三氯生抗菌活性骨水泥的体外抑菌实验及生物力学性能的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本研究选取1种不含抗生素进口骨水泥,实验用三氯生和硫酸庆大霉素2种粉末性状的抗菌活性物质,3种临床常见感染菌:金黄色葡萄球菌、表皮葡萄球菌、大肠杆菌。分别取不同剂量三氯生和庆大霉素与骨水泥混合搅拌,制成一定规格的抗菌活性骨水泥药片,放入3种临床常见感染菌培养皿中,比较:不同药片放入后①在细菌培养皿中,不同的时间点观察并测量抑菌环的直径大小,创建体外三氯生抗菌活性骨水泥随时问变化的药物释放规律的模型,②按照国际标准制成不同剂量的骨水泥的模件,通过生物力学压力、弯曲强度和弹性模量测试,比较两种抗菌活性骨水泥的生物力学性能。
     方法:实验于2009-2/2009-10在解放军总医骨科实验室和临床微生物科进行。①抗菌活性骨水泥药片样本的制备:将三氯生、庆大霉素分别称量出0.5g、1.0g、1.5g、2.0g的剂量与40g骨水泥在无菌条件下混合,各加入15mL的骨水泥附带单体,搅拌2min后,加入由高密度聚乙烯制成的模具之中塑形,制成直径6mm、厚度3mm的矮圆柱体,每一剂量各制6个。②测量生物力学性能模型的制备:A:骨水泥压缩强度测定模件:不同剂量的三氯生和硫酸庆大霉素与骨水泥混合后浇注成圆柱体(长度正好为12mm±0.1mm,直径6mm±0.1mm),在23℃环境温度中,保存骨水泥圆柱体。B:骨水泥弯曲强度、弯曲模量测定模件:模具由高密度聚乙烯制成,每只模具有一个模槽,长75mm,宽10mm,深3.3mm,共六只。③抑菌试验指标的测量:把不同剂量(0.5g、1.0g、1.5g、2.0g)混合后的三氯生骨水泥和硫酸庆大霉素骨水泥,分别各制成6个标本,放入三种实验菌中,每一个培养皿中放4个不同剂量的标本,在37℃细菌孵育箱中培养,然后观察抑菌环的大小。每24h更换新培养皿1次。分别观察24h、48h、72h、96h、1周,直至抑菌环直径小于6mm为止。④生物力学测定:A:骨水泥的压缩强度:对每个圆柱体,记录引起破裂的力或2%屈服力或上屈服点负载,哪个先出现就记录哪个,将该力除以圆柱体的原始截面,所得的商即压缩强度,以MPa为单位。计算6个圆柱体的平均压缩强度。B:骨水泥弯曲强度、弯曲模量的测定:三氯生和庆大霉素分别与骨水泥混合后,空白对照组骨水泥分别浇注到实验板条之中塑型,塑型后将所有实验板条,放到四点弯曲实验装置上,记录作为受力函数的板条中心偏离。不断增加力直至试验板条断裂。记录断裂时的力。
     统计学采用CHISS2004软件进行统计分析,计量资料数据用(x±s)表示,以p<0.05为差异有统计学意义,不同剂量抗菌活性剂的抗菌作用的组问比较应用方差分析。
     结果:1.时间依赖性的三氯生骨水泥与硫酸庆大霉素骨水泥的抗菌活性作用
     1.10.5~2.0g的三氯生与硫酸庆大霉素骨水泥对金黄色葡萄球菌、表皮葡萄球菌、大肠杆菌均有抑制作用,随着剂量的增加。骨水泥的抗菌活性显著增加,但在一定的观察时间段内,两种抗菌活性剂的变化不同,在1.0g时比较,三氯生明显强于硫酸庆大霉素。空白对照组(不含任何抗生素)无抗菌活性。
     1.2在相同剂量下24h内,硫酸庆大霉素骨水泥的抑菌环直径与三氯生骨水泥的抑菌环直径无显著差异。在48h后三氯生骨水泥抑菌环直径大于硫酸庆大霉素骨水泥的抑菌环直径,持续时间与硫酸庆大霉素骨水泥对照,其抗菌活性比硫酸庆大霉素平均长48h(p<0.05)。两种骨水泥对革兰氏阳性菌的黏附均显著降低(p<0.05)。但三氯生骨水泥对大肠杆菌的杀菌作用无论从时间起始到杀菌的整个过程都明显不如硫酸庆大霉素。
     2.两种抗菌活性骨水泥生物力学实验测定分析
     根据ISO 5833《外科植入物----丙烯酸类树脂骨水泥》标准中规定的两种骨水泥机械性能的测试方法测定含三氯生的骨水泥的物理和力学性能。其一是压力试验,其二是四点弯曲试验。压力检测表明,适量的三氯生的加入不影响骨水泥的抗压强度,将2.0g三氯生混入40g骨水泥中,抗压强度均大于70MPa,好于ISO 5833标准中规定的抗压强度70MPa,和对照组(无抗生素的骨水泥)相似。而根据ISO5833对四点弯曲测试提出的标准,三氯生骨水泥产品均能达到这一标准,弯曲模量(MPa)>1800MPa,弯曲强度(MPa)>50 MPa。
     结论:
     1三氯生骨水泥同目前临床上常用硫酸庆大霉素骨水泥相比,抗菌范围广,尤其是对现今临床常见感染菌(金黄色葡萄球菌)有良好的抑菌作用。
     2三氯生骨水泥同目前临床上常用硫酸庆大霉素骨水泥相比,抗菌剂的缓释效果好,抑菌时间长,由于三氯生是一种具有抗菌活性的杀菌剂,它不同于临床上常用的抗生素,它是单靶点的杀菌剂,因此不像庆大霉素那样很容易产生耐药性,而三氯生则不会。
     3压力试验和四点弯曲试验表明,加入实验剂量的三氯生的骨水泥的抗压效果与无抗生素的骨水泥相似。弯曲模量和弯曲强度均达标。
     本实验从体外实验的视角阐述了具有抗菌活性的三氯生骨水泥,与临床上常用的硫酸庆大霉素骨水泥相比具有更强、更持久的杀菌能力,为未来初次人工关节置换手术及关节翻修术后感染的预防和治疗,提供了基础的实验支持。
Objective:This study selected one import bone cement without antibiotic activity, Experiment with the powder characteristics of triclosan and gentamicin sulfate antibiotic substances, Three common bacteria infections, staphylococcus aureus, escherichia coli, staphylococcus epidermidis. Respectively, mixing bone cement for different doses of triclosan and gentamicin. Made of tablet of antibacterial activity bone cement. put into three kinds common infectious bacteria culture dish:①to coMPare the diameter of inhibition zone of different time points, Created the drug release law of antibacterial activity of triclosan cement change over time in vitro.②made in accordance with international standards of different doses of bone cement module. By biomechanical stress and elastic modulus tests, Antibacterial activity were coMPared the biomechanical properties of bone cement.
