水溶液锂离子电池电化学性能和中温燃料电池质子电解质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要由两部分构成,第一部分是关于水溶液锂离子电池的电化学性能、循环容量衰减机理及其稳定方法的研究;第二部分是关于中温燃料电池用聚磷酸铵基质子导体电解质制备、表征和电化学性能的研究。
     水溶液锂离子二次电池结合了非水电解液锂离子电池和传统水溶液电池的优点,消除了使用有机电解液而存在的燃烧、爆炸等安全隐患,其在低电压电池如铅酸电池、碱锰电池等领域存在很大的竞争潜力。但是水溶液锂离子电池循环寿命太短,此前对于其循环容量衰减机理还不是很清楚,对于循环寿命提高的方法也没有报道。同时,由于受到水溶液锂离子电池电化学窗口的限制,具有明显电池充放电特性的阳极材料选择十分困难。
     中温燃料电池结合了高温燃料电池和低温燃料电池的优点,避免了低温条件下催化剂CO中毒和高温条件下电池制作材料的高要求,是一种很有发展潜力的燃料电池。聚磷酸铵基复合物由于其较高的质子电导性而成为中温燃料电池电解质备选材料。虽然目前聚磷酸铵基复合物的电导率已经可以达到实用化的要求,但是对于该类复合物的电导率稳定性和材料结构的变化研究还不够,研究开发高电导率、高稳定性的聚磷酸铵基复合物质子导体对于推进中温燃料电池的发展至关重要。
     本论文针对上述两个体系存在的不足,开展了如下工作:
     首次提出了采用导电聚合物对阳极材料进行表面包覆以稳定其在水溶液中的电化学性能的方法,实现了对水溶液锂离子电池循环寿命的提高。首先对水溶液锂离子电池体系的集流体、电极材料以及电解液的pH值进行了考察和筛选,建立了水溶液锂离子二次电池组合LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2/5 M LiNO_3(pH 11)/Li_xV_2O_5。研究了该体系电池的循环性能下降的原因。XRD和ICP的检测结果表明阳极对电池容量衰减的影响远大于阴极。通过采用聚苯胺对阳极的表面包覆,明显地提高了电池的循环寿命。同时还对聚苯胺包覆阳极提高电池循环寿命的机理进行了研究,为水溶液锂离子电池循环寿命提高提供理论依据。
     对电池组合LiMn_2O_4/5 M LiNO_3/Li_xV_2O_5的容量衰减原因进行进一步考察。研究了阴阳极材料以及过渡金属溶解量随循环次增加的演变过程。采用原位聚合法,在阳极表面进行聚吡咯包覆以提高水溶液锂离子电池循环寿命。通过阳极表面包覆,电池的循环寿命由20次左右增加到60次以上(容量保持80%以上),为此前文献报道中的最高值。比较了包覆前后电解液中过渡金属离子溶解度的变化情况以及包覆聚吡咯对活性材料和集流体之间粘结力的影响。此外,还考察了阳极表面聚吡咯不同包覆量对电池循环稳定性的影响。
     采用具有3D结构的TiP_2O_7和LiTi_2(PO_4)_3等聚阴离子化合物作为水溶液锂离子二次电池的阳极。以LiMn_2O_4为阴极分别与上述两种材料组成电池TiP_2O_7/5 M LiNO_3/LiMn_2O_4和LiTi_2(PO_4)_3/5M LiNO_3/LiMn_2O_4,基于电极活性物质重量,前者放电容量为42mAh g~(-1),平均电压为1.40 V;后者放电比容量为45 mAhg~(-1),平均电压为1.50 V。LiTi_2(PO_4)_3是一种很好的快离子导体,采用循环伏安法研究了锂离子在LiTi_2(PO_4)_3中的扩散系数,结果表明锂离子在该材料中具有很高的扩散系数,充电和放电过程为别为6.08×10~(-5),2.24×10~(-5)cm~2 s~(-1)。考察了不同嵌锂量时LiTi_2(PO_4)_3晶胞参数的变化情况。当嵌锂量为1.8时,晶胞体积变化最大,为1.28%。该部分内容的研究为水溶液锂离子电池的进一步发展提供新的平台。
     考察了(NH_4)_2SnP_4O_(13)复合物作为中温燃料电池用电解质在分别在干燥氢气、氮气、空气以及潮湿氢气、氮气、空气中的电导率情况。干燥气氛中,当采用氢气,温度为275℃时,该材料得到最高电导率为13.8 mScm~(-1);潮湿气氛中,在氢气中得到最高电导率,其值为35.5 mScm~(-1)。(NH_4)_2SnP_4O_(13)复合物电导率的研究丰富了中温燃料电池电解质备选材料。
     采用固相法制备了系列(NH_4)_2Si_(1-x)Ti_xP_4O_(13)复合物,系统考察了该系列复合物在不同气氛中的电导率以及不同Ti含量对复合物电导率的影响。在干燥气氛和潮湿气氛下,分别得到最高电导率为0.68mS cm~(-1)和30.8 mS cm~(-1)。其中复合物(NH_4)_2Si_(50)Ti_(50)P_4O_(13)在干燥和潮湿气氛中表现出较好的综合性能。因此,实验对(NH_4)_2Si_(50)Ti_(50)P_4O_(13)的电导率稳定性、热稳定性以及结构变化情况进行了一步考察,对其在中温燃料电池中的实际应用具有十分重要的价值。
This thesis is composed of two parts. The first part is study on electrochemical properties, capacity fading mechanism and improving cycle life method of aqueous lithium ion batteries. The second part is study on preparation, characterization and electrochemical properties of ammonium polyphosphate based composites for intermediate temperature fuel cells.
     Aqueous lithium ion batteries have the advantages of non-aqueous lithium ion battery and traditional secondary batteries with aqueous electrolyte, which will eliminate burning, explosive crisis resulted from organic electrolyte. It has competitive potential compared with lead-acid, nickel-cadmium and some other low voltage batteries. However, the cycle life is short and the reasons on capacity fading are still not very clear at present. Moreover, the candidate with flat charge/discharge curve for the anode is very limited.
     Intermediate temperature fuel cells are very attractive because they combine the advantages of high- and low-temperature fuel cells. This kind of fuel cells avoids the catalyst poisoning at low temperature and high requirement on assembling materials at high temperature. Ammonium polyphosphate based composites are promising electrolyte for this kind of fuel cells. However, the studies on conductive stability and structure transformation during measuring process are very little. Research and development on ammonium polyphosphate based composites with high conductivity and high stability will be significant to the application of intermediate temperature fuel cells.
