螺旋滚筒破碎头切削富钴结壳过程仿真及其载荷波动性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深海钴结壳是大洋底部最具吸引力的矿产资源之一,产出在水深800-3000m的平坦海山、岛屿斜坡上,其平均厚度仅为4-6cm,富含钴、铂、镍、锰、铜、铁、磷、钛、锌、铅、铈等战略物质。由于其巨大的战略意义和经济价值,深海钴结壳开采技术与装备的研究已成为国内外研究的一个热点。
     钴结壳开采的难点之一就是如何将薄薄的一层钴结壳从高低不平的基岩上破碎剥离下来,而且保证螺旋滚筒破碎头长期稳定的工作。为此,必须研究掌握破碎头及其截齿所受最大载荷(极限参数)的分布范围,和工作参数对破碎头载荷波动性影响的规律。但由于海底钴结壳微地形的不同和海洋采矿环境的恶劣、复杂性,难以进行耗资巨大的海上实物试验。
     本文基于螺旋滚筒破碎头及其截齿的运动学、受力分析和实验室试验等方法,建立了螺旋滚筒破碎头工作载荷的数学模型;基于具有方向性随机中点移位算法实现了钴结壳微地形的生成和重构,在此基础上,研制了螺旋滚筒破碎头切削富钴结壳过程仿真程序。利用计算机仿真程序,生成200组模拟海底钴结壳微地形数据,将其作为随机钴结壳微地形总体的一个样本,并对该样本进行破碎头切削过程的仿真。通过仿真研究,得出破碎头及其截齿所受载荷的分布范围,和工作参数对破碎头载荷波动性影响的规律,为截齿、破碎头及相关联结部件设计提供理论依据,为减小破碎头载荷波动性提供了理论指导。论文的研究成果,对此类钴结壳开采装备的设计提供了理论基础。
Cobalt-rich crust, which grows in the smooth slope of seamount ranged from 800 to 3000 m, is one of the most attractive mineral resources in the deep-sea bed. Its average thickness is only 4 to 6 centimeters, and is rich in strategic resources such as cobalt, platinum, nickel, manganese, copper, iron, phosphorus, titanium, zinc, lead and cerium etc. Because of its practically strategic, economic and political significance, cobalt-rich crust has become a great concern in ocean resource exploitation for every country.
     The first problem of mining cobalt-rich crust is how to crush the thin layer of cobalt crust from the fluctuant surface of bedrock, and guarantee that the mining head can steadily work for the long haul. It is necessary to ascertain the distribution range of maximum load of the mining head and its cutting tooth, and conclude the law of work parameters how to influence load fluctuation of the mining head by the mean of experiment. Because of the difference of seabed tiny terrain and the complexity of ocean mining environment, it is difficult to do so expensive ocean experiment.
     Based on methods of kinematic analysis, load analysis, and experiment, the mathematical model of working load of the mining head has been established; based on midpoint displacement typified directivity, seabed tiny terrain has been realized by generating and reconstruction, then, the program of simulating cutting process of mining head has been developed. Based on simulation program, two hundreds data simulating seabed tiny terrains are generated, and terrains are regarded as a sample of random seabed tiny terrain. The simulating experiment of the mining head cutting process is conducted based on the sample terrain. Through simulating experiment, the distribution range of the maximum load of the mining head and its cutting tooth are concluded, which provide theoretic reference for the design of mining head, its cutting tooth, and its coupling parts; influencing factors of load fluctuation of the mining head, such as work parameters, have been studied, and the law of each work parameters how to influence load fluctuation has been concluded, which provides theoretical reference for reducing load fluctuation of mining head. In a word, the research outcome has a theoretical and practical significance to design the equipment of mining cobalt-rich crust.
