic–spectrophotometric data. Talanta, 2007, 71(2): 806-815
    [170] Bushey M M, Jorgenson J W. Automated instrumentation for comprehensive two-dimensional high-performance liquid chromatography of proteins. Analytical Chemistry, 1990, 62(2): 161-167
    [171] Holland L A, Jorgenson J W. Separation of nanoliter samples of biological amines by a comprehensive two-dimensional microcolumn liquid chromatography system. Analytical Chemistry, 1995, 67(18): 3275-3283
    [172] Quigley W C, Fraga C G, Synovec R E. Comprehensive LC X GC for enhanced headspace analysis. Journal of Microcolumn Separations, 2000, 12(3): 160-166
    [173] de Koning J A, Janssen H G, Deursen M V, et al. Automated on-line comprehensive two-dimensional LC x GC and LC x GC-ToF MS: Instrument design and application to edible oil and fat analysis. Journal Separation Science, 2004, 27(5-6): 397-409
    [174] Gorecki T, Harynuk J, Panic O. The evolution of comprehensive two-dimensional gas chromatography (GCxGC). Journal Separation Science, 2004, 27(5-6): 359-379
    [175] Xie L L, Marriott P J, Adams M. Chemometric analysis of comprehensive two-dimensional gas chromatography data using cryogenic modulation. Analytica Chimica Acta, 2003, 500(1-2): 211-222
    [176] Bushey M M, Jorgenson J W. Automated instrumentation for comprehensive two-dimensional high-performance liquid chromatography/capillary zone electrophoresis. Analytical Chemistry, 1990, 62(10): 978-984
    [177] Zhang J, Hu H, Gao M, et al. Comprehensive two-dimensional chromatography and capillary electrophoresis coupled with tandem time-of-flight massspectrometry for high-speed proteome analysis. Electrophoresis, 2004, 25(14): 2374-2383
    [178] Michels D A, Hu S, Dambrowitz K A, et al. Capillary sieving electrophoresis-micellar electrokinetic chromatography fully automated two-dimensional capillary electrophoresis analysis of Deinococcus radiodurans protein homogenate. Electrophoresis, 2004, 25(18-19): 3098-3105
    [179] Liu H C, Yang C, Yang Q, et al. On-line combination of capillary isoelectric focusing and capillary non-gel sieving electrophoresis using a hollow-fiber membrane interface: a novel two-dimensional separation system for proteins. Journal of Chromatography B, 2005, 817(1): 119-126
    [180] Prazen B J, Synovec R E, Kowalski B R. Standardization of second-order chromatographic/spectroscopic data for optimum chemical analysis. Analytical Chemistry, 1998, 70(2): 218-225
    [181] Sinha A E, Hope J L, Prazen B J, et al. Multivariate selectivity as a metric for evaluating comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry subjected to chemometric peak deconvolution. Journal of Chromatography A, 2004, 1056(1-2): 145-154
    [182] Hu L H, Chen X G, Kong L, et al. Improved performance of comprehensive two-dimensional HPLC separation of traditional Chinese medicines by using a silica monolithic column and normalization of peak heights. Journal of Chromatography A, 2005, 1092(2): 191-198
    [183] The Colours in Food Regulations 1995, ISBN 0110537319, http://www.hmso.gov.uk.