     In this paper, the following contents are included:
     First, selection and investigation on current collector, active materials, and the pH value of the electrolyte were conducted. Reasons of capacity fading of LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2/5 M LiNO_3 (pH 11) / Li_xV_2O_5 lithium ion cell based on structure and dissolution of transition metals were investigated preliminarily. XRD and ICP results showed that the properties of the anode have more impact on the cycle life of the cell. In order to stabilize the cycling capacity of the anode, thus improve the cycle life of the cell, coating with an ionic conductive polyaniline (PAn) on the surface of the anode was proposed. Cycle tests revealed that the stability of the lithium ion cell with surface coated anode has greatly improved. The improving mechanism of surface coating by PAn was also investigated.
     More details on capacity fading during cycling process of LiMn_2O_4/ Li_xV_2O_5 lithium ion cell with 5 M LiNO_3 aqueous solution as electrolyte was investigated. In order to improve the cycle performance of the as-assembled cell, coating with an ionic conductive polypyrrole (PPy) on the surface of the anode was proposed via in-situ polymerization method. Cycling tests revealed that the stability of the lithium ion cell with surface coated anode was greatly improved. Moreover, the effect of different coating amount of polypyrrole on the cyclability of the lithium ion cell was investigated. The force between electrode and current collector affected by PPy coating was also investigated.
     Some polyanionic compounds, e.g. TiP_2O_7 and LiTi_2(PO_4)_3 with 3D framework structure were proposed to be used as anodes of lithium ion battery with aqueous electrolyte. The TiP_2O_7 and LiTi_2(PO_4)_3 give capacities of about 80 mAh g~(-1) between potentials of -0.50 V and 0 V (vs. SHE) and 90 mAh g~(-1) between -0.65 V and -0.10 V (vs. SHE) , respectively. A test cell consisting of TiP_2O_7/5M LiNO_3/ LiMn_2O_4 delivers approximately 42 mAh g~(-1) (weight of cathode and anode) at average voltage of 1.40 V, and LiTi_2(PO_4)_3/ 5M LiNO_3/ LiMn_2O_4 delivers approximately 45 mAh g~(-1) at average voltage of 1.50 V. Lithium ion diffusion coefficient in LiTi_2(PO_4)_3 was investigated by Cyclic Voltammogram (CV) method, and the results are 6.08×10~(-5),2.24×10~(-5)cm~2 s~(-1) respectively during charge and discharge process. The lattice parameter change with x of Li_(1+x)Ti_2(PO_4)_3 was investigated. The capacity fading maybe related to deterioration of anode material.
     A proton-conductive composite of (NH_4)_2SnP_4O_(13) was synthesized by solid-state method. X-ray diffraction (XRD), scanning electronic microscopy (SEM) and thermal gravimetric analysis (TGA) investigation were performed on this composite. The conductivity of (NH_4)_2SnP_4O_(13) measured by impendence spectroscopy with the temperature range of 125 - 275℃under different atmosphere. Maximum conductivities of 13.8 mS cm~(-1) at 275℃under dry H_2 and 35.5 mS cm~(-1) at 225℃under wet H_2 respectively were obtained.
     We prepared (NH_4)_2Si_(1-x)Ti_xP_4O_(13) composites, which have potential application in intermediate temperature fuel cells as electrolyte. The effect of Ti content on the conductivity of the composite was investigated systematically. Maximum conductivities of 0.68 mS cm~(-1) under dry atmosphere and 30.8 mS cm~(-1) under wet atmosphere respectively were obtained. Among them, (NH_4)_2Si_(50)Ti_(50)P_4O_(13) gave good conductivity both in dry and humid atmosphere. The (NH_4)_2Si_(50)Ti_(50)P_4O_(13) composite also showed good conductivity stability when changing the atmosphere between dry and humid gas. Moreover, the XRD results showed that the structure of (NH_4)_2Si_(50)Ti_(50)P_4O_(13) changed after measuring in dry gas and humid gas.
引文
[1] 雷永泉,万群,石永康.新能源材料.天津大学出版社,2000.
    [2] World energy outlook. Paris: International energy Agence, 1994.
    [3] 高俊荃.化学电源先锋——锂离子电池.电源技术应用,2001,(3):39-43.
    [4] 顾登平,童汝亭.化学电源.高等教育出版社,1993,1-3.
    [5] 郭炳昆,李新海,杨松青.化学电源——电池原理及制造技术.中南工业学出版社,2000,31.
    [6] Lave L B, Henrichkson C T, Mcmichael F C. Enivironmential implications of electric cars. Science, 1995,268: 993-995.
    [7] 雷永泉,万群,石永康等.新能源材料[M].第一版,天津大学出版社,2000,32.
    [8] 吴宇平,万春荣,姜长印.锂离子二次电池.化学工业出版社,2002,1.
    [9] Whittingham M S. Electrical Energy Storage and Intercalation Chemistry .Science, 1976,192:1126-1127.
    [10] Whittingham M. US Patent 4009052.
    [11] 郭炳昆,徐徽,王友先等.锂离子电池[M].第一版,中南工业大学出版社,2002,5,2.
    [12] 陈立泉.锂离子电池最新动态和进展.电池,1998,28(6):255-257.
    [13] Yoshio N. Lithium ion secondary batteries; past 10 years and the future. J.Power Sources, 2001,100(1-2):101-106.
    [14] 冯熙康,王伯良,陈爱松等.动力汽车锂离子动力电池系统的研制.电源技术,2002,26(2):63-65.
    [15] 陈立泉.锂离子正极材料的研究发展.电池,2002,32(6):6-8.
    [16] 赵健,杨维芝,赵家明.锂离子电池的应用开发.电池工业,2000,5(1):31-36.
    [17] Yoshio N. Lithium ion secondary batteries; past 10 years and the future. J.Power Sources, 2001,100 (1-2): 101-106.
    [18] Alessandrini F, Conte M, Passerini S, Prosini P P. Overview of ENEA's Projects on lithium battery. J. Power Sources, 2001, 97-98: 768-771.
    [19] 王福鸾(编译).索尼公司的锂离子蓄电池先进技术.电源技术,2006,30(10):789-792.
    [20] Masaharu S, Kentaro N. Film packed lithium-ion battery with poly merstabilizer. Electrochimica Acta. 2004, 50: 561-564.
    [21] Weinert J, Burke A F. Wei X Z, Lead-acid and lithium-ion batteries for the Chinese electric bike market and implications on future technology advancement, J. Power Sources 2007,172(2): 938-945.
    [22] 李诚芳.电动自行车及其电池.电池工业,2004,9:125-130.