     Methods:The experiment was conducted in the Orthopaedic Laboratory and Clinical Microbiology Division of People's Liberation Army General Hospital between 2009-2/2009-10.①Preparation of antibacterial tablets:To triclosan, gentamicin were weighing out 0.5g, 1.0g,1.5g,2.0g and 40g doses of bone cement mixed in sterile conditions, Adding 15mL of sterile liquid ampoule,2min after mixing, adding among the shaping mold, Diameter made of 6mm, the thickness of 3mm of the short cylinder,6 for each dose. Mold is made from high density polyethylene.②preparation of the model of measurement of biomechanical properties:A: determination of compressive strength of bone cement modules:gentamicin sulfate and Triclosan of different doses mixed with cement poured into the cylinder (the length 12mm±0.1mm, diameter 6mm±0.1mm), At 23℃ambient temperature, the preservation of bone cement cylinder. B:Determination of flexural strength of bone cement modules:Mold is made from high density polyethylene, Each mold has a mold trough, about 75mm, width 10mm, depth 3.3mm, a total of six.③inhibition experiments with measured:triclosan and gentamicin sulfate of the different doses (0.5g, 1.0g,1.5g,2.0g) mixed with bone cement, respectively, each made of six specimens, put into three experimental strains, each culture dish placed four different doses of samples,bacteria were incubated at 37℃in 24h.then observe the size of inhibition zone.24h replacement every dish. the inhibition zone were observed at 24h, 48h,72h,96h,1 week, up until diameter the inhibition zone less than 6mm.④biomechanical test:A:The compressive strength of bone cement:for each cylinder, record the force caused by rupture or 2% of the yield strength or the yield point load, That first appeared on the record that, the force divided by the original section of the cylinder,MPa as units of compression strength,Calculate the average 6 cylinder compressive strength. B:Determination of bending strength bone cement: triclosan,gentamicin and bone cement were mixed respectively, Control group, the bone cement were pouring into the mold, after shaping, strip of all the experiments will poured into the four-point bending test device, record deviation from the strip center. increasing force until the test slab fracture. Record the force at fracture.
