基于LIGO引力波探测的Ringdown波形理论分析及其数字信号处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据广义相对论理论,双星环绕-融合-拖尾过程以及致密星体自身引力坍塌都将产生出新的黑洞,而刚形成的此黑洞并不稳定,它将通过引力辐射过程回复到新的平衡态。在这个回复过程中,引力波的波形是由若干似正规模叠加而成的。本文关注的是该波形的末期,即拖尾(Ringdown)波形。该波形的特点是:频率一定,振幅按时间成指数衰减。目前,LIGO(引力波激光干涉仪)有3个位于不同位置的探测器,它们的数据分析都采用匹配滤波的方法,即:已知信号波形,以此为模板与实际数据进行相关分析,提取信噪比超过规定阈值的数据点,将之视为探测信号的可能数据点。在各自进行了上述处理之后,再将提取出的信号相互做偶合事件分析以及时域平移分析,从而大大降低由于各种噪声带来的影响。作为LIGO分析目标之一,Ringdown信号的探测完全按照之前所提及的流程,本文重点研究的对象是距离地球300 Mpc以内中等质量的黑洞,其质量为100-500 M⊙,因为满足这个条件并处于微扰状态的黑洞释放的引力辐射的强度刚好与LIGO的灵敏度相符。
    
     一、论文主要工作
     本文讨论的探测波源-处于微扰的中等质量黑洞,它有两种形成机制:①一种大质量自旋恒星(致密星体大约20-500倍太阳质量,但具体的质量有待确定)引力坍塌而成。②较小质量的环绕双星融合而成。目前,关于第①种形成过程的研究工作比较缺乏,而第②种机制的整体波形又无准确的解析解。针对以上问题,本文详细计算和分析了第①种形成过程的整体波形,通过曲线拟合得到了近似的解析解,并且与现有的Ringdown波形做相关性分析。结果表明:拟合效果很好,能够为将来的LIGO数据处理建立新的模板。针对第②种形成机制下的两种现有波形(有效一体波形EOBNR、唯象波形) ,我们将之作为理想信号输入对LIGO第5轮数据做调试,发现唯象波形与EOBNR相比,曲线更为平滑,而且在同样的有效距离上有着更高的准确率。这样我们有望通过唯象波形进一步找到准确的解析解。
     二、论文创新点
     1、目前,关于单个致密星体自身引力坍塌成中等质量kerr黑洞还缺乏系统的研究,本论文针对这个不足分析了在此过程中产生的整体引力波解析解。
     2、现有的处于微扰阶段的黑洞辐射的拖尾引力波波形只是在阶跃函数的后端延伸出来的,这个形式极不准确,因而,我的工作是找到了一个使坍塌阶段和拖尾阶段波形能光滑连接起来的结合点。从而,使LIGO数据处理的模板更为准确。
     3、曲线模拟的整体波形与现阶段LIGO拖尾波形的相关性分析是对理论和实验具有指导性作用的研究。通过相关性分析后的数据说明了辐射引力波的能量会因质量和角动量的不同而分布在不同的阶段。质量、角动量及其相关性的分析是非常有价值的。
     4、本文利用LIGO第五轮数据进行分析,它是迄今为止观测时间最长,探测覆盖范围最广的一次数据分析。由此得到了关于偶合尺度窗的最优值。并且还对现有的两种理想输入信号(有效一体波形和唯像波形)做了多方面的比较,结果表明:唯像波形与EOBNR相比,曲线更为平滑,而且在同样的有效距离上有着更高的准确率。
     三、本论文主要结论
     1、在致密星体自身引力坍塌过程中,与自旋一致的方向上没有引力辐射。在质量相等的情况下,自旋角速度越快的星体偏心率越大,自旋越小的星体坍缩过程相对较长;在自旋角速度一定的情况下,质量越大的星体初始偏心率和焦距相应增大。另外,初始条件告诉我们:焦距与初始密度成反比,因而初始密度越大,相应的引力辐射强度反而越弱。
     2、自旋愈快质量愈大的致密星体在坍塌过程中,引力辐射的能量大部分集中在Ringdown部分,对于自旋较为缓慢且质量偏小的星体而言,大量的能量将集中在坍塌阶段。
     3、综合唯象波形输入信号和EOBNR输入波形后可以得到0.4为最优偶合窗尺度。但是,背景噪声的数目随偶合窗尺度呈单调上升趋势,因而将进一步绘制ROC曲线(探测概率与虚警率关系图)来确定合理的取值。
     4、EOBNR理想波形被恢复的点总是比唯象波形对应的点稍远。这是因为在构建EOBNR波形的时候,其振幅比相应位置的唯象波形小,所以对同一个匹配模板而言,EOBNR就被视为较远波源发出的信号。
     本文大部分工作完成于美国德克萨斯大学布朗斯维尔分校引力物理中心以及LIGO合作小组,并得到了美国国家自然科学基金的资助。
According to General Relativity, an unstable black hole, which occurs due to the coalescence of a black hole binary following their inspiral and subsequent merger and a compact stellar, will return to a stable configuration by the emission of gravitational radiation in a superposition of quasi-normal modes. In this paper, we focus on the late time of the waveform, which we refer to as Ringdown waveform. It has typical frequency and the amplitude exponential decaying with time. At present, LIGO (Laser Interferometer Gravitational Wave Observatory) locate on 3 different places, which are two in Hanford named H1 and H2 and, another one in Livingston named L1. In each of them, the data analysis process is well-known the method of matched filtering, which means base on the known waveform, we perform the correlation between data and the waveform, and pass the data with higher Signal-Noise-Ratio (SNR) than threshold. In order to reduce background noise, we apply the coincidence Analysis and timeslides analysis on two or three detectors after matched filtering in each detector. As one aim of LIGO data analysis, the Ringdown detection follows such pipline. Here we concern the intermediate mass black holes with 100 and 500 M⊙to a distance of up to 300 Mpc, because LIGO is sensitive to the dominant mode of perturbed black holes with such masses and region.
