固体氧化物燃料电池性能及其退化的微结构理论与多尺度模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)具有燃料灵活、发电能效高等优点,是各国竞相发展的能源新技术。虽然实验方法是推进SOFC技术进步的决定性因素,但是实验方法也存在自身的缺点(如:昂贵、耗时等),一定程度上制约了SOFC的实用化进程。相对而言,SOFC的理论和数值仿真分析成本较低而且高效。利用SOFC的工作原理结合SOFC的材料性质,建立多尺度多物理场耦合模型,可以从材料选择、电池结构设计、运行参数范围方面对SOFC的整体性能进行量化优化设计。因此,理论模型和数值仿真技术对加深SOFC的理解和加速SOFC技术的发展,具有十分重要的意义。
     本论文主要利用理论和数值计算的方法对SOFC的电化学性能、机械性能和电池性能退化等方面进行系统的分析与讨论。本论文主要包括如下几部分内容:
     (1)首先介绍燃料电池(fuel cell)发展背景和当前的发展概况,然后概括SOFC的基本工作原理和与SOFC相关的热力学基本理论,接下来简单介绍数值模拟所采用的有限元基本方法,最后对国内外SOFC在理论计算与仿真设计方面的进展进行总结。
     (2)针对微管SOFC的设计,运用有限元的方法建立了其二维轴对称多尺度、多物理场模型,该模型耦合求解了电荷(电子和离子)的输运方程、多组分物质的扩散方程、电化学反应控制方程以及能量和动量输运方程。通过该模型研究了电池的工作条件(开路电压、燃料流速、电流收集方式、燃料组成)微结构性质(颗粒半径、复合电极组分比等)对电池电化学性能的影响。理论分析和计算结果表明:微管SOFC在很大程度上制约于电池的电流收集方式、复合电极的组分比和电极的颗粒半径等因素。
     (3)在微管SOFC机械性能方面,利用有限元的方法建立了微管SOFC二维轴对称应力模型,基于微管SOFC温度场的分布和电池的制作过程,计算了室温和工作温度下,微管SOFC内部的应力分布。研究了微管SOFC复合阳极中的Ni的体积分数和复合阴极中LSM体积分数对电池机械性能的影响。研究发现:在机械稳定性方面,无论是在工作温度下还是在室温下,降低阳极的Ni含量,不仅可以在很大程度上减小阳极的拉伸应力,同样可以减小阴极和电解质的压应力。增加LSM含量有利于减小阴极的压应力,但对阳极和电解质的影响较小。
     (4)基于双球模型、面扩散理论和SOFC阳极微结构性质,发展了描述复合阳极中Ni颗粒在高温下粗化的模型。阳极中Ni颗粒的粗化主要是由于相互连接的颗粒中较大的颗粒吞并较小颗粒引起的。Ni颗粒在阳极中粗化的驱动力来源于Ni颗粒半径不同导致的扩散速率的差异,金属原子面扩散是主要的扩散机制。模型中颗粒间连接面的个数是通过配位数理论计算的,概率性假设用来描述复合阳极中YSZ对Ni颗粒粗化的限制作用。根据以上的理论建立了Ni颗粒粗化动力学的解析表达式,通过对比理论结果和实验结果发现:理论计算结果能够较好的描述实验中Ni颗粒随时间演化的趋势。最后对影响Ni颗粒粗化的一些参数和SOFC复合阳极中Ni粗化的最大半径进行了讨论。
     (5)基于Ni颗粒的粗化模型,结合配位数理论和逾渗理论建立了二维SOFC电池堆性能随时间演化的多尺度、多物理场模型。为了确保参数的有效性,把实验的Ⅰ-Ⅴ曲线和理论的Ⅰ-Ⅴ曲线进行了对照,实验结果和理论结果吻合的很好。然后通过配位数理论和逾渗理论研究了复合阳极中Ni的粗化对体三相线、面三相线以及电子电导率的影响。研究结果表明在Ni的体积分数较大时,Ni的颗粒半径粗化到较大的值,Ni仍然能够处于逾渗阈值以上;类似的,YSZ颗粒半径与Ni的颗粒半径之比较大时,Ni的颗粒半径同样可以粗化到较大的值。基于二维多尺度多物理场模型结合三相线、有效电子电导率的变化,分析了SOFC电池堆的电化学性能随时间的变化。不同阳极的组分、dm值、工作电压、Rib宽度和接触电阻的时,Ni的粗化对电池堆性能的影响存在很大的差异。研究结果表明:当Ni的体积分数较大,dm较大、工作电压较小、Rib宽度较小以及接触电阻较小时,Ni的粗化对电池性能的影响较小。
     (6)对所研究内容进行简单总结。
Solid oxide fuel cell (SOFC) has been recognized as a promising candidate for the future electricity power generation technology due to its high efficiency, fuel flexibility as well as other benefits. The experimental method is the decisive factor to promote the progress of SOFC technology, but there are many disadvantages in the experimental approach, e.g., expensive, time-consuming, et al. These shortcomings severely hinder the development of SOFC technology. In contrast, the theory and numerical simulation analysis are low-cost and efficient. Multi-physics model, based on the principle and the material properties of SOFC, can provide more detailed physical and chemical processes in the SOFC and optimize various parameters, such as working conditions, electrode composition and particle sizes et al. In a word, the theory and numerical simulation analysis play an important role in the process of the development of SOFC technology.
     This dissertation focuses on developing multi-scale and multi-physics model and theory to study the electrochemical performance, mechanical properties and performance degradation of SOFC. This dissertation includes the following contents:
     (1) In the first section, the fuel cell background and the history of fuel cell development are briefly introduced. And then, the working principle and basic thermodynamic theory of SOFC are described in detail. In addition, we also give a brief description about finite element method. Finally, a brief literature overview at home and abroad about the SOFC simulation and theory is presented.
     (2) In the second section, a finite element method based multi-physics numerical model is built for micro tubular solid oxide fuel cell (mtSOFC) that is two-dimensional in nature due to its axial symmetry. The effective properties of the composite electrodes in the model are deduced from the microstructure and property relationship theory. The model is capable of describing the coupled gas diffusion, electronic and ionic conduction, electrochemical reaction, and thermal transport. The effects of the working conditions, the methods for collecting current and composition ratio and particle size of electrode and electrolyte materials in the composite electrode on the electrochemical are systematically examined. It is found that the mtSOFC performance can improve largely by using current collected from two side of anode. Higher fuel flow rates can improve the performance of mtSOFC, however its effects is limit at mid-range current densities. When fuel composition is considered, higher hydrogen contents are favorable for power output. The electrode microstructure is optimized based on both the electrochemical performance and mechanical property of mtSOFC. It is found that increasing the Ni content or reducing the Ni particle size can be generally helpful for improving the electrochemical performance. Low LSM contents are detrimental to the electrochemical performance.
     (3) In the third section, based on the temperature profile and sintering processes of fuel cell, a model, which can calculate the residual stress and thermal stress distribution of mtSOFC under working condition, is development. Based on the thermal stress distribution, the probability of mechanical failure of the ceramic material may be predicted. The effects of the composition ratio of electrode and electrolyte materials in the composite electrode on mechanical properties are systematically examined. The mechanical stability decreases dramatically with the increased Ni content. The LSM content is less consequential on the mechanical stability.
     (4) In the fourth section, considering the surface diffusion and the microstructure of the anode of SOFC, a new model based on two particle system is developed to describe the nickel particle growth in SOFC anode. The growth of mean Ni particle size is due to the integrating of pairs of big particle and small particle which are contacting with each other. And the difference in metal particle diameter leading to diffusion is the driving force for such process. Surface diffusion of metal atoms on the particle surface is the dominant diffusion mechanism. In this model, the number of connect surfaces is calculated by coordination number theory, and a probabilistic assumption is used for describing the block of Yttria-stabilized zirconia (YSZ) on the growth of Ni particle size in the cermet material. The found analytical function for the growth kinetics was compared to experimental results for the growth of nickel particles in anode. The theoretical model was in good agreement with the experiment and described the time dependence of the observed particle radii in an adequate way. At last, the maximal mean particle size is given by the function and compared to the results in other literature.
     (5) In the fifth section, based on the model of nickel particle growth in the anode of SOFC, the theory of coordination number and percolation, a multi-scale and multi-physics model, which can describe the performance of SOFC stack with the time evolution, is development. The theoretical and experimental I-V relations are in excellent agreement, demonstrating the usefulness of the theoretical model. Then, the effects of the coarsening of Ni on the length of TPB and conductivity are systematically examined by the coordination number and percolation theory. The change of TPB length and conductivity are mainly due to the change of average coordination number of anode in SOFC. Based on the multi-scale and multi-physics model, the effects of the coarsening of Ni in the anode on the performance of the SOFC stack are also systematically examined. It is found that high Ni content and big YSZ particles are beneficial to reduce the effect of Ni particle coarsening on the performance the stack.
     (6) In the last section, a brief summary of this dissertation is presented.
引文
[1]衣宝廉,电池.燃料电池——原理·技术·应用[M].化学工业出版社,2004.
    [2]http://WWW.NETL.DOE.GOV/NEWSROOM/FEATURES/11-2011.HTML.
    [3]SINGHAL S C, KENDALL K. High temperature solid oxide fuel cells:fundamentals, design, and applications [M]. Elsevier Science,2003.
    [4]BADWAL S P S, CIACCHI F T. Ceramic membrane technologies for oxygen separation [J]. Advanced Materials,2001,13(12-13):993-6.
    [5]FERGUS J W. Electrolytes for solid oxide fuel cells [J]. Journal of Power Sources,2006, 162(1):30-40.
    [6]ISHIHARA T, MATSUDA H, TAKITA Y. Effects of rare earth cations doped for La site on the oxide ionic conductivity of LaGaO3-based perovskite type oxide [J]. Solid State Ionics,1995,79(147-51.
    [7]HUANG K, TICHY R, GOODENOUGH J B, et al. Superior Perovskite Oxide-Ion Conductor; Strontium-and Magnesium-Doped LaGaO3:Ⅲ, Performance Tests of Single Ceramic Fuel Cells [J]. Journal of the American Ceramic Society,1998,81(10): 2581-5.
    [8]YAMAJI K, HORITA T, ISHIKAWA M, et al. Chemical stability of the LaO.9SrO. IGaO. 8MgO.202.85 electrolyte in a reducing atmosphere [J]. Solid State Ionics,1999, 121(1-4):217-24.
    [9]MINH N Q. Ceramic fuel cells [J]. Journal of the American Ceramic Society,1993,76(3): 563-88.
    [10]HORITA T, KAWADA T, SAKAI N, et al. Low temperature fabrication of (Y, Gd, Sm)-doped ceria electrolyte [J]. Solid State Ionics,1996,86(1255-8.
    [11]SFEIR J, BUFFAT P A, M CKLI P, et al. Lanthanum chromite based catalysts for oxidation of methane directly on SOFC anodes [J]. Journal of Catalysis,2001,202(2): 229-44.
    [12]JUHL M, PRMDAHL S, MANON C, et al. Performance/structure correlation for composite SOFC cathodes [J]. Journal of Power Sources,1996,61(1-2):173-81.
    [13]ZHAO F, VIRKAR A V. Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters [J]. J Power Sources,2005,141(1):79-95.
    [14]KINDERMANN L, DAS D, BAHADUR D, et al. Chemical Interactions between La-Sr-Mn-Fe-O-Based Perovskites and Yttria-Stabilized Zirconia [J]. Journal of the American Ceramic Society,1997,80(4):909-14.
