微孢根霉华根霉变种CICIM F0088生淀粉酶系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究从各类样品中分离得到365株具有淀粉水解能力的丝状真菌并保藏于江南大学中国高校工业微生物资源与信息中心,建立了一个丝状真菌资源库。从该资源库中筛选出一株具有较强生淀粉水解能力的混合淀粉酶系产生菌株CICIM F0088。结合形态学观察以及ITS序列同源性分析,确认该菌株为微孢根霉的华根霉变种(Rhizopus microsporus var. chinensis)。研究发现CICIM F0088菌株在固态和液态发酵时所产生的淀粉酶量和淀粉酶系的组成均存在差异。
     本文首次对Rhizopus microsporus var. chinensis在固态和液态两种发酵方式下所产生的淀粉酶系进行系统的研究和比较。经过硫酸铵沉淀、双水相分离、离子交换层析、制备电泳和凝胶过滤层析等五种纯化方法,从CICIM F0088菌株的固态发酵产物中分离得到三个电泳纯的酶蛋白GA A,GA B和AA,酶蛋白的分子量依次为53、52和55 kDa;采用硫酸铵沉淀、离子交换层析和制备电泳等三种纯化方法,从液态发酵产物中分离得到两个电泳纯的酶蛋白GA C和GA D,酶蛋白分子量分别为53和52 kDa。
     对从CICIM F0088菌株分离纯化得到的5个淀粉酶的酶学性质进行了研究,发现固态发酵时产生的葡萄糖淀粉酶GA A和GA B的温度耐受范围、pH耐受范围以及生淀粉水解能力均优于液态发酵产生的GA C和GA D;上述四个葡萄糖淀粉酶都具有一定的生淀粉水解能力,而固态发酵时产生的α-淀粉酶AA不具有该能力。
     结合Rhizopus属来源的葡萄糖淀粉酶氨基酸保守序列及Rhizopus microsporus密码子偏好性等信息设计简并引物,利用PCR技术扩增得到CICIM F0088菌株葡萄糖淀粉酶编码基因的部分DNA序列,再通过反向PCR获得已知序列的侧翼序列,最终获得完整的编码基因gluE。以此为基础,通过RT-PCR的方法扩增出了该基因完整的cDNA序列。通过比较gluE基因的DNA和cDNA序列发现,gluE基因全长2763 bp,内部存在四个内含子;该基因的cDNA全长1818 bp,其中信号肽编码区81 bp,成熟肽编码区共编码579个氨基酸残基。将成熟肽的氨基酸序列与GenBank中其他微生物来源的葡萄糖淀粉酶一级结构进行同源性比对分析发现,该酶与所有已知葡萄糖淀粉酶的最高同源性为80%,是一种新的葡萄糖淀粉酶。
     将葡萄糖淀粉酶基因gluE的cDNA序列连入pET-28a(+)表达载体,构建了重组质粒pET-28a-gluE,在Escherichia coli BL21 (DE3)中成功实现了异源活性表达。利用His-tag亲和层析分离纯化了表达后的重组酶蛋白GA E,对重组酶的酶学性质进行了研究,发现其具有水解生淀粉的能力。
A newly isolated active producer of raw-starch-digesting amyloytic enzymes, CICIM F0088, was isolated from the strains library including 365 fungi able to digest starch, and was identified by morphological characteristics and molecular phylogenetic analyses. This fungus was kept in the Culture and Information Center of Industrial Microorganism of China University (http://cicim-cu.jiangnan.edu.cn) at JiangNan University as Rhizopus microsporus var. chinensis CICIM F0088. The amount of enzymes production and their compositions were different between solid-state fermentation (SSF) and submerged fermentation (SmF).
     For the first time, comparative research of amyloytic enzymes produced in SSF and SmF was carried out in fungus Rhizopus microsporus. Two glucaomylases named as GA A and GA B, and oneα-amylase named as AA from SSF were purified to homogeneity through ammonium sulfate precipitation, aqueous two-phase systems, Toyopearl DEAE-650M chromatography, prep cell and Toyopearl HW-55F gel filtration chromatography. The mocular weights of three proteins were 53, 52, and 55 kDa, respectively. In addition, two amyloytic enzymes from SmF were also purified to homogeneity by the procedures of ammonium sulfate precipitation, Toyopearl DEAE-650M chromatography, prep cell, separately named as GA C and GA D. The mocular weights of two proteins were 53, and 52 kDa, respectively.