    [184] Martinek V, Stiborova M. Metabolism of carcinogenic azo dye Sudan I by rat, rabbit, minipig and human hepatic microsimes. Collection of Czechoslovak Chemical Communications, 2002, 67(12): 1883-1898
    [185] StiborováM, Martínek V, RydlováH, et al. Sudan I is a potential carcinogen for humans evidence for its metabolic activation and detoxication by human recombinant cytochrome P450 1A1 and liver microsomes. Cancer Research, 2002, 62(20): 5678-5684
    [186] Cornet V, Govaert Y, Moens G, et al. Development of a fast analytical method for the determination of Sudan dyes in chili- and curry-containing foodstuffs by high-performance liquid chromatography-photodiode array detection. Journal of Agricultural and Food Chemistry, 2006, 54(3): 639-644
    [187]食品中苏丹红染料的检测方法–高效液相色谱法,GB/T19681-2005
    [188] Calbiani F, Careri M, Elviri L, et al. Development and in-house validation of a liquid chromatography–electrospray–tandem mass spectrometry method for the simultaneous determination of Sudan I, Sudan II, Sudan III and Sudan IV in hot chilli products. Journal of Chromatography A, 2004, 1042(1-2): 123-130
    [189] Calbiani F, Careri M, Elviri L, et al. Accurate mass measurements for the confirmation of Sudan azo-dyes in hot chilli products by capillary liquid chromatography–electrospray tandem quadrupole orthogonal-acceleration time of flight mass spectrometry. Journal of Chromatography A, 2004, 1058(1-2): 127-135
    [190] Donna L D, Maiuolo L, Mazzotti F, et al. Assay of Sudan I contamination of foodstuff by atmospheric pressure chemical ionization tandem mass spectrometry and isotope dilution. Analytical Chemistry. 2004, 76(17): 5104-5108
    [191] Stoev G, Michailova A. Quantitative determination of sulfonamide residues in foods of animal origin by high-performance liquid chromatography with fluorescence detection. Journal of Chromatography A, 2000, 871(1-2): 37-42
    [192] Roudaut B, Garnier M. Sulphonamide residues in eggs following drug administration via the drinking water. Food additives & contaminants, 2002, 19(4): 373-378
    [193] Lorber A. Error propagation and figures of merit for quantification by solving matrix equations. Analytical Chemistry, 1986, 58(6): 1167-1172
    [194] Messick N J, Kalivas J H, Lang P M. Selectivity and related measures for Nth-order data. Analytical Chemistry, 1996, 68(9): 1572-1579
    [195] Wang Y, Borgen O S, Kowalski B R, et al. Advances in second-order calibration. Journal of Chemometrics, 1993, 7(2): 117-130
    [196] Faber K, Lorber A, Kowalski B R. Analytical figures of merit for tensorial calibration. Journal of Chemometrics, 1997, 11(5): 419-461
    [197] Ho C N, Christian G D, Davidson E R. Application of the method of rank annihilation to fluorescent multicomponent mixtures of polynuclear aromatic hydrocarbons. Analytical Chemistry, 1980, 52(7): 1071-1079
    [198] Faber N M. The price paid for the second-order advantage when using the generalized rank annihilation method (GRAM). Journal of Chemometrics, 2001, 15(9): 743-748
    [199] Olivieri A C. Computing sensitivity and selectivity in parallel factor analysis and related multiway techniques: the need for further developments in netanalyte signal theory. Analytical Chemistry, 2005, 77(15): 4936-4946
    [200] Olivieri A C, Juan A A, Pe?a A M, et al. Second-order advantage achieved with four-way fluorescence excitation-emission-kinetic data processed by parallel factor analysis and trilinear least-squares. determination of methotrexate and leucovorin in human urine. Analytical Chemistry, 2004, 76(19): 5657-5666
    [201] Olivieri A C, Faber N M. Standard error of prediction in parallel factor analysis of three-way data. Chemometrics and Intelligent Laboratory Systems, 2004, 70(1): 75-82
    [202] Lorber A, Faber K, Kowalski B R. Net analyte signal calculation in multivariate calibration. Analytical Chemistry, 1997, 69(8): 1620-1626
    [203] Crosby N T. Determination of veterinary residues in food. Ellis Horwood, Chichester, 1991, p.97