    [23] 商国华.当代电动车用电池的希望.世界汽车,2001,3:6-20.
    [24] Horiba T, Hironaka K, Matsumura T, Kaia T, Koseki M, Muranaka Y.Manganese-based lithium batteries for hybrid electric vehicle applications. J.Power Sources, 119-121 (2003): 893-896.
    [25] 安平,其鲁.锂离子二次电池的应用和发展.北京大学学报(自然科学版,增刊),2006,42:1-7.
    [26] 王观成.我国军用通信电池技术的最新进展.电池,2003,33(2):108-109.
    [27] 蒲薇华,任建国,万春荣,杜志明,王要武.军用锂离子电池及负极材料研究进展.电池,2003,33(4):249-251.
    [28] Takei K, Ishihara K, Kumai K, Iwahori T, Miyake K, Nakatsu T, Terada N,Arai N. Performance of large-scale secondary lithium batteries for electric vehicles and home-use load-leveling systems. J. Power Sources, 119-121(2003): 887-892.
    [29] Al-Hallaj S, Selman J R. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications. J. Power Sources, 2002,110:341-348.
    [30] Onda K, Ohshima T, Nakayama M, Fukuda k, Araki T. Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles. J. Power Sources, 2006,158:535-542.
    [31] Terrill B A, Peter J C, FeeC L. Man portable needs of the 21stcentury. J Power Sources, 2000,911: 27-36.
    [32] Hill I R, Andrukaitis E E. Lithium-ion polymer cells for military applications,J. Power Sources, 2004, 129 (2004): 20-28.
    [33] Ehrlich G M, Marsh C. Low-cost, light weight rechargeable lithium ion batteries. J. Power Sources, 1998, 73: 224-228.
    [34] Juzkow M. Development of a BB-2590U rechargeable lithium-ion battery. J.Power Sources, 1999, 80: 286-292.
    [35] 张豪娟.美国海军对电池的需求及研制.电池工业,1999,42:71-74.
    [36] Arrnand D M. In Materials for Advanced Batteries. Plenum Press New York,1980:145.
    [37] 田春霞.电动汽车用先进电池的现状及发展.电池,2000,30(2):83-85.
    [38] 1999年日本锂离子电池.锂电池专讯,2000(3):3-5.
    [39] Yoshio M, Thnaka H, Tominaya K, et al. Synthesis of LiCoO_2 from cobalt-organic acid complexes and its electrode behavior in a lithium secondary. J.Power Sources, 1992,40: 347-353.
    [40] Thackeray M M. Structural considerations of layered and spinel lithiated oxides for lithium ion batteries. J. Electrochem. Soc, 1995,142: 2558-2563.
    [41] 管丛胜,杜爱玲,杨玉国.高能化学电源.化学工业出版社,2005,303.
    [42] Ohzuku T, Wtagawa M, Hirai T. Electrochemistry of manganese dioxide in lithium nonaqueous cell. J. Electrochem. Soc, 1990,137: 769-775.
    [43] Chirayil T A, Zavalij P Y, Whittingham M S. A New Vanadium Dioxide Cathode. J. Electrochem. Soc, 1996,143: 193-195.
    [44] Moshtev R, Johnson B.. State of the art of commercial Li ion batteries. J.Power Sources, 2000,91: 86-91.
    [45] Scrosati B, Armand M, Nagaura T. Development of rechargeable lithium battery:Ⅱ, lithium ion rechargeable batteries. Prog. Bat. Soc. Cells, 1991, 10:218-226.
    [46] Nagaura T, Tozawa K. Lithium ion rechargeable battery. Prog. Batts. Soc.Cells, 1990,9:209-217.
    [47] 汪继强.锂离子电池技术进展及市场.电源技术,1996,20(4):147-151.
    [48] 赖琼钰,卢集政,邹宏如.摇椅锂离子二次电池及其嵌入式电机材料[J].化学研究与应用,1998,10(1):21-26.
    [49] 马千里,顾丽霞.锂离子电池研究进展.材料导报,1999,13(6):28-30.
    [50] 刘建华,李新海,郭炳馄等.球形氢氧化镍的制备.湘潭矿业学院学报,1997,12(1):58-60.
    [51] 刘建华,杨敬武,唐致远.掺杂Ni(OH)_2的质子扩散系数.应用化学.2000,17(4):378-391.
    [52] 黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术,化学工业出版社,2008,北京.
    [53] Spurrett R, Thawaite C, Slimm M, et al. Lithium-ion batteries for space,Proceedings of the six European Space Power Conference. Porto, Portugal,2002,477-482.
    [54] Chad O, Dwayne H, Robert Higgins. Li-ion satellite cell development: past,present and future C. Proceed in gs of the 33th IECEC, 1998,4: 335-339.
    [55] Borthomieu Y, Broussely M, Planchat J P. VES140s Li-ion cell GEO life test results Lithium-ion batteries for space, Proceedings of the six European Space Power Conference . Porto, Por-tugal, 2002,679-684.
    [56] Thomas J P, et al. Multifunctional Structure-Battery Materials for Enhanced Performance in Small Unmanned Air Vehicles IMECE2003-41512, CD Proceedings of the ASME International Mechanical Engineering Congress and Exhibition, New York: ASME, 2003.
    [57] Janes's Unmanned Vehicles Enter the Underwater Battle Space. Jane's NAVY International 2002,107 (10): 16-22.
    [58] Hossain S, Tipton A, et al. Li-ion cells for aerospace applications C. Proceedin gs of the 32nd IECEC, 1997,1: 35-38.
    [59] Griffin J, Oliver S, Dubois N, Dow E, Stovenss G, Loster K. An Innovative Electric Lightweight Torpedo Tested-bed for Technology Development and Insertion. NAVAL FORCES, Special Issue 2001.
    [60] Bruce G, Madikian P, Marcoux L. 50 to 100 Ah lithium ion cells for aircraft and spacec raft applications, J. Power Sources, 1997,65:149-153.
    [61] Ding M S, Xu K, Jow T R. Phase diagram of EC-DMC binary system and enthalpic determination of its eutectic composition. J. Therm. Anal. Calorim.2000,62,177-186.
    [62] Ding M S, Xu K, Zhang F, Jow T.R. Liquid/Solid Phase Diagrams of Binary Carbonates for Lithium Batteries parti 1. J. Electrochem. Soc, 2001, 148(4):299-304.
    [63] Ding M S, Xu K, Jow T R. Liquid/Solid Phase Diagrams of Binary Carbonates for Lithium Batteries. J. Electrochem. Soc, 2000,147(5): 1688-1694.