引文
[1] 潘家华,Eric De CARLO,刘淑琴,等.西太平洋富钴结壳生长与富集特征.地质学报,2005,79(1):124~132
    [2] 石海林.我国富钻结壳矿床开采技术研究分析.矿业快报,2000,8(15):1~2
    [3] 简曲.中国大洋采矿技术发展述评.采矿技术,2001,1(2):9~11
    [4] Peter A. Rona. Resources of the Sea Floor. Science, 2003, (299):673~374
    [5] Manheim F T. Marine Cobalt Resources. Science, 1986, 232 (4750):600~608
    [6] James Hein. Cobalt-rich ferromanganese crusts: global distribution, composition, origin and research activities. Polymetallic massive sulphides and cobalt-rich ferromanganese crusts: status and prospects. ISA Technical study, 2000(2): 43~44, 46~49
    [7] 沈裕军,钟祥,贺泽全.大洋钴结壳资源研究开发现状.矿冶工程,1996,19(2):11~13
    [8] Commeau R F, Clark A, Johnson C, et al. Ferromanganese Crust Resources in the Pacific and Atlantic Oceans. Oceans(New York). New York:IEER, 1984.421~429
    [9] Claude Pichocki, Michel Hoffert. Marine Geology, 1987, (77):109~119
    [10] 武光海,周怀阳,陈汉林.大洋富钴结壳研究现状与进展.高校地质学报,2001,7(4):379~389
    [11] 陈荣发.新一轮“蓝色圈地运动”悄然兴起,科学24小时,2006,(1):4~8
    [12] Masuda Y, Crulckshank, Michael J. Progress in the development of the continuous line bucket(CLB) mining on the 5th Takayou Sea Mount. Proceedings of the Intern Offshore and Polar Engineering Conference. Golden:ISOPE, 1994. 286~293
    [13] Masuda Y. Crust mining plans of the Japan Resources Association Marine Mining. 1991, (10):95~101
    [14] 梁平,石海林,崔波,等.洋底富钴结壳的开采方法,金属矿山,2002,(11):20~22
    [15] Masuda Y. Cobalt-rich crust mining by continuous line bucket (CLB). Oceans (New York). New York: IEEE, 1987. 1021~1026
    [16] Masuda Y, Cruickshank M J. Mechanical design developments for a CLB mining system. Oceans (New York). Piscataway: IEEE, 1991. 1583~1586
    [17] Latimer John P, Raymond Kaufrnan. Preliminary considerations for the design of cobalt crust mining systems in the U. S. EEZ. Oceans (New York). New York:IEEE, 1985.378~399
    [18] Larson D A, Tandanand S, Boucher M L, et al. Physical properties and mechanical cutting characteristics of cobalt-rich manganese crusts. Report of Investigations-United States. Bureau of Mines, 1987
    [19] John E. Halkyard. Technology for mining cobalt rich manganese crusts from seamounts. Oceans (New York). New York:IEEE, 1985.352~374
    [20] 何志强,何清华.滚筒式采矿头最佳切削位置的建模.矿业研究与开发,2004(3):46~47
    [21] 秦宣云,卜英勇.基于遗传算法的大洋富钴结壳开采的切削深度优化控制.湖南科技大学学报(自然科学版),2005,20(1):46~47
    [22] 李艳,禹宏云.ADAMS在深海采矿系统虚拟样机建模中的应用.凿岩机械气动工具,2006(2):41~45
    [23] 简曲,何永森,王明和,等.大洋采矿输送软管动力特性的数值研究.海洋工程,2001,19(1):59~64
    [24] 黄中华,刘少军,谢雅.富钴结壳轮式集矿机越障性能研究.计算机仿真,2006,23(5):200~202
    [25] 何将三,龙江志.基于ADAMS的ROV采矿车近海底着地虚拟仿真.哈尔滨工程大学学报,2004,25(3):309~313
    [26] 徐昱,刘少军,龙江志.基于ADAMS的深海采矿系统的布放回收模拟.计算机仿真,2004,21(3):67~70
    [27] 冯磊华,桂卫华,王随平.基于虚拟现实技术的深海集矿机行驶系统仿真.计算机仿真,2005,22(12):191~193
    [28] 王刚,刘少军,李力.深海采矿长管线系统布放过程的数值仿真.中南大学学报(自然科学版),2004,35(6):978~982
    [29] 韩晓英,王随平,陈峰,等.深海采矿车的自修正专家模糊控制.计算技术与自动化,2005,24(1):9~12
    [30] 夏毅敏,卜英勇,袁富贵,等.深海钴结壳螺旋采集式采矿头仿真研究.煤炭学报,2004,29(2):246~248
    [31] 曹海林,周利生,钟铁成.深海海底剖面仪拖曳系统的设计与仿真.声学与电子工程,2006,(2):8~12
    [32] 安跃军,孙昌志.深海机器人无刷推进电机混沌现象的数字仿真.沈阳工业 大学学报,2005,27(1):16~18
    [33] 秦宣云,卜英勇,夏毅敏,等.基于分形理论的深海钻结壳微地形仿真.计算机工程与应用,2004,(8):190~192
    [34] 王东生,曹磊.混沌、分形及其应用.合肥:中国科学技术出版社,1995.1~16