     CHISS2004 software was used for statistical analysis, and measurement data were expressed in the form of mean value±standard deviation((?)±s). antibacterial activity of different doses applied analysis of variance between the two groups.
     Results:1. the role of antibacterial activity of time-dependent bone cement loading with triclosan and gentamicin bone cement.
     1.1 With the dose increased, bone cement of 0.5~2.0g of triclosan and gentamicin sulfate on Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli was inhibited. The antibacterial activity of bone cement increased significantly, However, in certain period of observation, two different antibacterial agents change, the antibacterial activity of triclosan was stronger than that of gentamicin sulfate in 1.0g. Control group (without any antibiotic bone cement) without antibacterial activity.
     1.2 The bone cement at the same dose within24h, of gentamicin sulfate and triclosan was no significant difference. After 48h, diameter of inhibition zone of triclosan was larger than the zone diameters of gentamicin sulfate, control duration of the bone cement, the antibacterial activity of triclosan was longer than gentamicin,the average length 48h(p<0.05). Both bone cements against Gram-positive bacteria were significantly decreased adhesion (p<0.05). However, gentamicin sulfate to E. coli bacteria was significantly better than triclosan.
     2. Biomechanical analysis of two kinds of antibacterial bone cement. according to ISO 5833 "surgical implants-acrylic resin cement" standard, determination of bio-mechanical properties of bone cement loading with triclosan. one is the pressure test, and the second is a four-point bending test. the pressure test showed that adding the right amount of triclosan did not affect the compressive strength of bone cement, 40g to 2.0g triclosan mixing bone cement, the compressive strength were greater than 70MPa, better than the ISO 5833 standard (strength 70MPa), and similar to bone cement without antibiotics. according to ISO 5833 to the four-point bending test, triclosan bone cement product can meet this standard, the bending modulus (MPa)>1800MPa, bending strength>>50 MPa.
     Conclusion:
     1 Triclosan bone cement coMPared with Gentamicin bone cement at present study,have a wide range of bacteria, especially in today's clinical infections bacteria (Staphylococcus aureus) has a good antimicrobial effect.
     2 Bone cement loading with triclosan Triclosan coMPared with bone cement loading with Gentamicin at present study, effective antimicrobial agent release, antibacterial longer. because triclosan is an antibacterial fungicide, which is different from commonly used clinical antibiotics, It is a single target of the fungicide,therefore, resistance to gentamicin, and triclosan does not.
     3 Pressure test and four-point bending test showed that the compressive effect of experimental dose similar to bone cement without antibiotics.flexural modulus and flexural strength are up to standard.
     Our experiment in vivo shows that antibacterial activity of bone cement loading with triclosan offer better than bone cement loading with Gentamicin. bone cement loading with triclosan have a stronger, more durable antibacterial activity. It offers elementary experiment support for prevention of postoperative infection of the first artificial joint replacement and joint revision surgery in the further.
引文
[1]LaPorte DM, Mont MA, Hungerford DS. Proximally porous-coated ingrowth prostheses:limits of use [J]. Orthopedics,1999,22(12):1154-1160.
    [2]Song Y, Beaupre G, Goodman SB. Osteointegration of total hip arthroplasties:studies in humans and animals [J]. J Long Term Eff Med Implants,1999,9(1-2):77-112.