    
     1 The main works:
     As the source of this paper, the perturbed intermedate black holes will be occurred by two different mechanisms:①the compact stellar with spin (mass is near 20-500 M⊙) gravity collapse.②inspiral binary with smaller mass merge to black holes. At present, it is short for the research of the first mechanism; however, there is no accurate analytic whole waveform for the second one. In order to solve these issues, in this paper we calculate and analyze the whole waveform for the first one, get the approximate analytic result through curve fitting, which we make correlation analysis to current Ringdown waveform. The results show it is reasonable to make new template for LIGO data process since such ideal overlap between them. For the second one, there are two kinds of waveform (i.e., EOBNR, phenomenological waveform), which are the injection simulation for S5 LIGO data analysis. We find phenomenological waveform is much smoother and with higher accurate rate. Then it is hopeful to find accurate analytic result.
     2 Innovations of this paper
     ①At present, it is short for the research of compact stellar with spin gravity collapse. This paper calculates the analytic whole waveform in the collapse to fix this shortage.
     ②The current Ringdown waveform is connected directly to a step function, which is inaccurate. Then as a part work of this paper, we match the collapse waveform to Ringdown smoothly. As a result, the template of LIGO data analysis is much more accurate.
     ③It is a significant research of curve fitting and current Ringdown correlation. We find the energy of gravitational radiation is in different phase due to mass and spin difference. This conclusion is valuable.
     ④So far, the S5 LIGO data is in the longest observation time and the largest detection region. With such data, we get the optimal coincidence test window size and compare EOBNR with phenomenological waveform, as a result, phenomenological waveform is much smoother and with higher accurate rate.
     3 Main conclusions
     ①In the collapse, there is no gravitational radiation on the spin direction. With the same mass, the faster spin results bigger eccentricity and shorter collapse period; with the same spin, the bigger mass results bigger initial eccentricity and foci distance. In addition, the bigger initial density results weaker gravitational radiation.
     ②For the compact stars with faster spin and bigger mass, most of the energy is in Ringdown phase; for the stars with slower spin and smaller mass, most of the energy is in collapse phase.
     ③According to phenomenological and EOBNR waveform comparison, the optimal size of coincidence test is 0.4. However, the events of background increase with the size, and then we need to plot ROC (detection possibility and false alarm plot) curve to choose reasonable value.
     ④The found injections of EOBNR are always in further area than phenomenological ones, because when the EOBNR waveform is made, its amplitude is lower than the phenomenological at the same injection time. Therefore, for the same matched template, EOBNR is the signal from further source.
     Most of our work is done in the Center for Gravitational Wave Astronomy (CGWA) of University of Texas at Brownsville (UTB) in U.S.A. and international LIGO science cooperation with the support of Unite States national science fund.
引文
[1] F.Y. Li, N. Yang, Z.Y. Fang, R.M.L. Baker, G.V. Stephenson. H. Wen, Signal Photon Flux and Background Noise in a Coupling Electromagnetic Detecting System for High-Frequency Gravitational Waves[J]. Physical Review D, 2009, 80: 06413-1-14.
    [2] F.Y. Li, R.M.L. Baker, Z.Y. Fang, G.V. Stephenson, Z.Y. Chen. Perturbative Photon Fluxes Generated by High-Frequency Gravitational Waves and Their Physical Effects[J]. The Europe Physical Journal C, 2008, 56: 407-423.
    [3] C. Clarkson, R. Maartens. Gravity-wave detectors as probes of extra dimensions[J]. General Relativity and Gravitation, 2005, 37(10): 1681–1687.
    [4] C. Clarkson , S. S. Seahra. A gravitational wave window on extra dimensions[J]. Classic Quantum Gravity, 2007, 24: F33–F40.
    [5] M. L. Tong, Y. Zhang, F. Y. Li. Using a polarized maser to detect high-frequency relic gravitational waves[J]. Physics Review D, 2008, 78: 024041.