    [204] Botsoglou N A, Fletouris D T. Drug Residues in Foods. New York: Marcel Dekker, 2001, p.85
    [205]李俊锁,邱月明,王超.兽药残留分析.上海:上海科学技术出版社, 2002: 228-255
    [206]中华人民共和国农业部.农牧发[1997] 17号.关于发布《动物性食品中兽药残留限量》的通知[Z]
    [207] Babi? S, A?perger D, Mutavd?i? D, et al. Talanta 70 (2006) 732. Solid phase extraction and HPLC determination of veterinary pharmaceuticals in wastewater. Talanta, 2006, 70(4): 732-738
    [208] Preechaworapun A, Chuanuwatanakul S, Einaga Y, et al. Electroanalysis of sulfonamides by flow injection system/high-performance liquid chromatography coupled with amperometric detection using boron-doped diamond electrode. Talanta, 2006, 68(5): 1726-1731
    [209] Kishida K, Furusawa N. Application of shielded column liquid chromatography for determination of sulfamonomethoxine, sulfadimethoxine, and their N4-acetyl metabolites in milk. Journal of Chromatography A, 2004, 1028(1): 175-177
    [210] Fuh M R S, Chan S A, Quantitative determination of sulfonamide in meat by liquid chromatography–electrospray-mass spectrometry. Talanta, 2001, 55(6): 1127-1139
    [211] Kishida K, Furusawa N. Simultaneous determination of sulfamonomethoxine, sulfadimethoxine, and their hydroxy/N4-acetyl metabolites with gradient liquid chromatography in chicken plasma, tissues, and eggs. Talanta, 2005, 67(1): 54-58
    [212] Huang X J, Yuan D X, Huang B L. Simple and rapid determination of sulfonamides in milk using Ether-type column liquid chromatography. Talanta, 2007, 72(4):1298–1301
    [213] Lu K H, Chen C Y, Lee M R. Trace determination of sulfonamides residues in meat with a combination of solid-phase microextraction and liquid chromatography–mass spectrometry. Talanta, 2007, 72(3):1082–1087
    [214] Agarwal V K. High-performance liquid chromatographic methods for the determination of sulfonamides in tissue, milk and eggs. Journal of Chromatography A, 1992, 624(1-2): 411-423
    [215] Long A R, Short C R, Barker S A.Method for the isolation and liquid chromatographic determination of eight sulfonamides in milk. Journal of Chromatography A, 1990, 502: 87-94
    [216] Cannavan A, Hewitt S A, Blanchflower W J, et al. Gas chromatographic–mass spectrometric determination of sulfamethazine in animal tissues using a methyl/trimethylsilyl derivative. Analyst, 1996, 121(10): 1457-1462
    [217] Reevs V B. Confirmation of multiple sulfonamide residues in bovine milk by gas chromatography–positive chemical ionization mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications, 1999, 723(1-2): 127-137
    [218] Fuh M R S, Chu S Y. Quantitative determination of sulfonamide in meat by solid-phase extraction and capillary electrophoresis. Analytica Chimica Acta, 2003, 499(1-2): 215-221
    [219] Lamba S, Sanghi S K, Asthana A, et al. Rapid determination of sulfonamides in milk using micellar electrokinetic chromatography with fluorescence detection. Analytica Chimica Acta, 2005, 552(1-2): 110-115
    [220] Nozaki O. Steroid analysis for medical diagnosis. Journal of Chromatography A, 2001, 935(1-2):267-278
    [221] Hill M, Szefler S, Ball B, et al. Monitoring glucocorticoid therapy: a pharmacokinetic approach. Clinical Pharmacology & Therapeutics, 1990, 48(4): 390-398
    [222] Lipworth B J. Systemic adverse effects of inhaled corticosteroid therapy. A systematic review and meta-analysis. Archives of Internal Medicine, 1999, 159(9): 941-955
    [223] Huang C M, Zweig M. Evaluation of a radioimmunoassay of urinary cortisol without extraction. Clinical Chemistry, 1989, 35(1): 125-126
    [224] Maayan R, Segal R, Feuerman E, et al. Simple methods for estimation of prednisone intake and metabolism. Biomedicine & Pharmacotherapy, 1988, 42(6): 409-414
    [225] Cirimele V, Kintz P, Dumestre V, et al. Identification of ten corticosteroids in human hair by liquid chromatography–ionspray mass spectrometry. Forensic Science International, 2000, 107(1-3): 381-388