     Glucoamylases produced from SSF were much more thermostable and pH tolerate than enzymes produced from SmF. Raw-starch-digesting abilities were found in all the four glucoamylases except theα-amylase.
     Based on the analysis of conserved amino acid sequences from Rhizopus sp., and the codon preference of Rhizopus microsporus, DNA sequence of gluE was amplified, and then the cDNA sequence of gluE was amplified by RT-PCR. Results showed a 2763 bp gluE gene including 4 introns was cloned. The deduced unprocessed glucoamylase from CICIM F0088 was 579 amino acids long and shows 80% identity to the Rhizopus glucoamylase. It was the first time of glucoamylase gene cloning from Rhizopus microsporus.
     GA E cDNA fragment encoding mature peptide was inserted into the plasmid pET-28a(+) and expressed in E. coli BL21. The purified recombinant enzyme displayed raw starch digesting ability.
引文
本章部分内容已发表于《工业微生物》, 2010, 40(1):68-72;
    本章部分内容已被《食品工业科技》所接受.
    本章部分内容已发表于《食品与发酵工业》, 2010, 36(1):1-4;
    本章部分内容已被《应用与环境生物学报》所接受.
    本章部分内容已发表于《Journal of Microbiology and Biotechnology》, 2010, 20(2):383-390.
    1.颜卉君等编著.生物化学简明教程[M].北京:高等教育出版社, 1999. 73-74.
    2.张树政主编.酶制剂工业[M].北京:科学出版社, 1998. 456-457.
    3. Demirkan E S, Mikami B, Adachi M.α-Amylases from B. anyloliquefaciens: purification, characterization, raw starch degradation and expression in E. coli [J]. Process Biochem, 2005, 40: 2629-2636.
    4. Gupta R, Gigras P, Mohapatra H, et al. Microbialα-amylases: a biotechnological perspective [J]. Process Biochem, 2003, 38: 1599-1616.
    5. Pandey A, Nigam P, Soccol C R, et al. Advances in microbial amylases [J]. Biotechnol Appl Biochem, 2000, 31: 135-152.
    6. van der Maarel M J E C, van der Veen B, Uitdehaag J C M, et al. Properties and applications of starch-converting enzymes of theα-amylase family [J]. J Biotechnol, 2002, 94: 137-155.
    7. Sivaramakrishnan S, GanGA Dharan D, Nampoothiri K M, et al. alpha-amylases from microbial sources- an overview on recent developments [J]. Food Technol Biotechnol, 2006, 44(2): 173-184.
    8.二国二郎主编(王薇青等译).淀粉科学手册[M].北京:轻工业出版社, 1990. 131.
    9. Mamo G, Gessesse A. Purification and characterization of two raw-starch-digesting thermostableα-amylases from a thermophilic Bacillus [J]. Enzyme Microb Technol, 1999, 25(3-5): 433-438.
    10. Sorimachi K. Solution structure of the granular starch binding domain of glucoamylase from Aspergillus niger by nuclear magnetic resonance spectroscopy [J]. J Mol Biol, 1996, 259(5): 970-987.
    11. Penninga D, van der Veen BA, Knegtel R. The raw starch binding domain of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 [J]. J Biol Chem, 1996, 271(51): 32777-32784.
    12. Shinsaku H, and Yuji T. Production and characteristics of raw-starch-digestingα-amylase from a protease-negative Aspergillus ficum mutant [J]. Appl Environ Microbiol, 1986, 52(5):1068-1073.
    13. Quigley T A, Kelly C T, Doyle E M, et al. Patterns of raw starch digesting by the glucoamylase of Cladosporium gossypiicola ATCC 38026 [J]. Process Biochem, 1998, 33(6): 677-681.
    14. Marlida Y, Saari N, Hassan Z, et al. Raw starch-digesting enzyme from newly isolated strain of endophytic fungi [J]. World J Microbiol Biotechnol, 2000, 16: 573-578.