    [15]STEELE B. Appraisal of Cel-yGdyO2-y/2electrolytes for IT-SOFC operation at 500° C [J]. Solid State Ionics,2000,129(1):95-110.
    [16]MOGENSEN M, JENSEN K V, J RGENSEN M J, et al. Progress in understanding SOFC electrodes [J]. Solid State Ionics,2002,150(1):123-9.
    [17]ZHENG R, WANG S, NIE H, et al. SiO2-CaO-B2O3-Al2O3 ceramic glaze as sealant for planar ITSOFC [J]. Journal of Power Sources,2004,128(2):165-72.
    [18]HAANAPPEL V, SHEMET V, GROSS S, et al. Behaviour of various glass-ceramic sealants with ferritic steels under simulated SOFC stack conditions [J]. Journal of Power Sources,2005,150(86-100.
    [19]BATFALSKY P, HAANAPPEL V, MALZBENDER J, et al. Chemical interaction between glass-ceramic sealants and interconnect steels in SOFC stacks [J]. Journal of Power Sources,2006,155(2):128-37.
    [20]FERGUS J W. Sealants for solid oxide fuel cells [J]. Journal of Power Sources,2005, 147(1-2):46-57.
    [21]SIMNER S P, STEVENSON J W. Compressive mica seals for SOFC applications [J]. Journal of Power Sources,2001,102(1-2):310-6.
    [22]CHOU Y S, STEVENSON J W, CHICK L A. Ultra-low leak rate of hybrid compressive mica seals for solid oxide fuel cells [J]. Journal of Power Sources,2002,112(1):130-6.
    [23]KARIM D, ALDRED A. Localized level hopping transport in La (Sr) CrO_{3} [J]. Physical Review B,1979,20(6):2255.
    [24]FLANDERMEYER B. High-Temperature Stability of Magnesium-Doped Lanthanum Chromite [J]. HIGH TEMP SCI High Temp Sci,1985,20(3):259.
    [25]BADWAL S P S, CIACCHI F, ZELIZKO V. The effect of alumina addition on the conductivity, microstructure and mechanical strength of zirconia—yttria electrolytes [J]. Ionics,1998,4(1):25-32.
    [26]ANTEPARA I, VILLARREAL I, RODRIGUEZ-MARTINEZ L, et al. Evaluation of ferritic steels for use as interconnects and porous metal supports in IT-SOFCs [J]. Journal of Power Sources,2005,151(103-7.
    [27]FERGUS J W. Metallic interconnects for solid oxide fuel cells [J]. Materials Science and Engineering:A,2005,397(1):271-83.
    [28]http://WWW.SECA.DOE.GOV.
    [29]HTTP://EN.WIKIPEDIA.ORG/WIKI/ACTIVITY_(CHEMISTRY).
    [30]SPIEGEL C. Designing and building fuel cells [M]. McGraw-Hill Professional,2007.
    [31]O'HAYRE R P, CHA S W, COLELLA W, et al. Fuel cell fundamentals [M]. John Wiley & Sons Hoboken, New Jersey,2006.
    [32]PETERS R, DAHL R, KL TTGEN U, et al. Internal reforming of methane in solid oxide fuel cell systems [J]. Journal of Power Sources,2002,106(1-2):238-44.
    [33]KAKA S, PRAMUANJAROENKIJ A, ZHOU X Y. A review of numerical modeling of solid oxide fuel cells [J]. International Journal of Hydrogen Energy,2007,32(7):761-86.
    [34]MOGENSEN M, KAMMER K. Conversion of hydrocarbons in solid oxide fuel cells [J]. Annual review of materials research,2003,33(1):321-31.
    [35]LEHNERT W, MEUSINGER J, THOM F. Modelling of gas transport phenomena in SOFC anodes [J]. Journal of Power Sources,2000,87(1-2):57-63.
    [36]KLEIN J M, BULTEL Y, GEORGES S, et al. Modeling of a SOFC fuelled by methane: From direct internal reforming to gradual internal reforming [J]. Chemical engineering science,2007,62(6):1636-49.
    [37]KLEIN J M, GEORGES S, BULTEL Y. Modeling of a SOFC Fueled by Methane:Anode Barrier to Allow Gradual Internal Reforming Without Coking [J]. Journal of The Electrochemical Society,2008,155(B333.
    [38]HOU K, HUGHES R. The kinetics of methane steam reforming over a Ni/[alpha]-A12O catalyst [J]. Chemical Engineering Journal,2001,82(1-3):311-28.
    [39]DICKS A. Advances in catalysts for internal reforming in high temperature fuel cells [J]. Journal of Power Sources,1998,71(1-2):111-22.
    [40]CLARKE S H, DICKS A L, POINTON K, et al. Catalytic aspects of the steam reforming of hydrocarbons in internal reforming fuel cells [J]. Catalysis Today,1997,38(4): 411-23.
    [41]LEE A L, ZABRANSKY R, HUBER W. Internal reforming development for solid oxide fuel cells [J]. Industrial & engineering chemistry research,1990,29(5):766-73.
    [42]AHMED K, FOGER K. Kinetics of internal steam reforming of methane on Ni/YSZ-based anodes for solid oxide fuel cells [J]. Catalysis Today,2000,63(2-4): 479-87.
    [43]YAKABE H, OGIWARA T, HISHINUMA M, et al.3-D model calculation for planar SOFC [J]. Journal of power sources,2001,102(1-2):144-54.
    [44]BELYAEV V, POLITOVA T, MARTNA O, et al. Internal steam reforming of methane over Ni-based electrode in solid oxide fuel cells [J]. Applied Catalysis A:General,1995, 133(1):47-57.
    [45]DICKS A, POINTON K, SIDDLE A. Intrinsic reaction kinetics of methane steam reforming on a nickel/zirconia anode [J]. Journal of Power Sources,2000,86(1-2): 523-30.
    [46]ACHENBACH E, RIENSCHE E. Methane/steam reforming kinetics for solid oxide fuel cells [J]. Journal of Power Sources,1994,52(2):283-8.
    [47]XU J, FROMENT G F. Methane steam reforming, methanation and water-gas shift:I. Intrinsic kinetics [J]. AIChE Journal,1989,35(1):88-96.
    [48]PARK S, VOHS J M, GORTE R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell [J]. Nature,2000,404(6775):265-7.
    [49]ZHOU Z F, GALLO C, PAGUE M B, et al. Direct oxidation of jet fuels and Pennsylvania crude oil in a solid oxide fuel cell [J]. Journal of Power Sources,2004, 133(2):181-7.
    [50]BOVE R, UBERTINI S. Modeling solid oxide fuel cells:methods, procedures and techniques [M]. Springer Verlag,2008.
    [51]ANDERSSON M, YUAN J, SUND N B. Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells [J]. Applied Energy,2010,87(5):1461-76.
    [52]BOVE R, UBERTINI S. Modeling solid oxide fuel cell operation:Approaches, techniques and results [J]. Journal of Power Sources,2006,159(1):543-59.
    [53]BI W, CHEN D, LIN Z. A key geometric parameter for the flow uniformity in planar solid oxide fuel cell stacks [J]. International Journal of Hydrogen Energy,2009,34(9): 3873-84.
    [54]BI W, LI J, LIN Z. Flow uniformity optimization for large size planar solid oxide fuel cells with U-type parallel channel designs [J]. Journal of power sources,2010,195(10): 3207-14.
    [55]MAURI R. A new application of the reciprocity relations to the study of fluid flows through fixed beds [J]. Journal of engineering mathematics,1998,33(2):103-12.
    [56]HABERMAN B, YOUNG J. Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell [J]. International Journal of Heat and Mass Transfer,2004,47(17):3617-29.
    [57]LE BARS M, WORSTER M. Interfacial conditions between a pure fluid and a porous medium:implications for binary alloy solidification [J]. Journal of Fluid Mechanics, 2006,550(1):149-73.
    [58]AB C. Comsol Multiphysics User's Guide, v 3.5 a [J]. Stockholm, Sweden:Comsol, 2008,
    [59]JANARDHANAN V M, DEUTSCHMANN O. Numerical study of mass and heat transport in solid-oxide fuel cells running on humidified methane [J]. Chemical engineering science,2007,62(18-20):5473-86.
    [60]DOKAMAINGAM P, ASSABUMRUNGRAT S, SOOTTITANTAWAT A, et al. Modeling of SOFC with indirect internal reforming operation:Comparison of conventional packed-bed and catalytic coated-wall internal reformer [J]. International Journal of Hydrogen Energy,2009,34(1):410-21.
    [61]SONG T W, SOHN J L, KIM J H, et al. Performance analysis of a tubular solid oxide fuel cell/micro gas turbine hybrid power system based on a quasi-two dimensional model [J]. Journal of Power Sources,2005,142(1-2):30-42.
    [62]KANG Y, LI J, CAO G, et al. One-dimensional dynamic modeling and simulation of a planar direct internal reforming solid oxide fuel cell [J]. Chinese Journal of Chemical Engineering,2009,17(2):304-17.
    [63]AUTISSIER N, LARRAIN D, FAVRAT D. CFD simulation tool for solid oxide fuel cells [J]. Journal of Power Sources,2004,131(1-2):313-9.
    [64]CHAISANTIKULWAT A, DIAZ-GOANO C, MEADOWS E. Dynamic modelling and control of planar anode-supported solid oxide fuel cell [J]. Computers & Chemical Engineering,2008,32(10):2365-81.
    [65]QI Y, HUANG B, LUO J. Dynamic modeling of a finite volume of solid oxide fuel cell: The effect of transport dynamics [J]. Chemical engineering science,2006,61(18): 6057-76.
    [66]HO T X, KOSINSKIP, HOFFMANN A C, et al. Numerical modeling of solid oxide fuel cells [J]. Chemical engineering science,2008,63(21):5356-65.
    [67]FERGUSON J, FIARD J, HERBIN R. Three-dimensional numerical simulation for various geometries of solid oxide fuel cells [J]. Journal of Power Sources,1996,58(2): 109-22.
    [68]BHATTACHARYYA D, RENGASWAMY R, FINNERTY C. Isothermal models for anode-supported tubular solid oxide fuel cells [J]. Chemical engineering science,2007, 62(16):4250-67.
    [69]INCROPERA F P, BERGMAN T L, LAVINE A S, et al. Fundamentals of heat and mass transfer [M]. Wiley,2011.
    [70]KHANNA T, PALEPU K. Why focused strategies may be wrong for emerging markets [J]. Harvard Business Review,1997,75(4):41-51.
    [71]SUWANWARANGKUL R, CROISET E, ENTCHEV E, et al. Experimental and modeling study of solid oxide fuel cell operating with syngas fuel [J]. Journal of Power Sources,2006,161(1):308-22.
    [72]E.N. FULLER, P.D. SCHETTLER, J.C. GIDDINGS. Ind Eng Chem,1966,58(19.
    [73]NAM J H, JEON D H. A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells [J]. Electrochimica Acta,2006,51(17): 3446-60.
    [74]TODD B, YOUNG J B. Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling [J]. J Power Sources,2002,110(1):186-200.
    [75]CHAN S, KHOR K, XIA Z. A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness [J]. Journal of Power Sources, 2001,93(1-2):130-40.
    [76]YAKABE H, HISHINUMA M, URATANI M, et al. Evaluation and modeling of performance of anode-supported solid oxide fuel cell [J]. Journal of Power Sources, 2000,86(1-2):423-31.
    [77]NAGATA S, MOMMA A, KATO T, et al. Numerical analysis of output characteristics of tubular SOFC with internal reformer [J]. Journal of Power Sources,2001,101(1):60-71.