    [64] Sloop S E, Pugh J K, Wang S, Kerr J B, Kinoshita K. Chemical Reactivity of PFS and LiPF_6 in Ethylene Carbonate/Dimethyl Carbonate Solutions.Electrochem. Solid-State Lett., 2001,4(4): 42-44.
    [65] Blyr A, Sigala C, Amatueei G, Guyomard D, Chabre Y, Taraseon T M.Self-Discharge of LiMn_2O_4/C Li-Ion Cells in Their Discharged State. J.Electrochem. Soc, 1998,145(1): 194-209.
    [67] Maleki H, Hallaj S A, Selman J R, Dinwiddie R B, Wang H. Thermal Properties of Lithium- Ion Battery and Components. J. Electrochem. Soc,
    [66] 刘建睿.锂离子电池正极材料-(锂)钒氧化物得制备研究[博士学位论文].西安:西北工业大学,2001. 1999,146(3): 947-954.
    [68] Endo E., Ata M, Sekai K, Tanaka K. Spin Trapping Study of Gradual Decomposition of Electrolyte Solutions for Lithium Secondary Batteries. J.Electrochem. Soc. 1999, 146(1):49-53.
    [69] Pasquier A D, Disma F, Bowmer T, Gozdz A S, Amatucci G, Trascon J M.Differential Scanning Calorimetry Study of the Reaetivity of Carbon Anodes in Plastic Li-Ion Batteries. J. Electrochem. Soc, 1998, 145(2):472-477.
    [70] Joho F, Nova'k P, Spahr M E. Safety Aspeects of Graphite Negative Electrode Materials for Lithium-IonBatteries. J. Electrochem. Soc, 2002, 149(8):1020-1024.
    [71] Biensan P, Simon B, Peres J P, et al. On safety of lithium-ion cells. J. Power Sources, 1999, (81-82): 906-912.
    [72] Zhang Z, Fouehard D, Rea J R. Differential scanning calorimetry material studies: implications for the safety of lithium-ioncells. J. Power Sources 1998,70: 16-20.
    [73] Dahll J R, Fuller E W, Obrovac M, Saeken U V. Thermal stability of Li_xCoO_2,Li_xNiO_2: and λ-MnO_2: and consequences for the safety of Li-ion cells. Solid State Ionics, 1994,69: 265-270.
    [74] Richard M N, Dalln J R. Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphitein Electrolyte.1. Experimental. J.Electrochem. Soc, 1999,146(6): 2068-2077.
    [75] Vogdanis L, Heitz W. The polymerization of ethyelene carbonate. Macromol.Rapid Commun., 1986, 7: 543-547.
    [76] Vogdanis L, Martens B, Uehtmann H, Hensel F, Heitz W. Synthetic and thermo dynamic investigations in the polymerization of ethylene carbonate.Macromol. Chem., 1990,191: 465-472.
    [77] Richard M N, Dalln J R. Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphitein Electrolyte.1. Model in the Results and Predicting Differential Seanning CalorimeterCurves. J.Electrochem. Soc, 1999,146(6): 2078-2084.
    [78] Sacken U, Nodwell E, Sundher A, et al. Design considerations. Solid State Ionics, 1994,69:184-198.
    [79] 李新生.锂离子电池用高性能锂锰氧化物德制备及性能研究[硕士学位论文].广州:华南理工大学,2001.
    [80] Li W, Dahn J R, Wainwright D S. Rechargeable lithium batteries with aqueous electrolytes. Science, 1994,264: 1115-1118.
    [81] 龙英.尖晶石锰系电极材料在水溶液中的电化学行为研究[硕士学位论文].重庆:重庆大学,2003.
    [82] 吕鸣祥,黄长保,宋玉谨.化学电源.天津大学出版社,1992,306.
    [83] Li W, Mckinnon W R, Dahn J R. Lithium intercalation from aqueous solutions.J.Electrochem. Soc, 1994,141(9): 2310-2316.
    [84] Li W, Dahn J R. Lithium-Ion cells with aqueous electrolytes. J. Electrochem.Soc, 1994,142(6): 1742-1746.
    [85] Wang P, Yang H, Yang H Q. Electrochemical behavior of Li-Mn spinel electrode material in aqueous solution. J. Power Sources, 1996, 63(2):275-278.
    [86] Wang G X, Zhong S, Bradhurst D H, et al. Secondary aqueous lithium-ion batteries with spinel anodes and cathodes. J. Power Sources, 1998, 74:198-201.
    [87] Yang H, Yang H Q, et al. Research of Zn-Mn spinel electrode material for aqueous secondary batteries. J. Power Sources, 1996,62: 223-227.
    [88] Kohler J, Makihara H, Uegaito H, et al. LiV_3O_8: characterization as anode material for an aqueous rechargeable Li-ion battery system. Electrochim Acta,2000,46: 59-65.
    [89] Kumagai N, Tanifuji S, Fujiwara T, Tanno K. Preparation and Electrochemical Characteristics of New MnO_2-V_2O_5 Systems as Positive Materials for Rechargeable Lithium Batteries. Electrochim. Acta, 1992,37: 1039-1046.
    [90] Johann D, Otta H. Metal Oxide Cathode Materials for Electrochemical Energy Storage: A Review. J Electrochem Soc, 1990,137(1): 5-22.
    [91] Yang H Q, Li D P, Han S, Li N, Lin B X. Vanadium-manganese Complex Oxides as Cathode Materials for Aqueous Solution Secondary Batteries. J.Power Sources, 1996, 58: 221-224.
    [92] 杜岩,李明,杨华铨.Li-Fe复合氧化物为阳极材料的水溶液电池[J].电池,2000,30(4):153-155.
    [93] 宋维相,袁安保,赵俊.液相法制备的LiV_3O_8的电化学性能.电池,2005,35(2):91-92.
    [94] 李明,杨华铨.a-Fe_2O_3在LiOH水溶液中的锂化行为.物理化学学报,2000,16(8):735-740.
    [95] Eftekhari A. Electrochemical behaviour of thin-film LiMn_2O_4 electrode in aqueous media. Electrochim Acta., 2001,47: 495-499.
    [96] 陈前火,童庆松,连锦明.锂锰氧化物在水溶液中的循环伏安.电源技术,2004,28(2):84-87.
    [97] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive- electrode materials for rechargeable lithium batteries. J. Electochem.Soc, 1997,144(4):1188-1194.
    [98] 陈亦可.锂离子蓄电池正极材料LiFePO_4的研究进展.电源技术,2003,27(5):487-490.