    15. Marlida Y, Saari N, Hassan Z, et al. Inprovement in raw sago starch degrading enzyme production from Acremonium sp. endophytic fungus using carbon and nitrogen sources [J]. Enzyme Microb Technol, 2000, 27: 511-515.
    16. James J.A.,and Lee.B.H. Glucoamylase: microbial, sources, industrial application and molecular biology- a review [J]. J Food Biochem. 1997, 21:1-52.
    17.董永存,刘洋,陈源源等.嗜热菌来源的生淀粉酶分离纯化及其酶学性质[J].微生物学报, 2008, 48(2): 169-175.
    18.李风玲,张璐,刘连成等.生淀粉糖化酶产生菌Cellulosimicrobium sp. SDE的分离鉴定及酶学性质研究[J].工业微生物, 2008, 38(5): 45-49.
    19. The amylases research society of Japan. Handbook of amylases and related enzymes [M]. Pergamon Press, 1998: 120-122.
    20. Fogarty W M, Kelly C T. Microbiol Enzyme and Biotechnology [M]. Elsevier Applied Science, 1990: 100-101.
    21. Minami N M, Kililian B V. Separation and purification of glucoamylase in aqueous two-phase systems by a two-step extraction [J]. J chromatogr B, 1998, 711: 309-312.
    22. Pazur J H, and Ando T. The action of an amyloglucosidase of Aspergillus niger on starch and malto-oligosaccharides [J]. J Biol Chem, 1959, 234:1966-1970.
    23. Saha B C, and Ueda S. Raw starch adsorption, elution and digestion behaviour of glucoamylase of Rhizopus niveus [J]. J Ferment Tchnol, 1983, 61:67-72.
    24. Goto M, Semimaru T, Furukawa K, et al. Analysis of the raw starch-binding domain by mutation of a glucoamylase from Aspergillus awamori var. kawachi expressed in Saccharomyces cerevisiae [J]. Appl Environ Microbiol, 1994, 60: 3926-3930.
    25. Norouzian D, Akbarzadeh A, Scharer JM, et al. Fungal glucoamylases [J]. Biotechnol Adv, 2006, 24: 80-85.
    26. Saha B C, Mitsue T, and Ueda S. Glucoamylase produced by submerged culture of Aspergillus oryzae [J]. Starch/St?rke, 1979, 31:307-312.
    27. Pazur PJ, Liu B, Miskier FJ. Comparison of properties of glucoamylase from Rhizopus niveus and Aspergillus niger [J]. Biotechnol Appl Biochem, 1990, 12:63-78.
    28. Nahar S, Hossain F, Feroza B, et al. Production of glucoamylase by Rhizopus sp. in liquid culture [J]. Pakistan J Bot, 2008, 40:1693-1698.
    29. Ohnishi M, Higushi A, Todoriki S, et al. Characterazation on the conformation ofglucoamylase from Rhizopus niveus and Rhizopus delemar [J]. Starch/St?rke, 1990, 42:273-276.
    30. Shinjiro T, Masaaki Y. Purification and characterization of heterogeneous glucoamylase from Monascus purpureus [J]. Biosci Biotechnol Biochem, 2007, 71(10): 2573-2576.
    31. Thor S T, Anders H J, Knud J, et al. Identification and characterization of glucoamylase from the fungus Thermomyces lanuginosus [J]. Biochim Biophys Acta, 2006, 1764: 671-676.
    32. Nunberg J H, Meade J H, Cole G, et al. Molecular cloning and characterization of the glucoamylase gene of Aspergillus awamori [J]. Mol Cell Biol, 1984, 4:2306-2315.
    33. Boel E, Hansen M T, Hjort I, et al. Two different types of intervening sequences in the glucoamylase gene from Aspergillus niger [J]. EMBO J, 1984, 3:1581-1589.
    34. Boel E, Hjort I, Svensson B, et al. Glucoamylases G1 and G2 from Aspergillus niger are synthesized from two different but closely related mRNAs [J]. EMBO J, 1984, 3:1097-1102.
    35. Boel E, Hansen M T, Hjort I, et al. Two different types of intervening sequences in the glucoamylase gene from Aspergillus niger [J]. EMBO J, 1984, 3:1581-1589.