    [78]KIM J W, VIRKAR A V, FUNG K Z, et al. Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells [J]. Journal of the Electrochemical Society,1999,146(69.
    [79]BOVE R, LUNGHI P, M SAMMES N. SOFC mathematic model for systems simulations. Part one:from a micro-detailed to macro-black-box model [J]. International Journal of Hydrogen Energy,2005,30(2):181-7.
    [80]SANCHEZ D, MUNOZ A, S NCHEZ T. An assessment on convective and radiative heat transfer modelling in tubular solid oxide fuel cells [J]. Journal of Power Sources,2007, 169(1):25-34.
    [81]TSERONIS K, KOOKOS I K, THEODOROPOULOS C. Modelling mass transport in solid oxide fuel cell anodes:a case for a multidimensional dusty gas-based model [J], Chem Eng Sci,2008,63(23):5626-38.
    [82]SUWANWARANGKUL R, CROISET E, PRITZKER M, et al. Mechanistic modelling of a cathode-supported tubular solid oxide fuel cell [J]. Journal of Power Sources,2006, 154(1):74-85.
    [83]CHEN D, BI W, KONG W, et al. Combined micro-scale and macro-scale modeling of the composite electrode of a solid oxide fuel cell [J]. Journal of power sources,2010, 195(19):6598-610.
    [84]LIU S, KONG W, LIN Z. Three-dimensional modeling of planar solid oxide fuel cells and the rib design optimization [J]. Journal of power sources,2009,194(2):854-63.
    [85]ZHU H, KEE R J. A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies [J]. Journal of Power Sources,2003,117(1-2): 61-74.
    [86]JEON D H. A comprehensive CFD model of anode-supported solid oxide fuel cells [J]. Electrochimica Acta,2009,54(10):2727-36.
    [87]ALOUI T, HALOUANI K. Analytical modeling of polarizations in a solid oxide fuel cell using biomass syngas product as fuel [J]. Applied thermal engineering,2007,27(4): 731-7.
    [88]TSAI C L, SCHMIDT V H. Tortuosity in anode-supported proton conductive solid oxide fuel cell found from current flow rates and dusty-gas model [J]. Journal of power sources, 2011,196(2):692-9.
    [89]HUAYANG Z, KEE R J. Modeling distributed charge-transfer processes in SOFC membrane electrode assemblies [J]. Journal of the Electrochemical Society,2008, B715-29.
    [90]COSTAMAGNA P, HONEGGER K. Modeling of solid oxide heat exchanger integrated stacks and simulation at high fuel utilization [J]. Journal of the Electrochemical Society, 1998,145(3995.
    [91]FERREIRA-APARICIO D P, BENITO M, SANZ J. New trends in reforming technologies:from hydrogen industrial plants to multifuel microreformers [J]. Catalysis Reviews,2005,47(4):491-588.
    [92]KEE R J, ZHU H, SUKESHINI A M, et al. Solid oxide fuel cells:Operating principles, current challenges, and the role of syngas [J]. Combustion Science and Technology,2008, 180(6):1207-44.
    [93]NAKAGAWA N, SAGARA H, KATO K. Catalytic activity of Ni-YSZ-CeO2 anode for the steam reforming of methane in a direct internal-reforming solid oxide fuel cell [J]. Journal of power sources,2001,92(1-2):88-94.
    [94]ROSTRUP-NIELSEN J R. Sulfur-passivated nickel catalysts for carbon-free steam reforming of methane [J]. Journal of Catalysis,1984,85(1):31-43.
    [95]WEI J, IGLESIA E. Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts [J]. Journal of Catalysis,2004,224(2):370-83.
    [96]BODER M, DITTMEYER R. Catalytic modification of conventional SOFC anodes with a view to reducing their activity for direct internal reforming of natural gas [J], Journal of power sources,2006,155(1):13-22.
    [97]BEBELIS S, ZERITIS A, TIROPANI C, et al. Intrinsic kinetics of the internal steam reforming of CH4 over a Ni-YSZ-cermet catalyst-electrode [J]. Industrial & engineering chemistry research,2000,39(12):4920-7.
    [98]BLAYLOCK D W, OGURA T, GREEN W H, et al. Computational investigation of thermochemistry and kinetics of steam methane reforming on Ni (111) under realistic conditions [J]. The Journal of Physical Chemistry C,2009,113(12):4898-908.
    [99]JONES G, JAKOBSEN J G, SHIM S S, et al. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts [J]. Journal of Catalysis,2008,259(1):147-60.
    [100]ROSTRUP-NIELSEN J, HANSEN J, HELVEG S, et al. Sites for catalysis and electrochemistry in solid oxide fuel cell (SOFC) anode [J]. Applied Physics A:Materials Science & Processing,2006,85(4):427-30.
    [101]MOGENSEN D, GRUNWALDT J D, HENDRIKSEN P V, et al. Internal steam reforming in solid oxide fuel cells:Status and opportunities of kinetic studies and their impact on modelling [J]. Journal of power sources,2011,196(1):25-38.
    [102]PETERS R, RIENSCHE E, CREMER P. Pre-reforming of natural gas in solid oxide fuel-cell systems [J]. Journal of power sources,2000,86(1-2):432-41.
    [103]DOUVARTZIDES S, TSIAKARAS P. Thermodynamic and economic analysis of a steam reformer-solid oxide fuel cell system fed by natural gas and ethanol [J]. Energy sources,2002,24(4):365-73.
    [104]BRETT D J L, ATKINSON A, BRANDON N P, et al. Intermediate temperature solid oxidefuelcells [J]. Chem Soc Rev,2008,37(8):1568-78.
    [105]ZHU B. R & D for intermediate temperature solid state fuel cells [J]. Ionics,1998,4(5): 435-43.
    [106]AKIKUSA J, ADACHI K, HOSHINO K, et al. Development of a low temperature operation solid oxide fuel cell [J]. Journal of the Electrochemical Society,2001, 148(A1275.
    [107]TIETZ F, BUCHKREMER H P, ST VER D.10 years of materials research for solid oxide fuel cells at forschungszentrum julich [J]. Journal of electroceramics,2006,17(2): 701-7.
    [108]CHEEKATAMARLA P, FINNERTY C M, CAI J. Internal reforming of hydrocarbon fuels in tubular solid oxide fuel cells [J]. International Journal of Hydrogen Energy,2008, 33(7):1853-8.
    [109]WANG W, ZHOU W, RAN R, et al. Methane-fueled SOFC with traditional nickel-based anode by applying Ni/A12O3 as a dual-functional layer [J]. Electrochemistry Communications,2009,11(1):194-7.
    [110]RESINI C, CONCEPCI N HERRERA DELGADO M, PRESTO S, et al. Yttria-stabilized zirconia (YSZ) supported Ni-Co alloys (precursor of SOFC anodes) as catalysts for the steam reforming of ethanol [J]. International Journal of Hydrogen Energy,2008,33(14):3728-35.
    [111]NIKOLLA E, SCHWANK J W, LINIC S. Hydrocarbon steam reforming on Ni alloys at solid oxide fuel cell operating conditions [J]. Catalysis Today,2008,136(3):243-8.
    [112]MURRAY E P, TSAI T, BARNETT S. A direct-methane fuel cell with a ceria-based anode [J]. Nature,1999,400(6745):649-51.
    [113]PARK S, CRACIUN R, VOHS J M, et al. Direct oxidation of hydrocarbons in a solid oxide fuel cell:I. methane oxidation [J]. Journal of the Electrochemical Society,1999, 146(3603.
    [114]GREELEY J, N RSKOV J K, MAVRIKAKIS M. Electronic structure and catalysis on metal surfaces [J]. Annual review of physical chemistry,2002,53(1):319-48.
    [115]KANDOI S, GREELEY J, SANCHEZ-CASTILLO M, et al. Prediction of Experimental Methanol Decomposition Rates on Platinum from First Principles [J]. Topics in Catalysis, 2006,37(1):17-28.
    [116]GRABOW L C, GOKHALE A A, EVANS S T, et al. Mechanism of the Water Gas Shift Reaction on Pt:First Principles, Experiments, and Microkinetic Modeling [J]. The Journal of Physical Chemistry C,2008,112(12):4608-17.
    [117]IIDA T, KAWANO M, MATSUI T, et al. Internal Reforming of SOFCs [J]. Journal of the Electrochemical Society,2007,154(B234.
    [118]EGUCHI K, KOJO H, TAKEGUCHI T, et al. Fuel flexibility in power generation by solid oxide fuel cells [J]. Solid state ionics,2002,152(411-6.
    [119]ORMEROD R. Internal reforming in solid oxide fuel cells [J]. Studies in Surface Science and Catalysis,1999,122(35-46.
    [120]KE K, GUNJI A, MORI H, et al. Effect of oxide on carbon deposition behavior of CH< sub> 4 fuel on Ni/ScSZ cermet anode in high temperature SOFCs [J]. Solid state ionics,2006,177(5):541-7.
    [121]SANGTONGKITCHAROEN W, ASSABUMRUNGRAT S, PAVARAJARN V, et al. Comparison of carbon formation boundary in different modes of solid oxide fuel cells fueled by methane [J]. Journal of power sources,2005,142(1-2):75-80.
    [122]NIKOOYEH K, CLEMMER R, ALZATE-RESTREPO V, et al. Effect of hydrogen on carbon formation on Ni/YSZ composites exposed to methane [J]. Applied Catalysis A: General,2008,347(1):106-11.
    [123]TAKEGUCHI T, KANI Y, YANO T, et al. Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets [J]. Journal of power sources, 2002,112(2):588-95.
    [124]LAOSERIPOJANA N, ASSABUMRUNGRAT S. Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ:The possible use of these fuels in internal reforming SOFC [J]. Journal of Power Sources,2007,163(2):943-51.
    [125]LIN Y, ZHAN Z, LIU J, et al. Direct operation of solid oxide fuel cells with methane fuel [J]. Solid state ionics,2005; 176(23):1827-35.
    [126]SASAKI K, SUSUKI K, IYOSHI A, et al. HS poisoning of solid oxide fuel cells [J]. Journal of The Electrochemical Society,2006,153(A2023.
    [127]YU X, YE S. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC::Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst [J]. Journal of power sources, 2007,172(1):133-44.
    [128]VINCENT A, LUO J L, CHUANG K T, et al. Effect of Ba doping on performance of LST as anode in solid oxide fuel cells [J]. Journal of power sources,2010,195(3): 769-74.
    [129]CHENG Z, LIU M. Characterization of sulfur poisoning of Ni-YSZ anodes for solid oxide fuel cells using in situ Raman microspectroscopy [J]. Solid state ionics,2007, 178(13-14):925-35.
    [130]HANSEN J B. Correlating sulfur poisoning of SOFC nickel anodes by a Temkin isotherm [J]. Electrochemical and Solid-State Letters,2008,11(B178.
    [131]HROVAT M, KATSARAKIS N, REICHMANN K, et al. Characterisation of LaNil-x CoxO3 as a possible SOFC cathode material [J]. Solid state ionics,1996,83(1): 99-105.
    [132]SOHN S B, CHOI S Y, KIM G H, et al. Stable sealing glass for planar solid oxide fuel cell [J]. Journal of non-crystalline solids,2002,297(2):103-12.
    [133]AGUIAR P, ADJMAN C, BRANDON N P. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I:model-based steady-state performance [J]. Journal of Power Sources,2004,138(1-2):120-36.
    [134]CHAN S, HO H, TIAN Y. Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant [J]. Journal of Power Sources,2002,109(1):111-20.