    [3]Engh CA, Hooten JP Jr, Zettl-Schaffer KF, et al. Porous coated total hip replacement[J]. Clin Orthop.1994; 298:89-96
    [4]张煜,范卫民,马益民,骨形态发生蛋白对兔人工关节周围骨长入的影响。江苏医药,2005;31(8):591-593
    [5]吉光荣,王岩松,韩剑峰,Ad-BMP-2促进兔骨髓间质干细胞成骨转化的研究。基础医学与临床,2004;24(1):20-24
    [6]陈富林,毛天球,丁桂聪,钛网-珊瑚复合支架的组织工程骨研究,中国创伤骨科杂志,2000;2(4):304-307
    [7]章庆国,赵士芳、陈文斌,脱蛋白骨-钛网支架成骨细胞复合物修复骨缺损的研究。生物医学工程学杂志,2005;22(2):254-257
    [8]谭本前,徐栋梁,杨远良等。多层粗大孔隙表层股骨柄假体联合自体植骨的生物学固定研究[J]。中国修复重建外科杂志,2005,19(12):945-948
    [9]蔡谓。生物复合型中空人工关节假体[J]。世界医疗器械,2004,10(2):12-14
    [10]Albrektsson T, Jacobsson M, Kalebo P. The harvest chamber-a newly developed implant for analysis of bone remodeling in situ. In:Ducheyne P, Vander Perry G, Aubert AE (Eds.) [M]. Biomaterials and Biomechanics, Amsterdam:Elservier Science Publishers B. V,1984,283-288
    [11]蔡谓,王岩,王继芳等。rhBMP-2诱导界面骨长入中空金属植入物的初步实验研究。中华骨科杂志,2004;24(4):216-219
    [12]蔡谓,崔健,王岩等。张力侧中空股骨柄假体的研制及体外静力试验研究[J]。中华骨科杂志,2006,26(5):332-335
    [13]蔡谓王达文樊宇平。中空多孔股骨柄假体骨长入方式的在体实验研究[J],中华骨科杂志,2008,28(12):1040-1045
    [14]邹宏恩,叶军,唐农轩等。微孔人工假体界面“捆绑”原理的探讨。 第四军医大学学报。1995;16:338-341
    [15]谭本前;徐栋梁;杨远良;股骨柄假体表面多孔层孔隙形状改造的动物实验,2007;21(9):1605-1608
    [16]Kimura M, Zhao M, Zellin G, et al. Bone-inductive efficacy of recombinant human bone morphogenetic protein-2 expressed in Escherichia coli:an experimental study in rat mandibular defects [J]。Scand J Plast Reconstr Surg Hand Surg,2000,34 (4):289-299.
    [17]赵明,王会信,周廷冲.重组人骨形态发生蛋白22成熟肽在大肠杆菌中的表达及其诱导成骨活性[J].生物化学杂志,1994,10(3):319-324.
    [18]Bosch P, Musgrave D, Ghivizzani S. The efficiency of muscle-de-rived cell2mediated bone formation [J]. Cell Transplant,2000,9(4):463-470.
    [19]Carl A, Kirker H. Potential applications and delivery strategies for bone morphogenetic proteins. Advanced Drug Delivery eviews.2000;43:65-92
    [20]李健,石志才,蔡郑东。骨形态发生蛋白分子生物学研究进展。第二军医大学学报。2002;23(8):914-915
    [21]陈克明;李旭升;刘兴炎;骨形态发生蛋白复合纤维蛋白载体修复骨缺损的实验研究。1998;02:2-4。
    [22]贾晓真,樊明文,任铁冠。多孔β磷酸三钙和骨形态发生蛋白复合物异位诱导成骨的实验研究,中华实验外科杂志。2000,12(2):124-5。
    [23]周勇;陈硕;范清宇,异体DBM骨粒复合rhBMP-2及骨水泥材料修复骨缺损的实验研究;中国骨肿瘤病。2008;6:361-363。
    [24]Alam I, Asahina 1, Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2. Biomaterials 2001;22:1643-1651.
    [25]Laffargue, HF Hildebrand, M Rtaimate, er al. Evaluation of human recombinant bone morphogenetic protein-2-loaded tricalcium phosphate implants in rabbits'bone defects. Bone 1999;25:S55-S58.