    36. Boel E, Hjort I, Svensson B, et al. Glucoamylases G1 and G2 from Aspergillus niger are synthesized from two different but closely related mRNAs [J]. EMBO J, 1984, 3:1097-1102.
    37. Fowler T, Berka R M, and Ward M. Regulation of the glaA gene of Aspergillus niger [J]. Curr Genet, 1990, 18:537-545.
    38. Hata Y, Kitamoto K, Gomi K, et al. The glucoamylase cDNA from Aspergillus oryzae: its cloning, nucleotide sequence, and expression in Saccharomyces cerevisiae [J]. Agric Biol Chem, 1991, 55:941-949.
    39. Hata Y, Tsuchiya K, Kitamoto K, et al. Nucleotide sequence and expression of the glucoamylase- encoding gene (glaA) from Aspergillus oryzae [J]. Gene, 1991, 108:145-150.
    40. Ghosh A, Chatterjee B S, and Das A. Characterization of glucoamylase from Aspergillus terreus [J]. FEMS Microbiol Lett, 1990, 66:345-349.
    41. Ghosh A, Chatterjee B S, and Das A. Induction and catabolite repression of high-affinity glucoamylase in Aspergillus terreus strain [J]. J Gen Microbiol, 1990, 136:1307-1311.
    42. Ventura L, González-Candelas L, Pérez-González J A, et al. Molecular cloning and transcriptional analysis of the Aspergillus terreus gla1 gene encoding a glucoamylase [J]. Appl Environ Microbiol, 1995, 61:399-402.
    43. Houghton-Larsen J, Pedersen P A. Cloning and characterisation of a glucoamylase gene (GlaM) from the dimorphic zygomycete Mucor circinelloides [J]. Appl Microbiol Biotechnol, 2003, 62:210-217.
    44. Stone P J, Makoff A J, Parish J H, et al. Cloning and sequence analysis of the glucoamylase gene of Neurospora crassa [J]. Curr Genet, 1993, 24:205-211.
    45. Ashikari T, Nakamura N, Tanaka Y, et al. Rhizopus raw-starch-degrading glucoamylase: Its cloning and expression in yeast [J]. Agric Biol Chem, 1986, 50:957-964.
    46.刘旭东,徐岩.一种新的中温酸性α-淀粉酶的分离纯化及酶学性质[J].应用与环境生物学报, 2008, 14(2): 235-239.
    47.周家华,黄立新,周俊侠.α-淀粉酶和葡萄糖淀粉酶协同水解淀粉的动力学研究[J].中国调味品, 1997, 227(7): 10-13.
    48.王华,韩金玉,钟穗生等.双酶法一步水解马铃薯淀粉的动力学研究[J].高校化学工程学报, 2001, 15(5): 446-452.
    49. Michihiro F, Shuhei M, Yoshimi Y. A kinetue equation for hydrolysis of polysaccharides by mixed exo- and endoenzyme systems [J]. Biotechnol Bioeng, 1981, 1393-1398.
    50. Lee S E, Armiger W B, Watteeuw C M, et al. A theoretical model for enzymatic hydrolysis of cellulose [J]. Biotechnol Bioeng, 1978, 141-144.
    51. Michihiro F, Yoshimi K. Synergistic action ofα-amylase and glucoamylase on hydrolysis of starch [J]. Biotechnol Bioeng, 1985, 27(3): 260-265.
    52. Soni SK, Kaur A, Gupta JK. A solid state fermentation based bacterial [alpha]-amylase and fungal glucoamylase system and its suitability for the hydrolysis of wheat starch [J]. Process Biochem, 2003, 39:185-192.
    53. Takeda Y, Hizukuri S, Ozono Y, et al. Actions of porcine pancreatic and Bacillus subtilis alpha-amylases and Aspergillus niger glucoamylase on phosphorylated (1-4)-alpha-D-glucan [J]. Biochim Biophys Acta, 1983, 749:302-311.
    54. Soni SK, Kaur A, Gupta JK, A solid state fermentation based bacterial a-amylase and fungal glucoamylase system and its suitability for the hydrolysis of wheat starch [J]. Process Biochem, 2003, 39:185-192.