    [135]SUWANWARANGKUL R, CROISET E, FOWLER M W, et al. Performance comparison of Fick's, dusty-gas and Stefan-Maxwell models to predict the concentration overpotential of a SOFC anode [J]. Journal of Power Sources,2003,122(1):9-18.
    [136]HUSSAIN M M, LI X, DINCER I. Mathematical modeling of transport phenomena in porous SOFC anodes [J]. International Journal of Thermal Sciences,2007,46(1):48-56.
    [137]YUAN J, HUANG Y, SUND N B, et al. Analysis of parameter effects on chemical reaction coupled transport phenomena in SOFC anodes [J]. Heat and Mass Transfer, 2009,45(4):471-84.
    [138]CHOI Y, LIN M C, LIU M. Computational Study on the Catalytic Mechanism of Oxygen Reduction on La0.5Sr0.5MnO3 in Solid Oxide Fuel Cells [J]. Angewandte Chemie International Edition,2007,46(38):7214-9.
    [139]CHOI Y, LIN M C, LIU M. Rational design of novel cathode materials in solid oxide fuel cells using first-principles simulations [J]. Journal of Power Sources,2010,195(5): 1441-5.
    [140]CHOI Y M, LYNCH M E, LIN M, et al. Prediction of 02 Dissociation Kinetics on LaMnO3-Based Cathode Materials for Solid Oxide Fuel Cells [J]. The Journal of Physical Chemistry C,2009,113(17):7290-7.
    [141]CHOI Y M, MEBANE D S, LIN M, et al. Oxygen reduction on LaMnO3-based cathode materials in solid oxide fuel cells [J]. Chemistry of Materials,2007,19(7):1690-9.
    [142]LEE Y L, KLEIS J, ROSSMEISL J, et al. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors [J]. Energy & Environmental Science,2011,
    [143]CHENG C H, CHANG Y W, HONG C W. Multiscale Parametric Studies on the Transport Phenomenon of a Solid Oxide Fuel Cell [J]. Journal of Fuel Cell Science and Technology,2005..2(4):219-25.
    [144]YU J H, PARK G W, LEE S, et al. Microstructural effects on the electrical and mechanical properties of Ni-YSZ cermet for SOFC anode [J]. Journal of Power Sources, 2007,163(2):926-32.
    [145]PARWANI R R. Complexity:an introduction [J]. Arxiv preprint physics/0201055, 2002,
    [146]CHEN D, LIN Z, ZHU H, et al. Percolation theory to predict effective properties of solid oxide fuel-cell composite electrodes [J]. Journal of power sources,2009,191(2): 240-52.
    [147]CHEN D, LU L, LI J, et al. Percolation micro-model to predict the effective properties of the composite electrode with poly-dispersed particle sizes [J]. Journal of Power Sources,2010,
    [148]SCHNEIDER L, MARTIN C, BULTEL Y, et al. Percolation effects in functionally graded SOFC electrodes [J]. Electrochimica Acta,2007,52(9):3190-8.
    [149]ALI A, WEN X, NANDAKUMAR K, et al. Geometrical modeling of microstructure of solid oxide fuel cell composite electrodes [J]. Journal of Power Sources,2008,185(2): 961-6.
    [150]GOLBERT J, ADJIMAN C S, BRANDON N P. Microstructural modeling of solid oxide fuel cell anodes [J]. Industrial & Engineering Chemistry Research,2008,47(20): 7693-9.
    [151]SANYAL J, GOLDIN G M, ZHU H, et al. A particle-based model for predicting the effective conductivities of composite electrodes [J]. Journal of Power Sources,2010, 195(19):6671-9.
    [152]KENNEY B, VALDMANIS M, BAKER C, et al. Computation of TPB length, surface area and pore size from numerical reconstruction of composite solid oxide fuel cell electrodes [J]. Journal of Power Sources,2009,189(2):1051-9.
    [153]ZHANG Y, WANG Y, CHEN F, et al. Random-packing model for solid oxide fuel cell electrodes with particle size distributions [J]. Journal of Power Sources,2011,196(4): 1983-91.
    [154]WILSON J R, KOBSIRIPHAT W, MENDOZA R, et al. Three-dimensional reconstruction of a solid-oxide fuel-cell anode [J]. Nature materials,2006,5(7):541-4.
    [155]WILSON J R, BARNETT S A. Quantitative three-dimensional microstructure of a solid oxide fuel cell cathode [J]. Electrochemistry Communications,2009.03.010,11): 1052-6.
    [156]WILSON J R, BARNETT S A. Effect of composition of (La0.8Sr0.2MnO3-Y2O3-stabilized ZrO2) cathodes:Correlating three-dimensional microstructure and polarization resistance [J]. Journal of Power Sources,2009.09.074, 195):1829-40.
    [157]GUAN Y, LI W, GONG Y, et al. Analysis of the three-dimensional microstructure of a solid-oxide fuel cell anode using nano X-ray tomography [J]. Journal of Power Sources, 2011,196(4):1915-9.
    [158]IWAI H. Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique [J]. Journal of Power Sources,2009.09.005,195):955-61.
    [159]SHEARING P R.3D reconstruction of SOFC anodes using a focused ion beam lift-out technique [J]. Chemical EngineeringScience,2009.05.038,64):3928--33.
    [160]SHEARING P R. X-ray nano computerised tomography of SOFC electrodes using a focused ion beam sample-preparation technique [J]. Journal of the European Ceramic Society,2010.02.004,30):1809-14.
    [161]LIN Z, STEVENSON J W, KHALEEL M A. The effect of interconnect rib size on the fuel cell concentration polarization in planar SOFCs [J]. Journal of Power Sources,2003, 117(1-2):92-7.
    [162]KHALEEL M A, LIN Z, SINGH P, et al. A finite element analysis modeling tool for solid oxide fuel cell development:coupled electrochemistry, thermal and flow analysis in MARC [J]. Journal of Power Sources,2004,130(1-2):136-48.
    [163]LIU S, SONG C, LIN Z. The effects of the interconnect rib contact resistance on the performance of planar solid oxide fuel cell stack and the rib design optimization [J]. Journal of power sources,2008,183(1):214-25.
    [164]LIU S, KONG W, LIN Z. A Microscale Modeling Tool for the Design and Optimization of Solid Oxide Fuel Cells [J]. Energies,2009,2(2):427-44.
    [165]XIA W, YANG Y, WANG Q. Effects of operations and structural parameters on the one-cell stack performance of planar solid oxide fuel cell [J]. Journal of Power Sources, 2009,194(2):886-98.
    [166]KHALEEL M, RECTOR D, LIN Z, et al. Multiscale electrochemistry modeling of solid oxide fuel cells [J]. International Journal for Multiscale Computational Engineering, 2005,3(1):
    [167]HUSSAIN M, LI X, DINCER I. Multi-component mathematical model of solid oxide fuel cell anode [J]. International journal of energy research,2005,29(12):1083-101.
    [168]JEON D H, NAM J H, KIM C J. Microstructural optimization of anode-supported solid oxide fuel cells by a comprehensive microscale model [J]. Journal of The Electrochemical Society,2006,153(A406.
    [169]NI M, LEUNG M K H, LEUNG D Y C. Micro-scale modelling of solid oxide fuel cells with micro-structurally graded electrodes [J]. Journal of Power Sources,2007,168(2): 369-78.
    [170]NI M, LEUNG D Y C, LEUNG M K H. Electrochemical modeling and parametric study of methane fed solid oxide fuel cells [J]. Energy Conversion and Management, 2009,50(2):268-78.
    [171]HUSSAIN M M, LI X, DINCER I. A numerical investigation of modeling an SOFC electrode as two finite layers [J]. International Journal of Hydrogen Energy,2009,34(7): 3134-44.
    [172]ANDERSSON M, YUAN J, SUND N B. SOFC modeling considering electrochemical reactions at the active three phase boundaries [J]. International Journal of Heat and Mass Transfer,2011,
    [173]WEISHENG Xia, YUNZHEN Y, QIUSHENG W. Effects of operations and structural parameters on the one-cell stack performance of planar solid oxide fuel cell [J]. J Power Sources,2009,886-98.
    [174]HAJIMOLANA S A, HUSSAIN M A, DAUD W M A W, et al. Mathematical modeling of solid oxide fuel cells:A review [J]. Renewable and Sustainable Energy Reviews,2011, 15(4):1893-917.
    [175]LI P W, CHYU M K. Simulation of the chemical/electrochemical reactions and heat/mass transfer for a tubular SOFC in a stack [J]. Journal of Power Sources,2003, 124(2):487-98.
    [176]NEHTER P. Two-dimensional transient model of a cascaded micro-tubular solid oxide fuel cell fed with methane [J]. Journal of Power Sources,2006,157(1):325-34.
    [177]VIRKAR A V, LANGE F F, HOMEL M A. A simple analysis of current collection in tubular solid oxide fuel cells [J]. Journal of Power Sources,2010,195(15):4816-25.
    [178]HUANG C M, SHY S S, LEE C H. On flow uniformity in various interconnects and its influence to cell performance of planar SOFC [J]. J Power Sources,2008,183(1): 205-13.
    [179]ZHANG W, HU P, LAI X, et al. Analysis and optimization of flow distribution in parallel-channel configurations for proton exchange membrane fuel cells [J]. J Power Sources,2009,194(2):931-40.
    [180]LARRAJN D, FAVRAT D. Simulation of SOFC stack and repeat elements including interconnect degradation and anode reoxidation risk [J]. Journal of Power Sources,2006, 161(1):392-403.
    [181]LAWLOR V, GRIESSER S, BUCHINGER G, et al. Review of the micro-tubular solid oxide fuel cell::Part I. Stack design issues and research activities [J]. Journal of Power Sources,2009,193(2):387-99.
    [182]MAGISTRI L, TRAVERSO A, CERUTTI F, et al. Modelling of Pressurised Hybrid Systems Based on Integrated Planar Solid Oxide Fuel Cell(IP-SOFC) Technology [J]. Fuel Cells,2005,5(1):80-96.
    [183]ACHENBACH E. Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack [J]. Journal of Power Sources,1994,49(1-3):333-48.
    [184]BURT A, CELIK I, GEMMEN R, et al. A numerical study of cell-to-cell variations in a SOFC stack [J]. Journal of Power Sources,2004,126(1-2):76-87.
    [185]CHEN Q, ZENG M, ZHANG J, et al. Optimal design of bi-layer interconnector for SOFC based on CFD-Taguchi method [J]. Int J Hydrogen Energ,2010,35(9):4292-300.
    [186]EIKERLING M, KORNYSHEV A A, KULIKOVSKY A A. Physical modeling of fuel cells and their components [J]. Encyclopedia of electrochemistry,2007,5(447.
    [187]RECKNAGLE K P, WILLIFORD R E, CHICK L A, et al. Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks [J]. Journal of Power Sources,2003,113(1):109-14.
    [188]IORA P, AGUIAR P, ADJIMAN C, et al. Comparison of two IT DIR-SOFC models: Impact of variable thermodynamic, physical, and flow properties. Steady-state and dynamic analysis [J]. Chemical engineering science,2005,60(11):2963-75.
    [189]JI Y, YUAN K, CHUNG J, et al. Effects of transport scale on heat/mass transfer and performance optimization for solid oxide fuel cells [J]. Journal of Power Sources,2006, 161(1):380-91.
    [190]ZHU H, KEE R J, JANARDHANAN V M, et al. Modeling elementary heterogeneous chemistry and electrochemistry in solid-oxide fuel cells [J]. Journal of the Electrochemical Society,2005,152(A2427.
    [191]HABERMAN B, YOUNG J. Diffusion and chemical reaction in the porous structures of solid oxide fuel cells [J]. Journal of fuel cell science and technology,2006,3(312.