    [226] Antignac J P, Bizec B L, Monteau F, et al. Collision-induced dissociation of corticosteroids in electrospray tandem mass spectrometry and development of a screening method by high performance liquid chromatography/tandem mass spectrometry Rapid Communications in Mass Spectrometry, 2000, 14(1): 33-39
    [227] Shibasaki H, Furuta T, Kasuya Y. Quantification of corticosteroids in human plasma by liquid chromatography–thermospray mass spectrometry using stable isotope dilution. Journal of Chromatography B: Biomedical Sciences and Applications, 1997, 692(1): 7-14
    [228] Taylor R L, Machacek D, Singh R. Validation of a high-throughput liquid chromatography–tandem mass spectrometry method for urinary cortisol and cortisone. Clinical Chemistry, 2002, 48(9): 1511-1519
    [229] Nassar A E, Varshney N, Getek T, et al. Quantitative analysis of hydrocortisone in human urine using a high-performance liquid chromatographic-tandem mass spectrometric-atmospheric-pressure chemical ionization method. Journal of Chromatographic Science, 2001, 39(2): 59-64
    [230] Ohno M, Yamaguchi I, Saiki K, et al. Specific determination of urinary 6β-hydroxycortisol and cortisol by liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications, 2000, 746(1): 95-101
    [231] Tai S S C, Welch M J. Development and evaluation of a candidate reference method for the determination of total cortisol in human serum using isotope dilution liquid chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry. Analytical Chemistry, 2004, 76 (4): 1008-1014
    [232] Tang P W, Law W C, Wan T S M. Analysis of corticosteroids in equine urine by liquid chromatography–mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications, 2001, 754(1): 229-244
    [233] J?nsson B A G, Malmberg B, Amilon ?, et al. Determination of cortisol in human saliva using liquid chromatography–electrospray tandem massspectrometry. Journal of Chromatography B, 2003, 784(1): 63-68
    [234] Frerichs V A, Tornatore K M. Determination of the glucocorticoids prednisone, prednisolone, dexamethasone, and cortisol in human serum using liquid chromatography coupled to tandem mass spectrometry. Journal of Chromatography B, 2004, 802(2): 329-338
    [235] NoéS, B?hler J, Keller E, et al. Evaluation and optimisation of separation buffers for the determination of corticosteroids with micellar electrokinetic capillary chromatography (MECC). Journal of Pharmaceutical and Biomedical Analysis, 1998, 8(4-5): 911-918
    [236] Gallego J M L, Arroyo J P. Determination of prednisolone and the most important associated compounds in ocular and cutaneous pharmaceutical preparations by micellar electrokinetic capillary chromatography. Journal of Chromatography B, 2003, 784(1): 39-47
    [237] Neufeld E, Chayen R, Stern N. Fluorescence derivatisation of urinary corticosteroids for high-performance liquid chromatographic analysis. Journal of Chromatography B: Biomedical Sciences and Applications, 1998, 718(2): 273-277
    [238] Shibata N, Hayakawa T, Takada K, et al. Simultaneous determination of glucocorticoids in plasma or urine by high-performance liquid chromatography with precolumn fluorimetric derivatization by 9-anthroyl nitrile. Journal of Chromatography B: Biomedical Sciences and Applications, 1998, 706(2): 191-199
    [239] Lin C L, Wu T J, Machacek D A, et al. Urinary free cortisol and cortisone determined by high performance liquid chromatography in the diagnosis of cushing’s syndrome. The Journal of Clinical Endocrinology & Metabolism, 1997, 82(1): 151-155
    [240] Turpeinen U, Markkanen H, V?lim?ki M, et al. Determination of urinary free cortisol by HPLC. Clinical Chemistry, 1997, 43(8): 1386-1391
    [241] Jusko W J, Pyszczynski N A, Bushway M S, et al. Fifteen years of operation of a high-performance liquid chromatographic assay for prednisolone, cortisol and prednisone in plasma. Journal of Chromatography B: Biomedical Sciences and Applications, 1994, 658(1): 47-54
    [242] D?ppenschmitt S A, Scheidel B, Harrison F, et al. Simultaneous determination of prednisolone, prednisolone acetate and hydrocortisone in human serum by high-performance liquid chromatography. Journal of Chromatography B:Biomedical Sciences and Applications, 1995, 674(2): 237-246