    [26]Wan C, He Q, Li G. Allogenic peripheral blood derived mesenchymal stem cells (MSCs) enhance bone regeneration in rabbit ulna critical-sized bone defect model. J Orthop Res,2006,24 (4):610-618
    [27]M aniatopoulo s C, Sodek J,M elcher AH, et al. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. T issue Res,1988,254 (2):3172330.
    [28]Fu W Y, L u YM, Piao YJ. Culture and pluripotiality of human marrow mesenchymal stem cells. Clin J Hemato 1,2002;4 (23):202-204.
    [29]F riedenstein AJ, Chaijakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells:in vitro cultivation and transplantation indiffusion chambers. Cell T issue Kinet,1987,20 (3):263-272
    [30]Jendelova P, Herynek V, DeCroo s J, et al. Imaging the fate of implanted bone marrow stromal cells labeled with super paramagnetic nanoparticles. MagnReson M ed,2003,50 (4):767-776.
    [31]李雪盛,孙建军。兔骨髓基质干细胞成骨诱导及复合培养的生长状况。中国临床康复。2004;8(14):2658-2659。
    [32]段智霞;郑启新;郭晓东。BMP-2活性多肽体外定向诱导大鼠BMSCs向成骨方向分化的实验研究。中国矫形外科杂志。2007;21:1647-1650。
    [33]钱奇春,刘彦春,陈富林等,培养人骨髓基质细胞接种多孔陶瓷再造骨组织[J],解放军医学杂志,2002,27(4):312-313。
    [34]毛大立,曹海萍,常程康等,羟基磷灰石涂层的骨结合行为,上海交通大学学报,2003,37(2):64-65。
    [50]Buchholz HW, Engelbrecht H. Uber die Depotwwrikung einiger Antibiotica ber Vermischung mit dem kunstharz Palacos. Chirurg,1979,41: 511-515.
    [51]Hoff SF, Fitzgerald RH Jr, Kelly PL. The depot administration of penicillin G and gentamicin in acrylic bone cement. J Bone Joint Surg(Am), 1981,63:798-804.
    [52]Lodenkamper H, Lodenkamper U, TroMPa K.Uber die ausscheidung ron antibiotika aus dem knochezement palacos Eigene erfahrungen aus bakteriologisc her sict nach jahriger anwedung in der gelenokersatachirurgie. Z Orthop Ihre Grenzgeb,1982,120:801-805
    [53]Brien W W, Salvati El, Klein R, et al, antibiotic impregnated bone cement in total hip arthroplasty. An in wico coMParison of the elution properties of tobramycin and Vancomycin, Clin Onhop,1993(296):242-248
    [54]Esprhaug B Engesaeter LB, Vollset SE, et al. Antibiotic prophylax is in total hip arthroplasty. Eeciew of 10905 primary cemented total hip replacements reported to the Norwegian arthroplasty register,1887 to 1995. J Bone Joint Surg(Br),1997,79:590-595
    [55]吕厚山,马迪,丁海明.三种抗生素骨水泥抗菌和机械强度的研究.中国外科杂志,1998,36(Suppl):50~52
    [56]Strachan CJ. Antbiotic prophylaxis in peripheral cascular and orthopaedic prosthetic surgery. J Antimicrob Chemother,1993,31 suppl B:65-78
    [56]Kendall RW,Duncan Cp,Smith JA, et al. Persistence of bacteria on antibiotic loaded acrylic depots:A reason for caution,Clin Orthop,1996, (329):273-280
    [57]Susman E.清洁打造舒适环境.Enyiron Health Perspect 2001;1:A18
    [58]Furia TE,Schenkel AG.新型宽光谱抗菌剂。Soap Chem Specalties 1968; 44:47-50,116-122.