    [192]LOCKETT M, SIMMONS M, KENDALL K. CFD to predict temperature profile for scale up of micro-tubular SOFC stacks [J]. Journal of Power Sources,2004,131(1-2): 243-6.
    [193]KULIKOVSKY A. Temperature and Current Distribution Along the Air Channel in Planar SOFC Stack:Model and Asymptotic Solution [J]. Journal of fuel cell science and technology,2010,7(011015.
    [194]KHALEEL M A, RECKNAGLE K P, LIN Z, et al.:Pacific Northwest National Lab., Richland, WA(US),2002.
    [195]LIN C K, CHEN T T, CHYOU Y P, et al. Thermal stress analysis of a planar SOFC stack [J]. Journal of Power Sources,2007,164(1):238-51.
    [196]PEKSEN M. A coupled 3D thermofluid-thermomechanical analysis of a planar type production scale SOFC stack [J]. International Journal of Hydrogen Energy,2011,
    [197]MOUNIR H, EL GHARAD A, BELAICHE M, et al. Thermo-fluid and electrochemical modeling of a multi-bundle IP-SOFC-Technology for second generation hybrid application [J]. Energy Conversion and Management,2009,50(10):2685-92.
    [198]BOERSMA R J, SAMMES N M. Computational analysis of the gas-flow distribution in solid oxide fuel cell stacks [J]. J Power Sources,1996,63(2):215-9.
    [199]HABERMAN B A, YOUNG J B. Numerical investigation of the air flow through a bundle of IP-SOFC modules [J]. Int J Heat Mass Tran,2005,48(25-26):5475-87.
    [200]林子敬,张晓华.固体氧化物燃料电池电化学与热分析耦合的二维模型[J].无机材料学报,2003,18(003):661-6.
    [201]林子敬,顾晔,张晓华.YSZ中温燃料电池的稳态模拟[J].电化学,2002,8(4):445-51.
    [202]汤根土,骆仲泱,倪明江,et al.平板状阳极支撑固体氧化物燃料电池的数值模拟及性能分析[J].中国电机工程学报,2005,25(10):116-21.
    [203]李彦,胡桂林,骆仲泱,et al.固体氧化物燃料电池的三维数值模拟[J].电源技术,2009,33(010):865-8.
    [204]罗丹,王关晴,黄雪峰,et al.阳极支撑中温固体氧化物燃料电池的数值模拟[J].杭州电子科技大学学报,2010,4(
    [205]王求生,王乘.固体氧化物燃料电池甲烷直接内重整的数值模拟[J].机械科学与技术,2010,3):351-7.
    [206]谭勋琼,吴政球,周野,et al.固体氧化物燃料电池的集总建模与仿真[J].中国电机工程学报,2010,30(17):104-10.
    [207]于建国,王玉璋,翁史烈.以煤气化合成气为燃料的平板式固体氧化物燃料电池性能[J].中国电机工程学报,2010,30(35):88-93.
    [208]于建国,王玉璋,翁史烈.煤气组分对固体氧化物燃料电池碳沉积的影响[J].无机材料学报,2011,26(11):
    [209]王远洋,李俊Ni-YSZ/YSZ/LSM固体氧化物燃料电池反应机理的Monte Carlo模拟[J].第八届全国工业催化技术及应用年会论文集,2011,
    [210]张会生,伊亭.混合装置中高温燃料电池建模综述[J].电源技术,2002,26(004):321-5.
    [211]王礼进,张会生,翁史烈.内重整高温固体氧化物燃料电池建模与仿真[J].中国电机工程学报,2007,27(35):78-83.
    [212]王礼进,张会生,翁史烈.间接内重整固体氧化物燃料电池的建模与仿真[J].热能动力工程,2008,23(003):316-20.
    [213]王礼进,张会生,翁史烈.固体氧化物燃料电池的容阻特性建模与仿真[J].上海交通大学学报,2008,42(3):415-20.
    [214]工礼进,张会生,翁史烈,et al.流型对固体氧化物燃料电池性能的影响[J].电源技术,2009,33(002):100-4.
    [215]于建国,王玉璋,惠宇,et al.阳极孔隙率对固体氧化物燃料电池性能影响的数值分析[J].硅酸盐学报,2010,38(2):246-51.
    [216]于建国,工玉璋,翁史烈.进气温度对Ni-YSZ阳极支撑型平板式SOFC工作特性的影响[J].硅酸盐学报,2011,39(7):1118-23.
    [217]CUID, CHENG M. Numerical analysis of thermal and electrochemical phenomena for anode supported microtubular SOFC [J]. AIChE Journal,2009,55(3):771-82.
    [218]DAAN C, MOJIE C. Thermal stress modeling of anode supported micro-tubular solid oxide fuel cell [J]. Journal of Power Sources,2009,400-7.
    [219]CUI D, YANG C, HUANG K, et al. Effects of testing configurations and cell geometries on the performance of a SOFC:A modeling approach [J]. International Journal of Hydrogen Energy,2010,35(19):10495-504.
    [220]王桂兰,杨云珍,张海鸥.固体氧化物燃料电池三维热流电化学分析[J].中国电机工程学报,2007,27(8):99-103.
    [221]WANG G, YANG Y, ZHANG H, et al.3-D model of thermo-fluid and electrochemical for planar SOFC [J]. Journal of Power Sources,2007,167(2):398-405.
    [222]YANG Y, WANG G, ZHANG H, et al. Comparison of heat and mass transfer between planar and MOLB-type SOFCs [J]. Journal of Power Sources,2008,177(2):426-33.
    [223]YANG Y, WANG G, ZHANG H, et al. Computational analysis of thermo-fluid and electrochemical characteristics of MOLB-type SOFC stacks [J]. Journal of Power Sources,2007,173(1):233-9.
    [224]ZHANG T, ZHU Q, HUANG W L, et al. Stress field and failure probability analysis for the single cell of planar solid oxide fuel cells [J]. Journal of Power Sources,2008,182(2): 540-5.
    [225]ZHANG T, ZHU Q, XIE Z. Modeling of cracking of the glass-based seals for solid oxide fuel cell [J]. Journal of Power Sources,2009,188(1):177-83.
    [226]李志刚,淮秀兰,王绍荣,et al.平板式阳极支撑SOFC多场耦合数值模拟[J].工程热物理学报,2010,004):629-32.
    [227]王求生,任波,李利军,et al.平板式阳极支撑固体氧化物燃料电池传质传热仿真研究[J].热科学与技术,2007,5(4):339-45.
    [228]王求生,王乘,任波,et al.固体氧化物燃料电池三维模拟与性能分析[J].能源工程,2007,001):16-21.
    [229]WANG Q, LI L, WANG C. Numerical study of thermoelectric characteristics of a planar solid oxide fuel cell with direct internal reforming of methane [J]. Journal of Power Sources,2009,186(2):399-407.
    [230]徐泽亚,杨晨.管式SOFC数学模型及系统性能分析[J].计算机仿真,2006,23(6):224-8.
    [231]杨晨,张雨英,徐泽亚.管型SOFC内部传热传质的数值仿真[J].系统仿真学报,2007,19(14):3206-9.
    [232]马旭,杨晨,张雨英.基于现象的复杂系统建模方法[J].重庆大学学报:自然科学版,2008,31(001):61-6.
    [233]杨晨,张雨英.SOFC-MGT混合发电系统的多尺度动态协同仿真[J].
    [234]杨晨,彭伟SOFC电流密度特性的ELCPI多尺度仿真[J].计算机仿真,2010,012):298-302.
    [235]ZHANG X, CHAN S, LI G, et al. A review of integration strategies for solid oxide fuel cells [J]. Journal of Power Sources,2010,195(3):685-702.
    [236]ZHANG X, CHAN S, HO H, et al. Nonlinear model predictive control based on the moving horizon state estimation for the solid oxide fuel cell [J]. International Journal of Hydrogen Energy,2008,33(9):2355-66.
    [237]张兄文,李军,李国君,et al.管式SOFC热电特性的三维数值研究[J].热能动力工程,2007,21(6):628-31.
    [238]ZHANG X, LI J, LI G, et al. Development of a control-oriented model for the solid oxide fuel cell [J]. Journal of Power Sources,2006,160(1):258-67.
    [239]ZHANG X, LI J, LI G, et al. Dynamic modeling of a hybrid system of the solid oxide fuel cell and recuperative gas turbine [J]. Journal of Power Sources,2006,163(1): 523-31.
    [240]张兄文,李国君,李军,et al.板式固体氧化物燃料电池的三维数值研究[J].中国工程热物理学会第十一届年会,2005,
    [241]ZHANG X, LI J, LI G, et al. Cycle analysis of an integrated solid oxide fuel cell and recuperative gas turbine with an air reheating system [J]. Journal of Power Sources,2007, 164(2):752-60.
    [242]ZHANG X, LI G, LI J, et al. Numerical study on electric characteristics of solid oxide fuel cells [J]. Energy conversion and management,2007,48(3):977-89.
    [243]ZHANG X, LI J, LI G, et al. Numerical study on the thermal characteristics in a tubular solid oxide fuel cell with indirect internal reformer [J]. International Journal of Thermal Sciences,2009,48(4):805-14.
    [244]DING D, ZHU W, GAO J, et al. High performance electrolyte-coated anodes for low-temperature solid oxide fuel cells:Model and Experiments [J]. Journal of Power Sources,2008,179(1):177-85.
    [245]ZHU W, DING D, XIA C. Enhancement in three-phase boundary of SOFC electrodes by an ion impregnation method:a modeling comparison [J]. Electrochemical and Solid-State Letters,2008,11(B83.
    [246]ZHANG Y, XIA C. A particle-layer model for solid-oxide-full-cell cathodes with different structures [J]. Journal of Power Sources,2010,195(13):4206-12.
    [247]ZHANG Y, XIA C. A durability model for solid oxide fuel cell electrodes in thermal cycle processes [J]. Journal of Power Sources,2010,195(19):6611-8.
    [248]ZHANG Y, XIA C. Film percolation for composite electrodes of solid oxide fuel cells [J]. Electrochimica Acta,2011,
    [249]HUO H B, ZHU X J, CAO G Y. Nonlinear modeling of a SOFC stack based on a least squares support vector machine [J]. Journal of Power Sources,2006,162(2):1220-5.
    [250]WU X J, ZHU X J, CAO G Y, et al. Modeling a SOFC stack based on GA-RBF neural networks identification [J]. Journal of Power Sources,2007,167(1):145-50.
    [251]LI J, CAO G Y, ZHU X J, et al. Two-dimensional dynamic simulation of a direct internal reforming solid oxide fuel cell [J]. Journal of Power Sources,2007,171(2): 585-600.
    [252]YANG F, ZHU X J, CAO G Y. Nonlinear fuzzy modeling of a MCFC stack by an identification method [J]. Journal of Power Sources,2007,166(2):354-61.
    [253]WU X J, ZHU X J, CAO G Y, et al. Predictive control of SOFC based on a GA-RBF neural network model [J]. Journal of Power Sources,2008,179(1):232-9.
    [254]HUO H B, ZHONG Z D, ZHU X J, et al. Nonlinear dynamic modeling for a SOFC stack by using a Hammerstein model [J]. Journal of Power Sources,2008,175(1):441-6.
    [255]WU X J, ZHU X J, CAO G Y, et al. A hybrid experimental model of a solid oxide fuel cell stack [J]. Journal of Fuel Cell Science and Technology,2009,6(011013.