    [243] Hirata H, Kasama T, Sawai Y, et al. Simultaneous determination of deflazacort metabolites II and III, cortisol, cortisone, prednisolone and prednisone in human serum by reversed-phase high-performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 1994, 658(1): 55-61
    [244] Alvinerie M, Sutra J, Galtier P, et al. Simultaneous measurement of prednisone, prednisolone and hydrocortisone in plasma by high performance liquid chromatography. Annales de Biologie Clinique, 1990, 48(2): 87-90
    [245] Kabra P, Tsai L, Marton L. Improved liquid-chromatographic method for determination of serum cortisol. Clinical Chemistry, 1979, 25(7): 1293-1296
    [246] AbuRuz S, Millership J, Heaney L, et al. Simple liquid chromatography method for the rapid simultaneous determination of prednisolone and cortisol in plasma and urine using hydrophilic lipophilic balanced solid phase extraction cartridges. Journal of Chromatography B, 2003, 798(2): 193-201
    [247] Bristow M R.β-Adrenergic Receptor Blockade in Chronic Heart Failure. Circulation, 2000, 101(8): 558-569
    [248] Reiter M J, Reiffel J A. Importance of beta blockade in the therapy of serious ventricular arrhythmia. The American Journal of Cardiology, 1998, 82(4A): 9I-19I
    [249] Modamio P, Lastra CF, Mari?o EL. Error structure for the HPLC analysis for atenolol, metoprolol and propranolol: a useful weighting method in parameter estimation. Journal of Pharmaceutical and Biomedical Analysis, 1998, 17(3): 507-513
    [250] Basci N E, Temizer A, Bozkurt A, et al. Optimization of mobile phase in the separation ofβ-blockers by HPLC. Journal of Pharmaceutical and Biomedical Analysis, 1998, 18(4-5): 745-750
    [251] Braza A J, Modamio P, Lastra C F, et al. Development, validation and analytical error function of two chromatographic methods with fluorimetric detection for the determination of bisoprolol and metoprolol in human plasma.Biomedical Chromatography, 2002, 16(8): 517-522
    [252] Albers S, Elshoff J P, V?lker C, et al. HPLC quantification of metoprolol with solid-phase extraction for the drug monitoring of pediatric patients Biomedical Chromatography, 2005, 19(3): 202-207
    [253] Gergov M, Robson J N, Duchoslav E, et al. Automated liquid chromatographic/tandem mass spectrometric method for screeningβ-blockingdrugs in urine. Journal of Mass Spectrometry, 2000, 35(7): 912-918
    [254] Thevis M, Opfermann G, Sch?nzer W. High speed determination of beta-receptor blocking agents in human by liquid chromatography/tandem mass spectrometry. Biomedical Chromatography, 2001, 15(6): 393-402
    [255] Kataoka H, Narimatsu S, Lord H L, et al. Automated in-tube solid-phase microextraction coupled with liquid chromatography/electrospray ionization mass spectrometry for the determination ofβ-blockers and metabolites in urine and serum samples. Analytical Chemistry, 1999, 71(19): 4237-4244
    [256] Naidong W, Shou W Z, Addison T, et al. Liquid chromatography/tandem mass spectrometric bioanalysis using normal-phase columns with aqueous/organic mobile phases-a novel approach of eliminating evaporation and reconstitution steps in 96-well SPE. Rapid Communications in Mass Spectrometry, 2002, 16(20): 1965-1975
    [257] Priebe W. Anthracyclines antibiotics. New analogs, methods of delivery, and mechanisms of action. American Chemical Society, 1995, 574(1): 259-267
    [258] Carrasco C, Joubert A, Tardy C, et al. DNA sequence recognition by bispyrazinonaphthalimides antitumor agents. Biochemistry, 2003, 42(40): 11751-11761
    [259] Erdem M, Ozsoz. Interaction of the anticancer drug epirubicin with DNA. Analytica Chimica Acta, 2001, 437(1): 107-114
    [260] Pigram W J; FullerW, Hamilton L D. Stereochemistry of intercalation: interaction of daunomycin with DNA. Nat. N.Biol. 1972, 235, 17-19
    [261] Momparler R. L, Karon M, Siegel S E, et al. Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells. Cancer Research, 1976, 36(8): 2891-2895