    [1]钱奇春,刘彦春,陈富林等,培养人骨髓基质细胞接种多孔陶瓷再造骨组织[J],解放军医学杂志,2002,27(4):312-313。
    [2]卢晓风,卢冰,张杰等,HA/TCP双相陶瓷肌内长期植入诱导成骨的实验观察[J],生物医学工程学杂志,2002;19(3):361-364。
    [3]毛大立,曹海萍,常程康等,羟基磷灰石涂层的骨结合行为,上海交通大学学报,2003,37(2):64-65。
    [4]胡光宇,李华东,羟磷灰石涂层钛合金植图材料的实验研究,上海医学,2002,25(10):628-631。
    [5]刘勇,裴国献,江汕,新型多孔β磷酸三钙作为骨组织工程支架材料的实验研究,中国修复重建外科杂志2007:21(10):1123-1127。
    [6]刘勇,裴国献,江汕,新型多孔β-磷酸三钙作为骨组织工程支架材料 的评价,中国组织工程研究与临床康复2008;12(23):4563-4567。
    [7]Abukawa H, Terai H, Hannouche D, Vacanti JP, Kaban LB, Troulis MJ. Formation of a mandibular condyle in vitro by tissue engineering. J Oral Maxillofac Surg 2003;61(1)94-100.
    [8]Ren T, Ren J, Jia X, et al. The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds. J Biomed Mater Res A.2005;74(4):562-569.
    [9]赵冬梅,徐日炜,王宇昕,电纺丝法制备骨组织工程用聚羟基丁酸酯支架及性能研究,中国生物医学工程学报2008;27(4):591-596。
    [10]Russell J L, Block JE. Clinical utility of demineralized bone mtrix for osseous defects, arthrodesis, and reconstruction:iMPact of Processing techniques and study methodology. Orthopaedics,1999, 22:524-531.
    [11]李明善,王葆芳,皇甫超申。微孔对同种异体表面脱钙骨基质明胶诱导成骨能力的影响,解剖学研究,2001;23(1):46-47。
    [12]赵丽君,毛天球,陈富林。不同类型骨组织工程支架材料的比较研究,中国临床康复,2003;7(4):548-549。
    [13]陈富林,毛天球,丁桂聪,钛网-珊瑚复合支架的组织工程骨研究,中国创伤骨科杂志,2000;2(4):304-307。
    [14]Klokkevold PR, Vandemark L, Kenney EB, et al. Osteogenesis enhanced by hitosan (poly-N-acetyl glucosaminoglycan) in vitro. J Periodontol.1996:67(11):1170-1175.
    [15]陈富林,毛天球,王常勇,几丁质/rhBMP2/胶原复合物修复骨缺损的实验研究,实用口腔医学杂志,2002;18(4):341-343。
    [16]Rocha LB, Goissis G, Rossi MA. BiocoMPatibility of anionic collagen matrix as scaffold for bone healing. Biomaterials.2002;23(2):449-456.
    [17]顾耕华,何虹,黄剑奇,海藻酸钙膜促进胫骨损伤修复机制的实验研究,中华急诊医学杂志,2002;11(6):379-381。
    [18]张东,杨克,马忠石,藻酸盐三维细胞培养在骨组织工程中应用的研究进展,生物技术通报2007:(6):62-66。
    [19]Devin JE, Attawia MA, Laurencin CT. Three-dimensional degradable porous polymer-ceramic matrices for use in bone repair. J Biomater Sci Polym Ed.1996; 7(8):661-669.
    [20]孙宁宁,王绪凯,周青,nHACP/CF材料与成骨细胞体外复合培养的实验研究,上海口腔医学2008:17(3):313-316。
    [21]张王志,周大利,杨为中,新型掺铕多孔磷灰石/硅灰石磁性生物活性玻璃陶瓷的研究,生物医学工程学杂志2007;24(4):785-789。
    [22]Al-Munajjed, Gleeson, O'Brien, Development of a collagen calcium-phosphate scaffold as a novel bone graft substitute. Stud-Health-Technol-Inform.2008; 133:11-20.
    [23]张育敏,李宝兴,马绍英,孔聚乳酸/骨基质明胶生物活性复合材料骨诱导活性实验,中国组织工程研究与临床康复2007:11(9):1783-1785,1789。
    [24]赵勇,李罡,陈静,丝素蛋白/纳米羟磷灰石支架的实验研究。华西口腔医学杂志2008:26(2):211-214。
    [25]孔丽君,敖强,奚静,MC 3T3-E1细胞在纳米羟基磷灰石/壳聚糖复合支架上的增殖和分化,生物工程学报2007:23(2):262-267。
    [26]Liao SS, Cui FZ, Zhang W, et al. Hierarchically biomimetic bone scaffold materials:nano-HA/collagen/PLA composite. J BiomedMater Res,2004,69B:158-165。
    [1].Tomas NJ, Andrew LC, Paul E. Use of antibiotic-impregnated cement in total jiont arthroplasty [J]. Am Acad Orthop Surg,2003,1:38-47.