    [99] 黄可龙,杨赛,刘素琴,王海波.磷酸铁锂在水溶液中的循环伏安研究.电源技术,2007,5:386-388.
    [100] 黄可龙,杨赛,刘素琴,王海波.LiFePO_4在饱和LiNO_3溶液中的交流阻抗研究.电源技术.2007,33:888-892..
    [101] 朱新功,吴志远,王敏,赵勇.水溶液中掺铬层状二氧化锰可充性研究.化学学报,2005,63(3):229-233.
    [102] Kanoh H, Feng Q, Miyai Y, et al. Kinetic properties of a Pt/Lambda-MnO_2 electrode for the electroinsertion of lithium ions in an aqueous phase. J.Electrochem. Soc, 1995,142(3): 702-706
    [103] Lee J, Pyun S. Investigation of lithium transportation through LiMn_2O_4 film electrode in aqueous LiNO_3 solution. Electrochim Acta, 2004,49:753-761.
    [104] 孙巍伟,夏熙.λ-MnO_2在不同电解质水溶液中的稳定性.电池,2000,30(2):53-55.
    [105] Manickam M, Singh P, Issa T B, Thurgate S, Prince K. Electrochemical behavior of LiFePO_4 in aqueous lithium hydroxide electrolyte, Key Engineering Materials, 2006,320: 271-274.
    [106] 杨赛,黄可龙,刘素琴,王海波.LiFePO_4在饱和硝酸锂溶液中的锂化行为.无机化学学报,2007,23(1):141-144.
    [107] 黄可龙,杨赛,刘素琴,王海波.磷酸亚铁锂在饱和硝酸锂溶液中的电极过程动力学.物理化学学报,2007,23(1):129-133.
    [108] 杨赛,LiFePO_4在水溶液中的电化学性能研究,硕士学位论文,2007,中南大学.
    [109] Zhang M J, Dahn J R. Electrochemical lithium intercalation in VO_2 (B) in aqueous electrolytes. J. Electrochem. Soc, 1996(143): 2730-2375.
    [110] 阿布里提·阿布都拉,小宫山宏.新型高效率发电技术——燃料电池的发展 线装和开发动向.电工电能新技术,2000,2:35-40.
    [111] 李瑛,王林山.燃料电池.冶金工业出版社,2000.
    [112] Jia Y, Wang H, Ouyang M. Electric Power System for a Chinese Fuel Cell City Bus. J. Power Sources. 2006, 155(2): 319-324.
    [113] Ninh N Q. Ceramic fuel cell. J. Am. Ceram. Soc, 1993, 76: 563-588.
    [114] 谢晓峰,范星河.燃料电池技术.化学工业出版社,2004.
    [115] 安东尼·索左曼罗夫斯基(波兰)原著,陈清泉,孙逢春编译.混合电动车辆基础.北京理工大学出版社,2001.
    [116] 衣宝廉.燃料电池——原理·技术·应用.化学工业出版社,2003.
    [117] Appleby A J, Foulkes F R. Fuel cell handbook. Van Nostrand Reinhold,NewYork, 1989.
    [118] 刘朝玮,王保国,何小荣.质子交换膜燃料电池研究及应用现状.现代化工,2004,24(9):10-13.
    [119] 林成涛.当前燃料电池轿车的技术水平与特点.北京汽车,2002,3:15-19.
    [120] Hogarth M, Christensen P, Hamnett A, et al. The design and construction of high-performance direct methanol fuel cells.1. Liquid-feed systems. J. Power Sources, 1997,69:113-124.
    [121] Wasmus S, Kuver A. Methanol oxidation and direct methanol fuel cells: a selective review. J. Electroanal. Chem., 1999,461: 14-31.
    [122] Hogarth M P, Hards G A. Direct methanol fuel cells. Technological advances and further requirements, Platinum Metals Rev., 1996,40:150-159.
    [123] 江船.燃料电池,北京:国防工业出版社,1983.
    [124] 林维明.燃料电池系统.化学工业出版社,1996.
    [125] 查全性.燃料电池技术的发展与我国应有的对策.应用化学,1993,10(5):38-42.
    [126] 黄倬,屠海令,张冀强等.质子交换膜燃料电池的研究开发与应用,北京:冶金工业出版社,2000.
    [127] 衣宝廉.燃料电池-高效环境友好的发电方式.北京:化学工业出版社,2000.
    [128] 周运鸿.燃料电池.电源技术,1996,20(4):161-164.
    [129] Ilie D, Holl K, Birke P, et al. Fuel cells and batteries: Competition or separate Paths. J. Power Sources, 2006, 155(1): 72-76.
    [130] Zhu B, Meng G Y, Mellander B E. Non-conventional fuel cell systems: new concepts and development. J. Power Sources, 1999, 79(1): 30-36.
    [131] Sjunnesson L. Utilities and the investmen in fuel cells. J. Power Sources, 1998,71(1-2): 41-44.
    [132] Lu J B, Zhang Z T, Tang Z L. Review on the development of solid oxide fuel cells. Rare Metal Mat. Eng., 2005, 34(8): 1177-118.
    [133] Prince-Richard S, Whale M, Djilali N. A Techno-economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles. Int. J.Hydrogen. Energ., 2005, 30(11): 1159-1179.
    [134] Wu S H, Kotak D B, Fleetwood M. S. An Integrated System Framework for Fuel Cell-based Distributed Green Energy Applications. Renew. Energ. 2005,30(10): 1525-1540.
    [135] El-Sharkh MY, Rahman A, Alam M S. Evolutionary Programming-based Methodology for Economical Output Power from PEM Fuel Cell for Micro-grid Application. J. Power Sources. 2005,139(1-2): 165-169.
    [136] Folkessona A, Anderssonb C, Alvfors P, et al. Real Life Testing of a Hybrid PEM Fuel Cell Bus. J. Power Sources. 2003,118(1-2): 349-357.
    [137] A.V.W. Possible Fuel Cells Applications for Ships and Submarines. J. Power Sources. 1990,29(1-2): 181-192.
    [138] Sohn Y, ParkG, Yang T, et al. Operating Characteristics of an Air-cooling PEMFC for Portable Applications. J. Power Sources. 2005,14(2): 604-609.
    [139] Holladay J D, Wainright J S, Jones E O, et al. Power Generation Using a Mesoscale Fuel Cell Integrated with a Microscale Fuel Processor. J. Power Sources. 2004,130(1-2): 111-118.
    [140] Subramanyan K, Diwekar UM, Goyal A. Multi-objective Optimization for Hybrid Fuel Cells Power System Under Uncertainty. J. Power Sources. 2004,132(1-2): 99-112.