    [256]WU X J, HUANG Q, ZHU X J. Thermal modeling of a solid oxide fuel cell and micro gas turbine hybrid power system based on modified LS-SVM [J]. International Journal of Hydrogen Energy,2011,36(1):885-92.
    [257]WU X J, HUANG Q, ZHU X J. Dynamic modeling of a SOFC/MGT hybrid power system based on modified OIF Elman neural network [J]. International Journal of Energy Research,2010,
    [258]LI J, GAO N, CAO G Y, et al. Predictive control of a direct internal reforming SOFC using a self recurrent wavelet network model [J]. Journal of Zhejiang University-Science A,2010,11(1):61-70.
    [259]汤根土.平板状阳极支撑固体氧化物燃料电池的实验与数值模拟[D][D];浙江大学,2005.
    [260]李彦.固体氧化物燃料电池的电极材料研究和单电池数值模拟[D][D];浙江大学,2006.
    [261]罗丹.阳极负载中温固体氧化物燃料电池关键材料的研究及单电池数值模拟[D][D];浙江大学,2007.
    [262]康英伟,李俊,曹广益,et al.平板式直接内重整固体氧化物燃料电池的一维动态建模与仿真[J].中国化学工程学报(英文版,2009,17(2):
    [263]HUO H B, ZHU X J, HU W Q, et al. Nonlinear model predictive control of SOFC based on a Hammerstein model [J]. Journal of Power Sources,2008,185(1):338-44.
    [264]康英伟,曹广益,屠恒勇,et al.固体氧化物燃料电池微型热电联供系统的动态建模与仿真[J].中国电机工程学报,2010,30(14):
    [265]YANG J, LI X, MOU H G, et al. Control-oriented thermal management of solid oxide fuel cells based on a modified Takagi-Sugeno fuzzy model [J]. Journal of Power Sources, 2009,188(2):475-82.
    [266]YANG J, LI X, MOU H G, et al. Predictive control of solid oxide fuel cell based on an improved Takagi-Sugeno fuzzy model [J]. Journal of Power Sources,2009,193(2): 699-705.
    [267]聂波波,姜乐华.平板状固体氧化物燃料电池电化学特性Simlink建模与仿真[J].化学工业与工程技术,2008,29(001):10-3.
    [268]李琛,姜乐华,佐晓波.平板状SOFC结构热应力特性分析[J].化学工程与装备,2009,8):
    [269]李俊,王远洋.Ni负载量对Ni-YSZ上氢氧电化学性能影响规律的MC模拟[J].第七届全国催化剂制备科学与技术研讨会论文集,2009,
    [270]韩苗苗,沈炯,李益国.固体氧化物燃料电池的多模型预测控制方法研究[J].华东电力,2009,010):1767-70.
    [271]李曦,邓忠华,曹广益,et al. Control-oriented dynamic fuzzy model and predictive control for proton exchange membrane fuel cell stack [J].中南工业大学学报:英文版,2007,13(6):722-5.
    [272]曹红亮,李曦,邓忠华,et al.面向控制的分数阶微分模型的快速数值计算[J].控制理论与应用,2011,28(5):715-21.
    [273]CAO H, DENG Z, LI X, et al. Dynamic modeling of electrical characteristics of solid oxide fuel cells using fractional derivatives [J]. International Journal of Hydrogen Energy, 2010,35(4):1749-58.
    [274]SAMMES N, DU Y, BOVE R. Design and fabrication of a 100 W anode supported micro-tubular SOFC stack [J]. Journal of Power Sources,2005,145(2):428-34.
    [275]DING J, LIU J. Fabrication and Electrochemical Performance of Anode-Supported Solid Oxide Fuel Cells by a Single-Step Cosintering Process [J]. Journal of the American Ceramic Society,2008,91(10):3303-7.
    [276]韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备[M].科学出版社,2004.
    [277]SINGHAL S. Advances in solid oxide fuel cell technology [J]. Solid State Ionics,2000, 135(1):305-13.
    [278]HTTP://WWW.AKI.CHE.TOHOKU.AC.JP/-KOYAMA/HTML/RESEARCH/SOFC.H TML.
    [279]ISENBERG A O. High temperature solid electrolyte fuel cell configurations and interconnections [M]. Google Patents.1984.
    [280]KENDALL M. Tubular cells:a novel SOFC design [J]. Final Year Project Report, Middlesex University,1993,
    [281]KENDALL K, PRICA M. Integrated SOFC tubular system for small-scale cogeneration, F,1994 [C].
    [282]HTTP://WWW.GREENCARCONGRESS.COM/2009/08/ISUZUKI-20090814.HTML.
    [283]HTTP://WWW.AIST.GO.JP/AIST_E/LATEST_RESEARCH/2009/20090306_2/200903 06 2.HTML.
    [284]SUZUKI T, YAMAGUCHI T, FUJISHIRO Y, et al. Fabrication and characterization of micro tubular SOFCs for operation in the intermediate temperature [J]. Journal of Power Sources,2006,160(1):73-7.
    [285]HOWE K S, THOMPSON G J, KENDALL K. Micro-tubular solid oxide fuel cells and stacks [J]. Journal of Power Sources,2011,196(4):1677-86.
    [286]WEBER A, IVERS-TIFF E E. Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications [J]. Journal of Power Sources,2004,127(1-2): 273-83.
    [287]DESEURE J, BULTEL Y, DESSEMOND L, et al. Theoretical optimisation of a SOFC composite cathode [J]. Electrochimica Acta,2005,50(10):2037-46.
    [288]FLEIG J. Solid oxide fuel cell cathodes:polarization mechanisms and modeling of the electrochemical performance [J]. Annual Review of Materials Research,2003,33(1): 361-82.
    [289]BHATTACHARYYA D, RENGASWAMY R. A Review of Solid Oxide Fuel Cell (SOFC) Dynamic Models [J]. Ind Eng Chem Res,2009,48(13):6068-86.
    [290]DECALUWE S C, ZHU H, KEE R J, et al. Importance of anode microstructure in modeling solid oxide fuel cells [J]. Journal of The Electrochemical Society,2008, 155(B538.
    [291]YAKABE H, OGIWARA T, YASUDA I.3D model calculation for the planar SOFC using multi-channel and stack models [J]. Solid Oxide Fuel Cells Vii (Sofc Vii),2001, 2001(16):1022-31.
    [292]NAKAJO A, STILLER C, H RKEG RD G, et al. Modeling of thermal stresses and probability of survival of tubular SOFC [J]. Journal of Power Sources,2006,158(1): 287-94.
    [293]NAKAJO A, WUILLEMIN Z, VAN HERLE J, et al. Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part I:Probability of failure of the cells [J]. Journal of Power Sources,2009,193(1):203-15.
    [294]SERINCAN M F, PASAOGULLARI U, SAMMES N M. Thermal stresses in an operating micro-tubular solid oxide fuel cell [J]. Journal of Power Sources,2010, 195(15):4905-14.
    [295]WEIL K S, KOEPPEL B J. Thermal stress analysis of the planar SOFC bonded compliant seal design [J]. International Journal of Hydrogen Energy,2008,33(14): 3976-90.
    [296]PEKSEN M, PETERS R, BLUM L, et al. Hierarchical 3D multiphysics modelling in the design and optimisation of SOFC system components [J]. International Journal of Hydrogen Energy,2011, In Press, Corrected Proof(
    [297]ATKINSON A, SUN B. Residual stress and thermal cycling of planar solid oxide fuel cells [J]. Materials Science and Technology,2007,23(10):1135-43.
    [298]PEKSEN M, PETERS R, BLUM L, et al.3D coupled CFD/FEM modelling and experimental validation of a planar type air pre-heater used in SOFC technology [J]. International Journal of Hydrogen Energy,2011,36(11):6851-61.
    [299]YAKABE H, BABA Y, SAKURAI T, et al. Evaluation of the residual stress for anode-supported SOFCs [J]. Journal of Power Sources,2004,135(1-2):9-16.
    [300]YAKABE H, BABA Y, YASUDA I. X-ray stress measurements for anode-supported planar SOFC [J]. Solid Oxide Fuel Cells Vii (Sofc Vii),2001,2001(16):303-10.
    [301]SELIMOVIC A, KEMM M, TORISSON T, et al. Steady state and transient thermal stress analysis in planar solid oxide fuel cells [J]. Journal of Power Sources,2005,145(2): 463-9.
    [302]NAKAJO A, WUILLEMIN Z, VAN HERLE J, et al. Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part Ⅱ:Loss of gas-tightness, electrical contact and thermal buckling [J]. Journal of Power Sources,2009,193(1):216-26.
    [303]LIN C K, HUANG L H, CHIANG L K, et al. Thermal stress analysis of planar solid oxide fuel cell stacks:Effects of sealing design [J]. Journal of Power Sources,2009, 192(2):515-24.
    [304]MARINSEK M, ZUPAN K, MACEK J. Preparation of Ni-YSZ composite materials for solid oxide fuel cell anodes by the gel-precipitation method [J]. Journal of Power Sources,2000,86(1-2):383-9.
    [305]SERINCAN M F, PASAOGULLARI U, SAMMES N M. Thermal stresses in an operating micro-tubular solid oxide fuel cell [N]. Journal of Power Sources,2010-.
    [306]DORASWAMI U, DROUSHIOTIS N, KELSALL G. Modelling effects of current distributions on performance of micro-tubular hollow fibre solid oxide fuel cells [J]. Electrochimica Acta,2010,55(11):3766-78.
    [307]WU J, MCLACHLAN D. Percolation exponents and thresholds obtained from the nearly ideal continuum percolation system graphite-boron nitride [J]. Physical Review B, 1997,56(3):1236.
    [308]COSTAMAGNA P, COSTA P, ANTONUCCI V. Micro-modelling of solid oxide fuel cell electrodes [J]. Electrochimica Acta,1998,43(3-4):375-94.
    [309]SHI Y, CAI N, LI C. Numerical modeling of an anode-supported SOFC button cell considering anodic surface diffusion [J]. Journal of Power Sources,2007,164(2): 639-48.
    [310]BOUVARD D, LANGE F. Relation between percolation and particle coordination in binary powder mixtures [J]. Acta metallurgica et materialia,1991,39(12):3083-90.
    [311]LIN W K H Z Z F Z. Dusty gas model in the form of Fick's model for the prediction of multicomponent mass transport
    in solid oxide fuel cell anode [J]. Journal of Power Sources,2012,
    [312]R.P. O'HAYRE, S.W. CHA W C, PRINZ F B. Fuel Cell Fundamentals [J]. John Wiley& Sons,2006,144 & 53.
    [313]COMSOL AB, COMSOL MULTIPHYSICS■ Version 35 User's Guide,2007,
    [314]F.P. INCROPERA, D.P. DEWITT, T.L. BERGMAN & LLAVINE A S. Fundamentals of Heat and Mass Transfer [J].2007,572-5
    [315]YANG C, LI W, ZHANG S, et al. Fabrication and characterization of an anode-supported hollow fiber SOFC [J]. Journal of Power Sources,2009,187(1):90-2.
    [316]PETRUZZI L, COCCHI S, FINESCHI F. A global thermo-electrochemical model for SOFC systems design and engineering [J]. Journal of Power Sources,2003,118(1-2): 96-107.
    [317]CAMPANARI S, IORA P. Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry [J]. Journal of Power Sources,2004,132(1-2):113-26.
    [318]KAMOTANI Y, WANG L, HATTA S, et al. Free surface heat loss effect on oscillatory thermocapillary flow in liquid bridges of high Prandtl number fluids [J]. International Journal of Heat and Mass Transfer,2003,46(17):3211-20.