    55. Shigechi H, Koh J, Fujita Y, et al. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase [J]. Appl Environ Microbiol, 2004, 70:5037-5040.
    56. Shigechi H, Fujita Y, Koh J, et al. Energy-saving direct ethanol production from low-temperature-cooked corn starch using a cell-surface engineered yeast strainco-displaying glucoamylase and alpha-amylase [J]. Biochem Eng J, 2004, 18:149-153.
    57.王正祥.中国高校工业微生物资源数据平台-江南大学工业微生物资源和信息中心. http://cicim-cu.jiangnan.edu.cn.
    58. Pandey A, Soccol C R, Mitchell D. New developments in solid state fermentation: I-bioprocesses and products [J]. Process Biochemistry, 2000, 35(10): 1153-1169.
    59. Couto S R, Sanroman M A. Application of solid-state fermentation to food industry- A review [J]. J Food Eng, 2006, 76(3): 291-302.
    60. Sudo S, Ishikawa T, Sato K, et al. Comparison of acid-stableα-amylase production by Aspergillus kawachii in solid-state and submerged cultures [J]. J Ferment Bioeng, 1994, 77(5): 483-489.
    61. Ramesh M V, Lonsane B K. Regulation ofα-amylase production in Bacillus licheniformis M27 by enzyme end-products in submerged fermentation and its overcoming in solid-state fermentation system [J]. Biotechnol Lett, 1991, 13(5): 355-360.
    62. Alazard D, Raimbault M. Comparative study of amylolytic enzymes production by Aspergillus niger in liquid and solid-state cultivation [J]. Eur J Appl Microbiol Biotech, 1981, 12(2): 113-117.
    63. Oda K, Kakizono D, Yamada O, et al. Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions [J]. Appl Environ Microbiol, 2006, 72(5): 3448-3457.
    64. MinjaresCarranco A, TrejoAguilar B A, Aguilar G, et al. Physiological comparison between pectinase-producing mutants of Aspergillus niger adapted either to solid-state fermentation or submerged fermentation [J]. Enzyme Microb Technol, 1997, 21(1): 25-31.
    65. Ramesh M V, Lonsane B K. Ability of a solid-state fermentation technique to significantly minimize catabolic repression ofα-amylase production by Bacillus licheniformis M27 [J]. Appl Microbiol Biotechnol, 1991, 35(5): 591-593.
    66. Mamo G and Gessesse A. Purification and characterization of two raw-starch-digesting thermostableα-amylases from a thermophilic Bacillus [J]. Enzyme Microb Technol, 1999, 25(3-5): 433-438.
    67.韦平和主编.生物化学实验与指导[M].北京:中国医药科教出版社,2003.
    68.周小玲,沈微,饶志明等.一种快速提取真菌染色体DNA的方法[J].微生物学通报, 2004, 31(4): 89-92.
    69.杨德.实验设计与分析[M].北京:中国农业出版社,2002, 112-120.
    70.张润楚,邓海涛,兰燕等译.实验设计与分析及参数优化[M].北京,中国统计出版社, 2003, 346-350.
    71. Nirmala M, Muralikrishna G. Threeα-amylases from malted finger millet (Ragi, Eleusine coracana, Indaf-15)-purifocation and partial characterization [J]. Phytochemistry, 2003, 62: 21-30.
    72. Schipper MAA and Stalpers JA, Revision of the genus Rhizopus [J]. Stud Mycol, 1984(25): 20-34.
    73. Gardes M and Bruns TD, ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts [J]. Mol Ecol, 1993(2): 113-118.
    74. Hesseltine CW. Solid state fermentations [J]. Biotechnol Bioeng, 1972(14): 517-532.
    75. Annunziato ME, Mahoney RR and Mudgett RE. Production ofα-galactosidase from Aspergilus oryzae grown in solid state culture [J]. J Food Sci, 2006(51): 1370-1371.
    76. Ray RC. Extracellular amylase(s) production by fungi Botryodiplodia theobromae and Rhizopus oryzae grown on cassava starch residue [J]. J Environ Biol, 2004(25): 489-495.
    77. Beatriz M B, Claudia P, Laura F F, et al. Chromatographic methods for amylases [J]. J Chromatogr B, 1996, 684: 217-237.