    [141] Moore J M, Lakeman JB, Mepsted G O. Development of a PEM Fuel Cell Powered Portable Field Generator for the Dismounted Soldier. J. Power Sources, 2002,106(1-2): 16-20.
    [142] Tanrioven M, Alam M S. Impact of Load Management on Reliability Assessment of Grid Independent PEM Fuel Cell Power Plants. J. Power Sources, 2006,157(1): 401- 410.
    [143] 潘卫国,魏敦崧,李杨.燃料电池发展现状与应用前景.能源技术,2001,22(4):158-161.
    [144] 薛洪熙,杨波,陈海清等.燃料电池技术及其在舰艇上的应用.军民两用 技术与产品,2005,02:38-40.
    [145] 钱伯章.燃料电池的发展现状与展望.节能,2004,260(3):3-7.
    [146] Miller A R, Hess K S, Barnes D L, Erickson T L. System design of a large fuel cell hybrid locomotive. J. Power Sources, 2007,173(2): 935-942.
    [147] Costa R A, Camacho J R. The dynamic and steady state behavior of a PEM fuel cell as an electric energy source. J. Power Sources, 2006, 161(2):1176-1182.
    [148] Brown D, Alexander M, Brunner D, Advani S G, Prasad A K. Drive-train simulator for a fuel cell hybrid vehicle, J. Power Sources, 2008, 183(1):275-281.
    [149] 毛宗强.燃料电池.清华大学出版社,2005.
    [150] Sopian K, Daud W R W. Challenges and Future Developments in Proton Exchange Membrane Fuel Cells. Renew. Energ. 2006,31(5): 719-727.
    [151] Park S, Vohs J M, Gorte R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 2000,404: 265-267.
    [152] 衣宝廉.燃料电池现状与未来.电源技术,1998,22(5):216-221.
    [153] 毛宗强,陆文军,阎军.质子交换膜燃料电池(PEMFC)最新进展及我国发展战略探讨.电池世界.1998,2:16-20.
    [154] 宋文顺.化学电源工艺学.中国轻工业出版社,1998.
    [155] Steele B C H, Heinzel A. Materials for fuel-cell technologies. Nature, 2000,414(15): 345-352.
    [156] Gulzow E. Alkaline fuel cells: a critical view, J. Power Sources, 1996, 61:99-104.
    [157] 宋文生,李磊,王宇新.燃料电池汽车研发现状及发展前景.天津汽车,2003,1:5-7.
    [158] Bauen A, Hart J. Assessment of the environmental benefits of transport and stationary fuel cells. J. Power Sources, 2000, 86: 482-494.
    [159] 宋文生,李磊,王宇新.燃料电池汽车氢源.汽车工程,2003,25(4):415-417.
    [160] Huijsmans J P P, Kraaij G J, R.C. Makkus, et al. An analysis of endurance issues for MCFC. J. Power Sources, 2000, 86: 117-121.
    [161] Ohno Y, Nagata S, SatoH. Effect of electrode materials on the properties of high-temperature solid electrolyte fuel cells. Solid State Ionics, 1980, 3-4:439-442.
    [162] Zuo C, Zha S, Hatano M, Uchiyama M, Liu M L. Ba(Zr(0.1)Ce_(0.7)Y_(0.2))O_3 as Electrolyte for Low-temperature SOFCs. Advanced Materials, 2006, 18,3318-3320.
    [163] Tolehard R, Grande T. Chemical compatibility of candidate oxide cathodes or BaZrO_3 electrolytes. Solid State Ionics, 2007,178(7-10): 593-599.
    [164] Mierlo J V, Maggetto G, Lataire P. Which Energy Source for Road Transport in the Future? A Comparison of Battery, Hybrid and Fuel Cell Vehicles. Energ.Convers. Manage. 2006, 47(17): 2748-2760.
    [165] Frangopoulos C A, Nakos L G Development of a Model for Thermo Economic Design and Operation Optimization of a PEM Fuel Cell System.Energy. 2006,31(10-11): 1501-1519.
    [166] 隋智通,隋升,罗冬梅.燃料电池及其应用.冶金工业出版社,2004.
    [167] 郭公毅.燃料电池.能源出版社,1984.
    [168] Lu C, An S, Worrell W L, et al. Development of intermediate-temperature solid oxidefuel cells for direct utilization of hydrocarbon fuels. Solid State Ionics, 2004, 175(1-4): 47-50.
    [169] Song C S. Fuel processing for low-temperature and high-temperature fuel cells-Challenges and opportunities f0r SUS tainable development in the 21st century. Catalysis Today, 2002, 77: 17-49.
    [170] Ahluwalia R K, Wang X, Rousseau A. Fuel Economy of Hybrid Fuel-Cell Vehicles. J. Power Sources. 2005,152(1-2): 233-244.
    [171] Adamson K. Calculating the Price Trajectory of Adoption of Fuel Cell Vehicles. Int. J. Hydrogen. Energ. 2005,30(4): 341-350.
    [172] Nadal M, Barbir F. Development of a Hybrid Fuel Cell/battery Powered Electric Vehicle. Int. J. Hydrogen. Energ. 1996,21(6): 497-505.
    [173] Jeong K S, Oh B S. Fuel Economy and Life-cycle Cost Analysis of a Fuel Cell Hybrid Vehicle. J. Power Sources. 2002,105(1): 58-65.
    [174] Cappadonia M, Niemzig O, Stimming U. Preliminary study on the ionic conductivity of a polyphosphate composite. Solid State Ionics, 1999, 125:333-337.
    [175] Kenjo T, Ogawa Y. Proton conductors based on ammonium polyphosphate.Solid State Ionics, 1995, 76: 29-34.
    [176] Hogarth W H J, Diniz da Costa J C, Max Lu G Q. Solid acid membranes for high temp (>140deg c) proton exchange membrane fuel cells. J. Power Sources, 2005,142: 223-237.
    [177] UMA T, Tu H Y, WARTH S. Synthesis and characterization of proton conducting polyphosphate composites. J. Mater. Sci., 2005,40: 2059-2063.
    [178] UMA T, Tu H Y. Characterisation of intermediate temperature polyphosphate composites. J. Mater. Sci., 2005,40: 227-230.
    [179] UMA T, Tu H Y. Characterisation of polyphosphate composites based on intermediate temperature. J. Mater. Sci., 2005,40: 2755-2758.
    [180] Liu L J, Tu H Y, Cremers C, Stimming U. NH_4PO_3/SiO_2 composite as electrolyte for intermediate temperature fuel cells. Solid State Ionics, 2006,177:2417-2419.