    [319]KONG W, LI J, LIU S, et al. The influence of interconnect ribs on the performance of planar solid oxide fuel cell and formulae for optimal rib sizes [J]. Journal of power sources,2012,204(0):106-15.
    [320]FAES A, HESSLER-WYSER A, PRESVYTES D, et al. Nickel-Zirconia Anode Degradation and Triple Phase Boundary Quantification from Microstructural Analysis [J]. Fuel Cells,2009,9(6):841-51.
    [321]HUANG H, NAKAMURA M, SU P, et al. High-performance ultrathin solid oxide fuel cells for low-temperature operation [J]. Journal of The Electrochemical Society,2007, 154(B20.
    [322]TULLER H L. Solid State Electrochemical Systems-Opportunities for Nanofabricated or Nanostructured Materials [J]. Journal of Electroceramics,1997,1(3):211-8.
    [323]SARANTARIDIS D, RUDKIN R A, ATKINSON A. Oxidation failure modes of anode-supported solid oxide fuel cells [J]. Journal of Power Sources,2008,180(2): 704-10.
    [324]ATKINSON A, SEL UK A. Residual stress and fracture of laminated ceramic membranes [J]. Acta Materialia,1999,47(3):867-74.
    [325]MALZBENDER J, STEINBRECH R W. Threshold fracture stress of thin ceramic components [J]. Journal of the European Ceramic Society,2008,28(1):247-52.
    [326]FISCHER W, MALZBENDER J, BLASS G, et al. Residual stresses in planar solid oxide fuel cells [J]. Journal of Power Sources,2005,150(73-7.
    [327]MALZBENDER J, FISCHER W, STEINBRECH R W. Studies of residual stresses in planar solid oxide fuel cells [J]. Journal of Power Sources,2008,182(2):594-8.
    [328]YAKABE H, BABA Y, SAKURAI T, et al. Evaluation of residual stresses in a SOFC stack [J]. Journal of Power Sources,2004,131(1-2):278-84.
    [329]SUN B, RUDKTN R A, ATKINSON A. Effect of Thermal Cycling on Residual Stress and Curvature of Anode-Supported SOFCs [J]. Fuel Cells,2009,9(6):805-13.
    [330]ATKINSON A, SEL UK A. Mechanical behaviour of ceramic oxygen ion-conducting membranes [J]. Solid State Ionics,2000,134(1-2):59-66.
    [331]SEL UK A, ATKINSON A. Strength and Toughness of Tape-Cast Yttria-Stabilized Zirconia [J]. Journal of the American Ceramic Society,2000,83(8):2029-35.
    [332]SELCUK A, MERERE G, ATKINSON A. The influence of electrodes on the strength of planar zirconia solid oxide fuel cells [J]. Journal of Materials Science,2001,36(5): 1173-82.
    [333]SARANTARIDIS D, ATKINSON A. Redox cycling of Ni-based solid oxide fuel cell anodes:A review [J]. Fuel Cells,2007,7(3):246-58.
    [334]LAURENCIN J, MOREL B, BULTEL Y, et al. Thermo-mechanical model of solid oxide fuel cell fed with methanex [J]. Fuel Cells,2006,6(1):64-70.
    [335]LAURENCIN J, DELETTE G, DUPEUX M, et al. A Numerical Approach to Predict the SOFC Fracture:The Case of an Anode Supported Cell [J]. ECS Transactions,2007, 7(1):677-86.
    [336]LAURENCIN J, DELETTE G, LEFEBVRE-JOUD F, et al. A numerical tool to estimate SOFC mechanical degradation:Case of the planar cell configuration [J]. Journal of the European Ceramic Society,2008,28(9):1857-69.
    [337]LAURENCIN J, DELETTE G, MOREL B, et al. Solid Oxide Fuel Cells damage mechanisms due to Ni-YSZ re-oxidation:Case of the Anode Supported Cell [N]. Journal of Power Sources,2009-.
    [338]LAURENCIN J, DELETTE G, USSEGLIO-VIRETTA F, et al. Characterization of the Ni-8YSZ Cermet Creep and Its Impact on the Cell 'Redox' Tolerance [J]. ECS Transactions,2011,35(1):1463-71.
    [339]CHIH-KUANG L, TSUNG-TING C, CHYOU Y P, et al. Thermal stress analysis of a planar SOFC stack [J]. Journal of Power Sources,2007,164(1):238-51.
    [340]LIU L, KIM G Y, CHANDRA A. Modeling of thermal stresses and lifetime prediction of planar solid oxide fuel cell under thermal cycling conditions [J]. Journal of Power Sources,2010,195(8):2310-8.
    [341]LIEH-KWANG C, HUI-CHUNG L, YAO-HUA S, et al. Thermal stress and thermo-electrochemical analysis of a planar anode-supported solid oxide fuel cell:effects of anode porosity [J]. Journal of Power Sources,2010,1895-904.
    [342]JIANG T L, MING-HONG C. Thermal-stress analyses of an operating planar solid oxide fuel cell with the bonded compliant seal design [J]. International Journal of Hydrogen Energy,2009,8223-34.
    [343]HSUEH C H, DE JONGHE L C, LEE C S. Modeling of Thermal Stresses in Joining Two Layers with Multi-and Graded Interlayers [J]. Journal of the American Ceramic Society,2006,89(1):251-7.
    [344]XU Y Q, WANG L L, ZHANG Q W. Residual Stress and Thermal Stress in Ni/YSZ Anode Support Micro-Tubular Solid Oxide Fuel Cell [J]. Advanced Materials Research, 2012,347(3228-31.
    [345]CLAGUE R, MARQUIS A, BRANDON N. Finite Element and Analytical Stress Analysis of a Solid Oxide Fuel Cell [J]. Journal of Power Sources,2012,
    [346]HULL D, CLYNE T. An introduction to composite materials [M]. Cambridge Univ Pr, 1996.
    [347]VASSEN R, CZECH N, MALLENER W, et al. Influence of impurity content and porosity of plasma-sprayed yttria-stabilized zirconia layers on the sintering behaviour [J]. Surface and Coatings Technology,2001,141(2):135-40.
    [348]GREEN D J. An introduction to the mechanical properties of ceramics [M]. Cambridge Univ Pr,1998.
    [349]MORI M, YAMAMOTO T, ITOH H, et al. Thermal Expansion of Nickel\Zirconia Anodes in Solid Oxide Fuel Cells during Fabrication and Operation [J]. Journal of the Electrochemical Society,1998,145(1374.
    [350]HASHIN Z, SHTRIKMAN S. A variational approach to the theory of the elastic behaviour of multiphase materials [J]. Journal of the Mechanics and Physics of Solids, 1963,11(2):127-40.
    [351]RAMAKRISHNAN N, ARUNACHALAM V S. Effective elastic moduli of porous solids [J]. Journal of Materials Science,1990,25(9):3930-7.
    [352]JI Y, KILNER J, CAROLAN M. Electrical properties and oxygen diffusion in yttria-stabilised zirconia (YSZ)-LaO.8Sr0.2MnO3iA[delta](LSM) composites [J]. Solid State Ionics,2005,176(9-10):937-43.
    [353]RADOVIC M, LARA-CURZIO E. Elastic Properties of Nickel-Based Anodes for Solid Oxide Fuel Cells as a Function of the Fraction of Reduced NiO [J]. Journal of the American Ceramic Society,2004,87(12):2242-6.
    [354]FARRARO R, MCLELLAN R. Temperature dependence of the Young's modulus and shear modulus of pure nickel, platinum, and molybdenum [J]. Metallurgical and Materials Transactions A,1977,8(10):1563-5.
    [355]CUTLER R A, MEIXNER D L. Ceria-lanthanum strontium manganite composites for use in oxygen generation systems [J]. Solid State Ionics,2003,159(1-2):9-19.
    [356]BASU R N, TIETZ F, TELLER O, et al. LaNiO.6FeO.403 as a cathode contact material for solid oxide fuel cells [J]. Journal of Solid State Electrochemistry,2003,7(7): 416-20.
    [357]W.WEIBULL. Proceedings of the Royal Swedish Institute of Engineering Research 1939,151(1-45.
    [358]RADOVIC M, LARA-CURZIO E. Mechanical properties of tape cast nickel-based anode materials for solid oxide fuel cells before and after reduction in hydrogen [J]. Acta Materialia,2004,52(20):5747-56.
    [359]KATO T, HAYASAKA S. Methicillin-Resistant Staphylococcus aureus and Methicillin-Resistant Coagulase-Negative Staphylococci From Conjunctivas of Preoperative Patients [J]. Japanese Journal of Ophthalmology,1999,42(6):461-5.
    [360]VALLURU S. Steady state thermal stress analyses of two-dimensional and three-dimensional solid oxide fuel cells [D]; West Virginia University,2005.
    [361]LIU X, MARTIN C L, BOUVARD D, et al. Strength of Highly Porous Ceramic Electrodes [J]. Journal of the American Ceramic Society,2011, n/a-n/a.
    [362]MONTROSS C S, YOKOKAWA H, DOKIYA M. Thermal stresses in planar solid oxide fuel cells due to thermal expansion differences [J]. British Ceramic Transactions, 2002,101(3):85-93.
    [363]LEE J H, MOON H, LEE H W, et al. Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni-YSZ cermet [J]. Solid State Ionics,2002, 148(1-2):15-26.
    [364]HOLZER L, IWANSCHITZ B, HOCKER T, et al. Microstructure degradation of cermet anodes for solid oxide fuel cells:Quantification of nickel grain growth in dry and in humid atmospheres [J]. Journal of Power Sources,2010,
    [365]YEONG-SHYUNG C, STEVENSON J W. Long-term ageing and materials degradation of hybrid mica compressive seals for solid oxide fuel cells [J]. Journal of Power Sources, 2009,384-9.
    [366]TANASINI P, CANNAROZZO M, COSTAMAGNA P, et al. Experimental and Theoretical Investigation of Degradation Mechanisms by Particle Coarsening in SOFC Electrodes [J]. Fuel Cells,2009,9(5):740-52.
    [367]SIMWONIS D, TIETZ F, ST VER D. Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells [J]. Solid State Ionics,2000,132(3-4):241-51.
    [368]HSIAO Y C, SELMAN J R. The degradation of SOFC electrodes [J]. Solid State Ionics, 1997,98(1):33-8.
    [369]HAUCH A, MOGENSEN M, HAGEN A. Ni/YSZ electrode degradation studied by impedance spectroscopy — Effect of p(H20) [J]. Solid State Ionics,2011,192(1): 547-51.
    [370]卢凤双,田宇鹏.固体氧化物燃料电池(SOFC)用NiMoCr金属连接体氧化行为研究[J].金属功能材料,2011,18(3):14-8.
    [371]YANG Z, WEIL K S, PAXTON D M, et al. Selection and evaluation of heat-resistant alloys for SOFC interconnect applications [J]. Journal of The Electrochemical Society, 2003,150(A1188.
    [372]HILPERT K, DAS D, MILLER M, et al. Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes [J]. Journal of The Electrochemical Society,1996,143(3642.
    [373]STANISLOWSKI M, WESSEL E, HILPERT K, et al. Chromium vaporization from high-temperature alloys [J]. Journal of The Electrochemical Society,2007,154(A295.
    [374]SUN X, LIU W N, STEPHENS E, et al. Determination of interfacial adhesion strength between oxide scale and substrate for metallic SOFC interconnects [J]. Journal of Power Sources,2008,176(1):167-74.
    [375]HATTORI M, TAKEDA Y, SAKAKI Y, et al. Effect of aging on conductivity of yttria stabilized zirconia [J]. Journal of Power Sources,2004,126(1-2):23-7.