    [2]. Buchholz HW, Engelbrecht H. Depot effects of various antibiotics mixedwithPalacos resins [in German]. Chirurg.1970; 41:511-515.
    [3]. Espehaug B, Engesaeter LB, Vollset SE, Havelin LI, Langeland N. Antibiotic prophylaxis in total hip arthroplasty. Review of 10,905 primary cemented total hip replacements reported to the Norwegian arthroplasty register,1987 to 1995. J Bone Joint Surg Br.1997; 79:590-595.
    [4].Ni jhof MW, Dhert WJ, Fleer A, Vogely HC, Verbout AJ. Prophylaxis of implant-related staphylococcal infections using tobramycincontaining bone cement. J Biomed Mater Res.2000; 15:754-761.
    [5]. Pritchett JW, Bortel DT. Tobramycin-impregnated cement in total hip replacements. Orthop Rev.1992; 21:577-579.
    [6]. Soto-Hall R, Saenz L, Tavernetti R, Cabaud HE, Cochran TP. Tobramycin in bone cement. An in-depth analysis of wound, serum, and urine concentrations in patients undergoing total hip revision arthroplasty. Clin Orthop.1983; 175:60-64
    [7]. Downes S, Brown AE, Mukher jee S. The clearance of gentamicin from antibiotic-loaded bone cement. Int Orthop.1985; 9:205-207.
    [8].Taggart T, Kerry RM, Norman P, et al.The use of vancomycin-impregnated cement beads in the management of infection of prosthetic joint. J Bone J Surg(Br)2002:84(1):70-2
    [9].Tunney, M. M., Ramage, G., Patrick, S. et al. (1998). Antimicrobial susceptibity of bacteria from orthopaedic implants following revision hip surgery.Antimicrobial Agents and Chemotherapy 42,3002-5.
    [10]. Hope, P. G., Kristinsson, K. G., Norman, P. etal. (1989Deep infection of cemented total hip arthroplasties caused by coagulase-negative staphylococcl. Journal of Bone and Joint Surgery 71B,851-5.
    [11]. Seyral, P., Zannier, A., Argenson, J. N.et al. (1994).The release in vitro of vancomycin and tobramycin from acrylic bone cement. Jourmal of Antimicrobial Chemotherapy 33,337-9.
    [12].Wininger,D. A.&Fass, R. J. (1996). Antibiotic-impregnated cement and beads for orthopedic infection. Antimicrobial Agents and Chemotherapy 40,2675-9.
    [13].陈爱宝,崔振华,曾国庆。两种抗生素复合骨水泥体外药物释放的规律[J].中国临床康复。2006-11-10
    [14]. Josefsson G, Kolmert L:Prophylaxis with systematic antibiotics versus gentamicin bone cement in total hip arthroplasty. A ten-year survey of 1688 hips. Clin Orthop 1993:292:210-214.
    [15]. Heck D, Rosenberg A, Schink-Ascani M, Garbus S, Kiewitt T:Use of antibiotic-impregnated cement during hip and knee arthroplasty in the United States. J Arthroplasty 1995:10:470-475.
    [16]. Kendall RW, Duncan CP, Beauchamp CP:Bacterial growth on antibiotic-loaded acrylic cement.A prospective in vivo retrieval study, J Arthroplasty 1995:10:817-822.
    [17].Kendall RW, Duncan CP,Smith JA, Ngui-yen JH:Persistence of bacteria on antibiotic-loaded acrylic depots. A reson for caution.Clin Orthop 1996:329:273-280.
    [18].Kuechle DK, Landon GC, Musher DM, et al. Elutin of vancomycin, daptomycin, and amikacin from acrylic bone cement [J], Clinical Orthopaedic Related Research,1991,264:302.
    [19]. Kendall RW, Duncan CP, Beauchamp CP:Bacterial growth on antibiotic-loaded acrylic cement. A prospective in vivo retrieval study. J Arthroplasty 1995:10:817-822.