    [181] Chen X L, Huang Z, Xia C R. Fabrication and characterization of solid state proton conductor (NH_4)SiP_4O_(13)-NH_4PO_3 for fuel cells operated at 150-250℃.Solid State Ionics, 2006,177: 2413-2416.
    [182] Chen X L, Li X, Jiang S, Xia C R, Stimming U. Solid state protonic conductor NH_4PO_3/(NH_4)_2MnP_4O_(13) for intermedia temperature fuel cells. Electrochimica Acta, 2006, 51: 6542-6547.
    [183] Chen X L, Xia C R, Stimming U. Water effect on the conductivity behavior of NH_4PO_3-based electrolytes for intermediate temperature fuel cells.Electrochim. Acta, 2007, 52: 7835-7840.
    [184] Haufe S, Prochnow D, Schneider D, Geier O, Freude D, Stimming U.Polyphosphate composite: conductivity and NMR studies. Solid State Ionics,2005,176: 955-963.
    [185] Matsui T, Kazusa N, Kato Y, Iriyama Y, Abe T, et al. Effect of pyrophosphates as supporting matrices on proton conductivity for NH_4PO_3 composites at intermediate temperatures. J. Power Sources, 2007, 171:483-488.
    [186] Matsui T, Takeshita S, Iriyama Y, Abe T, Ogumi Z. Correlation between electrochemical and structural properties in NH_4PO_3 /(NH_4)_2MP_4O_(13) (M=Ti and Si) composites at intermediate temperatures. Solid State Ionics, 2007, 178:859-863.
    [187] Matsui T, Takeshita S, Iriyama Y, Abe T, Inaba M, Ogumi Z. Proton conductivity of (NH_4)_2TiP_4O_(13)-based material for intermediate temperature fuel cells. Electrochemistry Communications, 2004, 6: 180-182.
    [188] Wang H B, Huang K L, Zeng Y Q, Yang S, Chen L Q. Electrochemical properties of TiP_2O_7 and LiTi_2(PO_4)_3 as anodes for lithium ion battery with aqueous solution electrolyte. Electrochim. Acta, 2007, 52: 3280-3285.
    [189] Marshall T E, Byrd T A, Wang G X, Zhong S, Bradhurst D H, Dou S X, Liu H K. Secondary aqueous lithium-ion batteries with spinel anodes and cathodes. J.Power Sources, 1998, 74: 198-201.
    [190] Kuwabata S, Masui S, Yoneyama H. Electrochim. Acta, Charge-discharge properties of composites of LiMn_2O_4 and polypyrrole as positive electrode materials for 4 V class of rechargeable Li batteries. 1999,44: 4593-4600.
    [191] Kuwabata S, Idzu T, Martin C R. Charge-discharge properties of composite films of polyaniline and crystalline V_2O_5 particles. J. Electrochem. Soc, 1998,145: 2707-2710.
    [192] Pasquier A D, Orisini F, Govdz A S, Tarascon J M. Electrochemical behaviour of LiMn_2O_4-PPy composite cathodes in the 4-V region. J. Power Sources,1999,81/82:607-611.
    [193] Ulus A, Rosenberg Y, Burstein L, Peled E. Tin-Alloy Graphite Composite Anode for Lithium-Ion Batteries. J. Electrochem. Soc, 2002,149: 635-643.
    [194] Zhang X W, Wang C S, Appleby A J, Little F E. Improvement in electrochemical properties of nano-tin-polyaniline lithium-ion composite anodes by control of electrode microstructure. J. Power Sources, 2002, 109:136-141.
    [195] Wang Y G, Luo J Y, Wang C X, Xia Y Y. Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds Ⅱ. Comparison of LiMn_2O_4, LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2, and LiCoO_2 positive electrodes. J.Electrochem. Soc, 2006,153: 1425 -1431.
    [196] Kweon H, Kim S J, Park D G Modification of Li_xNi_(1-y)Co_yO_2 by Applying a Surface Coating of MgO. J. Power Source. 2000, 88: 255 - 261.
    [197] Amatucci G G, Blyr A, Sigala C, Alfonse P, Tarascon J M. Surface Treatments of Li_(1+x)Mn_(2-x)O_4 Spinels for Improved Elevated Temperature Performance.Solid State Ionics. 1997: 104,13-25.
    [198] Chao J, Kim Y J, Park B. Effect of Al_2O_3-Coated o-LiMnO_2 Cathodes Prepared at Various Temperatures on the 55℃ Cycling Behavior. J.Electrochem. Soc, 2002,149: 127 -132.
    [199] Arbizzani C, Balducci A, Mastragostino M, Rossi M, Soavi F. Li_(1.01)Mn_(1.97)O_4 Surface Modification by Poly (3, 4-ethylenedioxythiophene). J. Power Source. 2003,119-121:695-700.
    [200] Wang Z X, Xuejie Huang X J, Chen L Q. Performance Improvement of Surface-Modified LiCoO_2 Cathode Materials. J. Electrochem. Soc. 2003,150(2): 199-208.
    [201] Ying J R, Wan C R, Jiang C Y. Surface Treatment of LiNio.8Coo.2O2 Cathode Material for Lithium Secondary Batteries. J. Power Source. 2001, 102:162-166.
    [202] Kim k, Jeong J H, Kim I J, Kim H S. Carbon coatings with olive oil, soybean oil and butter on nano-LiFePO4. Journal of Power Sources, 2007, 167 (2):524-528.
    [203] Fu L J, Liu H, Li C, Wu Y P, et al. Surface modifications of electrode materials for lithium ion batteries. Solid State Sciences, 2006, 8 (2): 113-128.
    [204] 邓新荣,胡国荣,彭忠东,肖政伟.锂离子电池正极材料表面包覆改性研究进展.电池工业,2007,12(5):349-352.
    [205] Wang G X, Yang L, Chen Y, Wang J Z. Steve Bewlay and H.K. Liu. An investigation of polypyrrole-LiFePO_4 composite cathode materials for lithium-ion batteries. Electrochimica Acta, 2005, 50 (24): 4649-4654.
    [206] Gaberscek M, Bele M, Drofenik J, Dominko R, Pejovnik S. Improved carbon anode properties: pretreatment of particles in polyelectrolyte solution. J.Power Sources, 2001,97/98: 67 - 69.
    [207] Cao Y L, Xiao L F, Ai X P, Yang H X. Surface-Modified Graphite as an Improved Intercalating Anode for Lithium-Ion Batteries. Electrochem. solid state lett., 2003, 6(2): 30-33.