    [376]VAN HERLE J, VASQUEZ R. Conductivity of Mn and Ni-doped stabilized zirconia electrolyte [J]. Journal of the European Ceramic Society,2004,24(6):1177-80.
    [377]HAERING C, ROOSEN A, SCHICHL H, et al. Degradation of the electrical conductivity in stabilised zirconia system:Part II:Scandia-stabilised zirconia [J]. Solid State Ionics,2005,176(3):261-8.
    [378]BUTZ B, KRUSE P, STORMER H, et al. Correlation between microstructure and degradation in conductivity for cubic Y2O3-doped ZrO2 [J]. Solid State Ionics,2006, 177(37-38):3275-84.
    [379]COORS W, O'BRIEN J, WHITE J. Conductivity degradation of NiO-containing 8YSZ and 10YSZ electrolyte during reduction [J]. Solid State Ionics,2009,180(2-3):246-51.
    [380]KUMAR A N, S RENSEN B F. Fracture energy and crack growth in surface treated Yttria stabilized Zirconia for SOFC applications [J]. Materials Science and Engineering: A,2002,333(1):380-9.
    [381]WUILLEMIN Z, AUTISSIER N, NAKAJO A, et al. Modeling and study of the influence of sealing on a solid oxide fuel cell [J]. Journal of Fuel Cell Science and Technology,2008,5(011016.
    [382]J RGENSEN M J, HOLTAPPELS P, APPEL C. Durability test of SOFC cathodes [J]. Journal of applied electrochemistry,2000,30(4):411-8.
    [383]LIU Y L, HAGEN A, BARFOD R, et al. Microstructural studies on degradation of interface between LSM-YSZ cathode and YSZ electrolyte in SOFCs [J]. Solid State Ionics,2009,180(23-25):1298-304.
    [384]SONG H S, HYUN S H, KIM J, et al. A nanocomposite material for highly durable solid oxide fuel cell cathodes [J]. J Mater Chem,2008,18(10):1087-92.
    [385]SHAH M, HUGHES G, VOORHEES P W, et al. Stability and Performance of LSCF-Infiltrated SOFC Cathodes:Effect of Nano-Particle Coarsening, F,2011 [C]. ECS.
    [386]LIU Y, THYD N K, CHEN M, et al. Microstructure degradation of LSM-YSZ cathode in SOFCs operated at various conditions [J]. Solid State Ionics,2011,
    [387]PARK K, YU S, BAE J, et al. Fast performance degradation of SOFC caused by cathode delamination in long-term testing [J]. International Journal of Hydrogen Energy, 2010,35(16):8670-7.
    [388]SIMNER S P, ANDERSON M D, ENGELHARD M H, et al. Degradation Mechanisms of La-Sr-Co-Fe-O SOFC Cathodes [J]. Electrochemical and solid-state letters,2006, 9(A478.
    [389]YOKOKAWA H, HORITA T, SAKAI N, et al. Thermodynamic considerations on Cr poisoning in SOFC cathodes [J]. Solid State Ionics,2006,177(35-36):3193-8.
    [390]KOMATSU T, ARAI H, CHIBA R, et al. Cr Poisoning Suppression in Solid Oxide Fuel Cells Using LaNi (Fe) O Electrodes [J]. Electrochemical and solid-state letters,2006, 9(A9.
    [391]MATSUZAKI Y, YASUDA I. Dependence of SOFC cathode degradation by chromium-containing alloy on compositions of electrodes and electrolytes [J]. Journal of The Electrochemical Society,2001,148(A126.
    [392]KEN JO T, NISHIYA M. LaMnO3 air cathodes containing ZrO2 electrolyte for high temperature solid oxide fuel cells [J]. Solid State Ionics,1992,57(3-4):295-302.
    [393]TSAI T, BARNETT S A. Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fuel cell performance [J]. Solid State Ionics,1997,93(3-4):207-17.
    [394]陈鑫,韩敏芳,王忠利,et al.铬基合金连接体材料在固体氧化物燃料电池中的应用[J].稀有金属材料与工程,2007,36(A02):642-4.
    [395]IOSELEVICH A, KORNYSHEV A, LEHNERT W. Degradation of solid oxide fuel cell anodes due to sintering of metal particles [J]. Journal of The Electrochemical Society, 1997,144(3010.
    [396]VA EN R, SMWONIS D, ST VER D. Modelling of the agglomeration of Ni-particles in anodes of solid oxide fuel cells [J]. Journal of Materials Science,2001,36(1):147-51.
    [397]IOSELEVICH A, KORNYSHEV A A, LEHNERT W. Statistical geometry of reaction space in porous cermet anodes based on ion-conducting electrolytes:Patterns of degradation [J]. Solid State Ionics,1999,124(3-4):221-37.
    [398]HOLTAPPELS P, BRADLEY J, IRVINE J, et al. Electrochemical characterization of ceramic SOFC anodes [J]. Journal of The Electrochemical Society,2001,148(A923.
    [399]ETTLER M, BLA G, MENZLER N H. Characterisation of Ni-YSZ-Cermets with Respect to Redox Stability [J]. Fuel Cells,2007,7(5):349-55.
    [400]MALZBENDER J, WESSEL E, STEINBRECH R W. Reduction and re-oxidation of anodes for solid oxide fuel cells [J]. Solid State Ionics,2005,176(29-30):2201-3.
    [401]KLEMENS T, APPEL C, MOGENSEN M. In situ observations of microstructural changes in SOFC anodes during redox cycling [J]. Electrochemical and solid-state letters, 2006,9(A403.
    [402]TMMERMANN H, SAWADY W, CAMPBELL D, et al. Coke formation and degradation in SOFC operation with a model reformate from liquid hydrocarbons [J]. Journal of The Electrochemical Society,2008,155(B356.
    [403]LUSSIER A, SOFIE S, DVORAK J, et al. Mechanism for SOFC anode degradation from hydrogen sulfide exposure [J]. International Journal of Hydrogen Energy,2008, 33(14):3945-51.
    [404]HAGA K, ADACHI S, SHIRATORI Y, et al. Poisoning of SOFC anodes by various fuel impurities [J]. Solid State Ionics,2008,179(27-32):1427-31.
    [405]SARANTARIDIS D, ATKINSON A. Redox Cycling of Ni-Based Solid Oxide Fuel Cell Anodes:A Review [J]. Fuel Cells,2007,7(3):246-58.
    [406]TAKEGUCHI T, KIKUCHI R, YANO T, et al. Effect of precious metal addition to Ni-YSZ cermet on reforming of CH4 and electrochemical activity as SOFC anode [J]. Catalysis today,2003,84(3-4):217-22.
    [407]IWANSCHITZ B, HOLZER L, MAI A, et al. Nickel agglomeration in solid oxide fuel cells:The influence of temperature [J]. Solid State Ionics,2012,
    [408]PIHLATIE M H, FRANDSEN H L, KAISER A, et al. Continuum mechanics simulations of NiO/Ni-YSZ composites during reduction and re-oxidation [J]. Journal of Power Sources,2010,2677-90.
    [409]PIHLATIE M H, KAISER A, MOGENSEN M, et al. Electrical conductivity of Ni-YSZ composites:Degradation due to Ni particle growth [J]. Solid State Ionics,2011,189(1): 82-90.
    [410]NAKAJO A, TANASINI P, DIETHELM S, et al. Electrochemical Model of Solid Oxide Fuel Cell for Simulation at the Stack Scale Ⅱ:Implementation of Degradation Processes [J]. Journal of The Electrochemical Society,2011,158(9):B1102-B18.
    [411]CHEN H Y.YU H C, SCOTT CRONIN J, et al. Simulation of coarsening in three-phase solid oxide fuel cell anodes [J]. Journal of Power Sources,2011,196(3):1333-7.
    [412]KARMA A. Phase-field formulation for quantitative modeling of alloy solidification [J]. Physical review letters,2001,87(11):115701.
    [413]VOORHEES P W. The theory of Ostwald ripening [J]. Journal of Statistical Physics, 1985,38(1):231-52.
    [414]YAO J H, ELDER K R, GUO H, et al. Theory and simulation of Ostwald ripening [J]. Physical Review B,1993,47(21):14110.
    [415]BERTEI A, NICOLELLA C. Percolation theory in SOFC composite electrodes:Effects of porosity and particle size distribution on effective properties [J]. Journal of Power Sources,2011,
    [416]COBLE R, GUPTA T. Sintering and related phenomena [J]. Gordon and Breach, New York,1967,423(
    [417]WILSON J R, BARNETT S A. Solid oxide fuel cell Ni-YSZ anodes:effect of composition on microstructure and performance [J]. Electrochemical and solid-state letters,2008,11(B181.
    [418]CHO P S, LEE S B, KIM D S, et al. Improvement of grain-boundary conduction in gadolinia-doped ceria by the addition of CaO [J]. Electrochemical and solid-state letters, 2006,9(A399.
    [419]WIMMER E, WOLF W, STICHT J, et al. Temperature-dependent diffusion coefficients from ab initio computations:Hydrogen, deuterium, and tritium in nickel [J]. Physical Review B,2008,77(13):134305.
    [420]RAHAMAN M N. Ceramic processing and sintering [M]. CRC,2003.
    [421]KLEMENS T, MOGENSEN M. Ni-YSZ Solid Oxide Fuel Cell Anode Behavior Upon Redox Cycling Based on Electrical Characterization [J]. Journal of the American Ceramic Society,2007,90(11):3582-8.
    [422]ATKINSON A, BARNETT S, GORTE R J, et al. Advanced anodes for high-temperature fuel cells [J]. Nature materials,2004,3(1):17-27.
    [423]DUSASTRE V, KILNER J. Optimisation of composite cathodes for intermediate temperature SOFC applications [J]. Solid State Ionics,1999,126(1):163-74.
    [424]OH S H, SINKEVITCH R. Carbon monoxide removal from hydrogen-rich fuel cell feedstreams by selective catalytic oxidation [J]. Journal of Catalysis,1993,142(1): 254-62.
    [425]SINGHAL S C. Solid oxide fuel cells [J]. Interface-Electrochemical Society,2007, 16(4):41-4.
    [426]RUIZ-MORALES J C, CANALES-V ZQUEZ J, SAVANIU C, et al. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation [J]. Nature,2006, 439(7076):568-71.
    [427]LI C J, NING X J, LI C X. Effect of densification processes on the properties of plasma-sprayed YSZ electrolyte coatings for solid oxide fuel cells [J]. Surface and Coatings Technology,2005,190(1):60-4.
    [428]JIANG S P. Sintering behavior of Ni/Y2O3-ZrO2 cermet electrodes of solid oxide fuel cells [J]. Journal of Materials Science,2003,38(18):3775-82.
    [429]HAGEN A, BARFOD R, HENDRIKSEN P V, et al. Degradation of anode supported SOFCs as a function of temperature and current load [J]. Journal of The Electrochemical Society,2006,153(A1165.
    [430]VURAL Y, MA L, INGHAM D B, et al. Comparison of the multicomponent mass transfer models for the prediction of the concentration overpotential for solid oxide fuel cell anodes [J]. Journal of Power Sources,2010,195(15):4893-904.
    [431]ZHU H Y, KEE R J. Modeling distributed charge-transfer processes in SOFC membrane electrode assemblies [J]. J Electrochem Soc,2008,155(7):B715-B29.
    [432]COSTAMAGNA P, HONEGGER K. Modeling of solid oxide heat exchanger integrated stacks and simulation at high fuel utilization [J]. J Electrochem Soc,1998,145(11): 3995-4007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700