    78.汪家政,范明.蛋白质技术手册[M].北京:科学出版社, 2000.
    79. Xiao ZZ, Storms R, Tsang A A, et al. Quantitative starch–iodine method for measuring alpha-amylase and glucoamylase activities [J]. Anal Biochem, 2006, 351: 146-148.
    80.郑曼新.复合酶中糖化酶活力的测定[J].无锡轻工大学学报, 2004, 23(4): 90-93.
    81. Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the folin-phenol reagent [J]. J Biol Chem, 1951, 193: 265-275.
    82.李彧娜,石贵阳,王武等.利用Native制备电泳分离来源于Rhizopus microsporus var. chinensis的葡萄糖淀粉酶同工酶[J].食品与发酵工业, 2010, 36(1): 53-56.
    83. Clark A H. Direct analysis of experimental tie line data (two polymer–one solvent systems) using Flory–Huggins theory [J]. Carbohyd Polym, 2000, 42(4): 337-351.
    84. Yu LR, Zeng R, Shao XX, et al. Identification of differentially expressed proteins between human hepatoma and normal liver cell lines by two-dimensional electrophoresis and liquid chromatography-ion trap mass spectrometry [J]. Electrophoresis, 2000, 21:3058-3068.
    85. Dubis M, Hess W C. Colorimetric method for determination of sugar and related substance [J]. Anal Chem, 1956, 28: 350-354.
    86. Peixoto SC, Jorge JA, Terenzi HF, et al. Rhizopus microsporus var. rhizopodiformis: athermotolerant fungus with potential for production of thermostable amylases [J]. Int Microbiol, 2003, 6:269-73.
    87. Peixoto SC, Sandrim VC, Guimaraes LH, et al. Evidence of thermostable amylolytic activity from Rhizopus microsporus var. rhizopodiformis using wheat bran and corncob as alternative carbon source [J]. Bioprocess Biosyst Eng, 2008, 31:329-34.
    88. Nguyen CH, Tsurumizu R, Sato T, et al. Taka-amylase A in the conidia of Aspergillus oryzae RIB40 [J]. Biosci Biotechnol Biochem, 2005, 69:2035-2041.
    89. Hamilton L M, Kelly C T, Fogarty W M. Production and properties of the raw starch-digestingα-amylase of Bacillus sp. IMD 435 [J]. Process Biochem, 1999, 35: 27-31.
    90.戈苏国,杨寿均,张树政. N-糖基化引起葡萄糖淀粉酶不同型的差异[J].科学通报, 1994, 39(31): 1423-1425.
    91. Pazur J H, Knull H R, and Cepure A. Glucoamylase: Structure and properties of the two forms of glucoamylase from Aspergillus niger [J]. Carbohyd Res, 1971, 20:83-96.
    92. Sambrook J, Frisch E F, Maniatis T. Molecular Cloning: A laboratory manual, 2nd ed [M]. New York: Cold Spring Harbor Laboratory Press, 1989
    93. Perlman D. A putative signal peptidase recognition site and sequence in eukaryotic signal peptides [J]. J Mol Biol, 1983, 167: 391-409
    94. Southall SM. The starch-binding domain from glucoamylase disrupts the structure of starch [J]. FEBS Lett, 1999, 447(1): 58-60.
    95. Sauer JC, T Frandsen. Stability and function of interdomain linker variants of glucoamylase 1 from Aspergillus niger [J]. Biochemistry, 2001, 40(31): 9336-9346.
    96. Svensson B, Larscn K,et al. The complete amino acid sequence of the glycoprotein, glucoamylase G1, from Aspergillus niger [J]. I. & Bocl, E, 1983, 48: 529-544.
    97.李育阳.基因表达技术[M].科学出版社, 2001.
    98. Martinez A, Krappskreg P M, Olafsdottir S, et al. Expression of recombinant human phenylalanine hydroxylase as fusion protein in Escherichia coli circumvents proteolytic degradation by host cell proteases [J]. J Biotechnol, 1995, 306: 589-597.
    99. Luli G W, Strolh W R. Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations [J]. Appl Environ Microbiol, 1990, 56: 1004-1011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700