    [208] Kuwabata S, Tsumura N, Doda S, Matin C R, Yoneyama H. Charge-discharge Properties of Composite of Synthetic Graphite and Poly(3-n-hexylthiophene)as an Anode Active Material in Rechargeable Lithium-ion Batteries. J.Electrochem. Soc, 1998,145: 1415-1420.
    [209] B(?)langer D, Ren X M, Davey J, Uribe F, Gottesfeld S. Characterization and long-term performance of polyaniline-based electrochemical capacitors. J.Electrochem. Soc, 2000, 147: 2923-2929.
    [210] Wang H B, Huang K L, Zeng Y Q, Chen L Q. Stabilizing cycle life of aqueous lithium ion cell LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2/LixV_2O_5 by polyaniline coating on anode.Electrochemical solid-stated letters. 2007,10: 199-203.
    [211] K(?)hler J, Makihara H, Uegaito H, et al. Electrocatalytic hydrogenation of ketones and enones at nickel microparticles dispersed into poly(pyrrole-alkylammonium) films. Electrochim Acta, 2000,46:49-58.
    [212] Wang Y G, Xia Y Y. Hybrid aqueous energy storage cells using activated carbon and lithium-intercalated compounds I. The C/LiMn_2O_4 system. J.Electrochem. Soc, 2006,153: 450-454.
    [213] 吴宇平,戴晓兵,马军旗.锂离子二次电池.化学工业出版社,2004,83.
    [214] Nanjundaswamy K S, Padhi A K, Goodenough J B, Ohtsuka O S H, Arai H, et al. Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Solid State Ionics, 1996, 92:1-10.
    [215] Shi Z C, Wang Q, Ye W L, Li Y X, Yang Y. Synthesis and characterization of mesoporous titanium pyrophosphate as lithium intercalation electrode materials. Micropor. Mesopor. Mat., 2006, 88: 232-237.
    [216] Patoux S, Masquelier C. Lithium insertion into titanium phosphates, silicates and sulfates. Chem. Mater., 2002,14: 5057-5068.
    [217] Uebou Y, Okada S, Egashira M, Yamaki J I. Cathode Properties of Pyrophosphates for Rechargeable Lithium Batteries. Solid State Ionics, 2002,148: 323-328.
    [218] Aatiq A, Menetrier M, Croguennec L, Suard E, Delmas C. On the structure of Li_3Ti_2(PO_4)_3. J. Meter. Chem., 2002,12: 2971-2978.
    [219] Morcrette M, Wurm C, Masquelier C. On the way to the optimization of Li_3Fe_2(PO_4)_3 positive electrode materials. Solid State Ionics, 2002,4: 239-246.
    [220] 查全性.电极过程动力学导论.武汉:科学出版社,2002,145-147.
    [221] Rho Y H, Kanamura K. Li~+-ion diffusion in LiCoO_2 thin film prepared by the poly (vinylpyrrolidone) sol-gel method. J. Electrochem. Soc, 2004, 151(9):1406-1411.
    [222] Pettersson J, Ramsey B, Harrison D. A review of the latest developments in electrodes for unitised regenerative polymer electrolyte fuel cells. J. Power Sources, 2006,157 (19): 28-34.
    [223] Beckel D, Bieberle-H(?)tter A, Harvey A, et al. Thin films for micro solid oxide fuel cells. J. Power Sources, 2007,173 (1): 325-345.
    [224] Wee J H. Applications of proton exchange membrane fuel cell systems. Renew. Sust. Energ. Rev., 2007,11: 1720-1738.
    [225] Siegel C. Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells. Energy, 2008, 33 (9):1331-1352.
    [226] Li Q, He R, Jensen J O, Bjerrum N J. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100℃. Chem.Mater, 2003, 15:4896-4915.
    [227] Yano M, Tomita A, Sano M, Hibino T. Recent advances in single-chamber solid oxide fuel cells: A review. Solid State Ionics, 2007, 177 (39-40):3351-3359.
    [228] Haile S M, Boysen D A, Chisholm C R I, Merle R B, Solid Acids as Fuel Cell Electrolytes. Nature, 2001,410: 910-913.
    [229] Nagao M, Takeuchi A, Heo RHibino T, Sano M, Tomita A. A proton-conducting In~(3+)-doped SnP_2O_7 electrolyte for intermediate-temperature fuel cells. Electrochem. Solid-state Lett., 2006,9,105-109.
    [230] Liang C C. Conduction Characteristics of the Lithium Iodide-Aluminum Oxide Solid Electrolytes. J. Electrochem. Soc, 1973,120,1289-1292.
    [231] Maier J. Ionic conduction in space charge regions. Prog, Solid State Chem.,1995,23,171-263.
    [232] Iashkevich L S, Selevich A F, Lyakhov A S, Lesnikovich A I. Crystal structures of Ti(NH_4)_2P_4O_(13) and Sn(NH_4)_2P_4O_(13). Physical Methods of Investigation, 2007, 52: 1274-1279.
    [233] Sun C W, Stimming U. Synthesis and characterization of NH_4PO_3 based composite with superior proton conductivity for intermediate temperature fuel cells. Electrochim. Acta, 2008, 53 (22): 6417-6422.
    [234] Oszcipok M, Zedda M, Hesselmann J, et al. Portable proton exchange membrane fuel-cell systems for outdoor applications. J. Power Sources, 2006,157:666-673.
    [235] Mawardi A, Pitchumani R. Effects of parameter uncertainty on the performance variability of proton exchange membrane (PEM) fuel cells. J.Power Sources, 2006,160: 232-245.
    [236] Hickner M A, Ghassemi H, Kim Y S, et al. Alternative Polymer Systems for Proton Exchange Membranes (PEMs), Chem. Rev., 2004,104:4587-4612.
    [237] Zink F, Lu Y, Schaefer L. A solid oxide fuel cell system for buildings. Energy Conversion and Management, 2007,48(3): 809-818.
    [238] Williams B D, Kurani K S. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: "Mobile Electricity" technologies and opportunities. J. Power Sources, 2007, 166 (2): 549-566.
    [239] Matsui T, Takeshita S, Iriyama Y, Abe T, Ogumi Z. Proton-Conductive Electrolyte Consisting of NH_4PO_3/TiP_2O_7 for Intermediate-Temperature Fuel Cells. J. Electrochem. Soc, 152(1): 167-170.
    [240] Tsuru T, Yagi Y, Kinoshita Y, Asada M. Titanium phosphorus oxide membranes for proton conduction at intermediate temperatures. Solid State Ionics, 2003,158:343-350.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700