    [35] 胡瑞安,胡纪阳,徐树东.分形的计算机图像及其应用.北京:中国铁道出版社,1995.1~10
    [36] 林鸿溢,李映雪.分行论——奇异性探索.北京:北京理工大学出版社,1992.1~15
    [37] 肖高逾,周源华.基于分形几何的空间多面体变形法在三维地表插值中的应用.中国图象图形学报,2003,5(3):241~243
    [38] Phillips JD. Spatial Analysis of Shoreline Erosion, Delaware Bay, New Jersey. Annals of the Association of American Geographers, 1986, 76(1): 50~62
    [39] 张捷,包浩生.分形理论及其在地貌学中的应用—分形地貌学研究综述及展望.地理研究,1994,13(3):104~112
    [40] Laverty M. Fractals in karst. Earth Surface Processes and Landforms, 1987, 12 (5): 475~480
    [41] Reams MW. Fractal dimensions of sinkholes. Geomorphology, 1992, 5 (1):159~165
    [42] Snow R S, Mayer L. Introduction. Geomorphology (Special issue on fractals in geomorpho]ogy), 1992, 5 (1-2):1~4
    [43] Burrow P A. Fractal dimensions of landscapes and other environment data. Nature, 1981, 294 (5838):240~242
    [44] Culling WEH. Datko. M. The Fractal Geometry of the Soil-covered Landscape. Earth Surface Processes and Landforms, 1987, 12 (4): 360~385
    [45] 秦宣云,卜英勇,夏毅敏,等.基于分形理论的微地形的重构.国防科技大学学报,2003,25(5):44~47
    [46] 朱广堂.基于GIS的工程施工管理实时可视化技术研究:[博士学位论文].武汉:华中科技大学,2005
    [47] 雷磊.三维地形生成及可视化技术研究:[硕士学位论文].哈尔滨:哈尔滨工程大学,2005
    [48] 秦宣云.基于微地形重构的深海钴结壳最佳采集切削深度控制模型研究:[博士学位论文].长沙:中南大学,2005
    [49] 梁平,石海林,崔波,等.洋底富钴结壳矿床微地形和物理特性.金属矿山,2002,(315):15~17
    [50] Yamazaki T, et al. Microtopographic Analysis of the Cobalt-Rich Manganese Deposits on a Mid-Pacific Seamount. Marine georesources and geotechnology, 1994, (12):33~52
    [51] 吴瑞祥.机器人技术及应用.北京:北京航空航天大学出版社,1994.16~21
    [52] E.3.保晋,B.3.弋拉麦德,B.B.顿.采煤机破煤理论.煤炭工业出版社,1992.72~83
    [53] 卜英勇,刘勇.采掘机器人滚筒式采集头载荷谱计算机模拟.中南工业大学学报.2002,33(3):289~292
    [54] 刘勇.深海钴结壳螺旋滚筒切削采集法的理论及实验研究:[博士学位论文].长沙:中南大学,2002
    [55] 卜英勇,邱长军,唐红平,刘寿康.深海钴结壳和基岩抗压强度的分布特性与频率设计.岩石力学与工程学报,2002,(12):2326~2330
    [56] 郭迎福,张永忠,刘德顺,等.采煤机滚筒载荷计算机仿真及降低载荷波动的对策.矿山机械,2001,(5):24~26
    [57] 卜英勇,刘勇.采掘机器人滚筒式采集头载荷谱计算机模拟.中南工业大学学报.2002,33(3):289~292
    [58] 茆诗松.统计手册,北京:科学出版社,2003.169~174
    [59] Chinmaya Kar, A R Mohanty. Multistage gearbox condition monitoring using motor current signature analysis and Kolmogorov-Smirnov test. Journal of sound and vibration, 2006, (290):337~368
    [60] F A Andrade, I Esat, M N M Badi. A new approach to time-domain vibration condition monitoring: Gear tooth fatigure crack detection and identification by the Kolmogorov-Smirnov test. Journal of Sound and Vibration, 2001, 240(5):909~919
    [61] 鲁建厦,方荣,兰秀菊.国内仿真技术的研究热点.系统仿真学报,2004,16(9):1910~1913
    [62] A M G Lopes, M G Cruz, D X Viegas. Firestation—an integrated software system for the numerical simulation of fire spread on complex topography. Environmental Modelling & Software, 2002, (17):269~285
    [63] G P Glasby. Lessons learned from deep-Sea mining. Science, 2000, 289(5479):551~553
    [64] Yamazaki T, Park S-H, Shimada S, et al. Development of technical and economical examination method for cobalt-rich manganese crusts. Proceedings of the International Offshore and Polar Engineering Conference. Kitakyushu, 2002.454~461
    [65] 武光海,周怀阳,陈汉林.大洋富钴结壳研究现状与进展.高校地质学报,2001,7(4):379~389
    [66] 张海生,赵鹏大,陈守余,等.中太平洋海山多金属结壳的成矿特征.地球科学-中国地质大学学报,2001,26(2):205~209

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700