    [262] Tewey K M, Rowe T C, Yang L, et al. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science, 1984, 226(4673): 466-468
    [263] Schneider E, Hsiang Y, Lui L F. DNA Topoisomerases as anticancer drug targets. Advances in Pharmacology, 1990, 21, 149-183
    [264] Sander M, Tsieh T S. Double strand DNA cleavage by type II DNA topoisomerase from drosophila melanogaster. Journal of Biological Chemistry, 1983, 258(13), 8421-8428
    [265] Hutchins R A, Crenshaw J M, Graves D E, et al. Influence of substituent modifications on DNA binding energetics of acridine-based anticancer agents.Biochemistry, 2003, 42(46): 13754–13761
    [266] Lah J, Bezan M, Vesnaver G. Thermodynamics of berenil binding to poly[d(AT)]·poly[d(AT)] and poly[d(A)]·poly[d(T)] duplexes. Acta Chimica Slovenic, 2001, 48(3): 289-308
    [267] Su H, Williams P, Thompson M. Platinum anticancer drug binding to DNA detected by thickness-shear-mode acoustic wave sensor. Analytical Chemistry, 1995, 67(5): 1010-1013
    [268] Aslanoglu M, Houlton A, Horrocks B R. Functionalised monolayer for nucleic acid immobilisation on gold surfaces and metal complex binding studies. Analyst, 1998, 123(4): 753-758
    [269] David W M, Brodbelt J, Kerwin S M, et al. Investigation of quadruplex oligonucleotide-drug interactions by electrospray ionization mass spectrometry. Analytical Chemistry, 2002, 74(9): 2029–2033
    [270] Berkel G J V. An overview of some recent developments in ionization methods for mass spectrometry. European Journal of Mass Spectrometry, 2003, 9(6): 539-562
    [271] Rodriguez M, Bard A J. Electrochemical studies of the interaction of metal chelates with DNA. Analytical Chemistry, 1990, 62(24): 2658-2662
    [272] Arkin M R, Stemp E D A, Turro C, et al. Luminescence quenching in supramolecular systems: A comparison of DNA- and SDS micelle-mediated photoinduced electron transfer between metal complexes. Journal of the American Chemical Society, 1996, 118(9): 2267-2274
    [273] OkhoninV, Krylova S M, Krylov S N. Nonequilibrium capillary electrophoresis of equilibrium mixtures, mathematical model. Analytical Chemistry, 2004, 76(5): 1507-1512
    [274] Berezovski M, Krylov S N. Thermochemistry of Protein-DNA Interaction Studied with Temperature-Controlled Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures. Analytical Chemistry, 2005, 77(5): 1526-1529
    [275] McGhee J D, Von Hippel P H. Theoretical aspects of DNA-protein interactions: Cooperative and non-cooperative binding of large ligands to a one-dimensional homogeneous lattice. Journal of Molecular Biology, 1974, 86(2): 469-489
    [276] Pachter J A, Huang C H, Du Vernay V H, et al. Viscometric and fluorometric studies of deoxyribonucleic acid interactions of several new anthracyclines. Biochemistry, 1982, 21(7): 1541-1547
    [277] Mazerska Z, Dziegielewski J, Konopa. J. Enzymatic activation of a newantitumour drug, 5-diethylaminoethylamino-8-hydroxyimidazoacridinone, C-1311, observed after its intercalation into DNA. Biochemical Pharmacology, 2001, 61(6): 685-694
    [278] Wang B, Bouffier L, Demeunynck M, et al. New acridone derivatives for the electrochemical DNA-hybridisation labeling. Bioelectrochemistry, 2004, 63(1-2): 233-237
    [279] Le Gal JM, Morjani H, Manfait M. Ultrastructural appraisal of the multidrug resistance in K562 and LR73 cell lines from fourier transform infrared spectroscopy. Cancer Research, 1993, 53(16): 3681-3686
    [280] Xie H P, Jiang J H, Chu X, et al. Competitive interaction of the antitumor drug daunorubicin and the fluorescence probe ethidium bromide with DNA as studied by resolving trilinear fluorescence data: the use of PARAFAC and its modification. Anal Bioanal Chem, 2002, 373(3): 159-162
    [281] Zhang F, Zhang Q Q, Wang W G, et al. Synthesis and DNA binding studies by spectroscopic and PARAFAC methods of a ternary copper(II) complex. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184(3): 241-249
    [282]杨频,高飞.生物无机化学原理.北京:科学出版社, 2002, 329-331

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700