    [20]. Adams K, Couch L, Cierny G, et al. In vitro and vivoevaluation of antibiotic diffusion from antibiotics-impregnated polymethylmethacrylate beads[J]. Clinical Orthopaedics Related Research,1992,278:244.
    [21].Bunetel L, Segui A, Cormier M, et al. Release of gentamicin from acrylic base cement.Clin pharmacokinet 1989:17:271-297.
    [22].Kuehn KD, Ege W, Copp U. Acrylic bone cements:composition and properties. Orthop Clin N Am2005;36:17-28.
    [23].Kuechle DK, Landon GC, Musher DM, et al. Elution of vancomyin, daptomycin, and amikacin from acrylic bone cement. Clin orthop 1991:264:302-308.
    [24].Kuehn KD, Ege W, copp U. Acrylic bone cements:mechanical and physical properites. Orthop Clin N Am 2005;36:29-39.
    [25]. Espehaug B Engesaeter LB, Vollset SE, et al. Antibiotic prophylax is in total hip arthroplasty.Eeview of 10905 primary cemented total hip replacements to the Norwegian arthroplasty register,1987 to 1995. J Bone Joint Surg (Br),1997,79:590-595
    [26].吕厚山,马迪,丁海明。三种抗生素骨水泥抗菌作用和机械强度的研究。中华外科杂志,1998,36(Suppl):50-52.
    [27].Klekamp J, Dawson JM. Haas DW, et al.The use of vancomycin and tobramycin in acrylic bone cement:Biomechanical effects and elution kinetics for use in joint arthroplasty.J Arthroplasty 1999;14:339-346.
    [28].DiGiovanni CW, Saleh KJ, Salvati EA, et al.Deep infection Complicating Total Hip Arthroplasty. In Pellicci PM, et al Edited "Orthopaedic Knowledge Update2:Hip and Knee Reconstraction" AAOS2000.
    [29]. Hanseen AD, Rand JA. Evaluation and treatment of infection at the site of a total hip or knee arthroplasty [J]. InstrCourse Lect,1999,48:111-122.
    [30]. Hanssen AD, Rand JA, Osmon DR. Treatment of the infected total knee arthroplasty with insertion of another prosthesis. The effect of antibioticimpregnated bone cement[J]. Clin orthop Relat Res, 1994,309(12):44-55.
    [31]. Hanssen AD. Prophylactic Use of Antibiotic Bone Cement.J Arthroplasty 2004;19 Sppl 1:73-77.
    [32].Chohfi M, Langlais F, Fourastier J, et al. Pharmacokinetics, uses, and limitations of vancomycin-loaded bone cement [J].In Orthop,1998.22(3):171-177.
    [33]. Greene BA, Duncan CP,Beauchamp CP, et al. Effect of tobranmycin and vancomycin polymetbylmethacrylate beads and spacers from Simplex and Palacos[J].Am J Orthop,1998,27(3)201-205.
    [34].Masri BA, Duncan CP, Beauchamp CP.Long-team elution of antibiotics from bone-cement:an in vivo study using the prosthesis of antibiotic-loaded acrylic cement (PROSTA-LAC) system[J].J Arthroplasty,1998,13(3):33-38
    [35].陈曦,范卫民,王黎明,尹宏。四种抗生素骨水泥的洗提特性。江苏医药杂志,2005,(31):864-864.
    [36].Holtom PD. Warren CA, Greene NW, et al. Relation of surface area to in vitro elouution characteristics of vancomycinimpregnated polymethylmethacrylate spacers[J]. Am J Orthop,1998,27:207-210.
    [37]. Agency for Healcare Research and Quality(AHRQ).Making health care safer.a critical analysis of patient safety practice, evidence report/technology assessment, no.43.2001.
    [38].Cmich CJ, Maki DG. The promise of novel technology for the prevention of intravascular device-related bloodstream infection. I. Pathogenesis and short-term devices. Clin Infect Dis2002;34:1232-1242.
    [39].Furia TE, Schenkel AG.新型宽光谱抗菌剂。Soap Chem Specalties 1968:44:47-50,116-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700