    [6] M. L. Tong, Y. Zhang. Relic gravitational waves with a running spectral index and its constraints at high frequencies[J]. Physics Review D, 2009, 80: 084022.
    [7] J. Li, F.Y. Li, Y.H. Zhong. Noise in A Coupling Electromagnetic Detecting System for High Frequency Gravitational Waves[J]. Chinese Physics B, 2009, 10(3): 922-926.
    [8] G. G. Cuadrado. Towards a New Era in Gravitational Wave Detection: High Frequency Gravitational Wave Research[J]. STAIF, 2009, Americal Institute of Physics, 1103: 553.
    [9] J.M. Weisberg, J.H. Taylor. Relativistic Binary Pulsar B1913+16: Thirty Years of Observations and Analysis[R]. ASP Conference Series, 2004, arXiv:astro-ph/0407149v1.
    [10] J. Li, Y. H. Zhong, T. Zhong. Relic gravity waves investigation by the advanced space-based Gravitational Waves detector[J]. Communications in Theoretical Physics,2010, 53(3): 496-498.
    [11] C. W. Misner, K. S. Thorne, J. A. Wheeler. Gravitation[M]. W. H. Freeman and Company, 1970.
    [12] P. R. Saulson. Fundamentals of Interferometric Gravitational Wave Detectors[M]. World Scientific Pub Co Inc., 1994, ISBN 978-9810218201.
    [13] S. J. Waldman. Status of LIGO at the start of the fifth science run[J]. Classical and Quantum Gravity, 2006, 23: S653-S660.
    [14] K. Kawabe. Status of LIGO[R]. LIGO-G070617-00-D, 2007.
    [15] LIGO Laboratory. 2007. LIGO's Fifth Science Run Draws to a Close with One Full Year of Triple Coincidence Data[EB/OL].http://www.ligo.caltech.edu/~ll_news/s5_news/s5article.htm.
    [16] R. Adhikari, P. Fritschel, S. Waldman. Enhanced LIGO[R]. Technical Note LIGO-T060156-01-I, 2006.
    [17] R. Henning et al.. Local readout enhancement for detuned signal-recycling interferometers[J]. Phys. Rev. D, 2007, 76: 062002.
    [18] LIGO Scientific Collaboration. Advanced LIGO[EB/OL]. http://www. ligo.caltech. edu/adv LIGO/.
    [19] B. Lantz. Advanced LIGO: Development and Status[R]. 73rd Annual Meeting of the Southeastern Section of the APS, 2006.
    [20] B. F. Schutz, M. Tinto, Antenna patterns of interferometric detectors of gravitational waves– I. Linearly polarized waves[J]. Mon. Not. R. astr. Soc., 1987, 224: 131-154.
    [21] International Space Station. 2010. LISA laser interferometer space antenna[EB/OL]. http://lisa.nasa.gov/.
    [22] International Space Station. 2009. Core Technologies for LISA[EB/OL]. http://lisa.jpl. nasa.gov/technology/index.html.
    [23] Sean Carroll. Spacetime and Geometry: An Introduction to General Relativity[M]. Addison Wesley Longman, ISBN 0805387323, 2003.
    [24] R. A. Hulse, J. H. Taylor. Discovery of a pulsar in a binary system[J]. Ap.J., 1975, 195: L51-L53.
    [25] T. Futamase, Y. Itoh. The Post-Newtonian Approximation for Relativistic Compact Binaries[R]. Living Reviews in Relativit, 2007.
    [26] K. S. Thorne. 300 Years of Gravitation[M]. England: Cambridge University Press,1987.
    [27] B. Abbott et al.. Analysis of LIGO data for gravitational waves from binary neuton stars[J]. Phys. Rev. D, 2004, 69: 122001.
    [28] B. Abbott et al.. Search for gravitational waves from galactic and extragalactic binary neutron stars[J]. Phys. Rev. D, 2005, 72: 082001.
    [29] B. Abbott et al.. Search for gravitational waves from primordial black hole binary coalescences in the galactic halo[J]. Phys. Rev. D, 2005, 72: 082002.
    [30] B. Abbott et al.. Search for gravitational waves from binary black-hole inspirals in LIGO data[J]. Phys. Rev. D, 2006, 73: 062001.
    [31] B. Abbott et al.. Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals[J]. Phys. Rev. D, 2008, 78:042002.
    [32] B. Abbott et al.. Search for gravitational waves from binary inspirals in S3 and S4 LIGO data[J]. Phys. Rev. D, 2008, 77: 062002.
    [33] B. Abbott et al.. Implications for the Origin of GRB 070201 from LIGO Observations[J]. Ap.J, 2008, 681:1419-1428.
    [34] C. L. Fryer, K. C. B. New.Gravitational Waves from Gravitational Collapse[EB/OL]. Living Reviews in Relativity, 2003, http://relativity.livingreviews.org/Articles/lrr-2003-2/.
    [35] L. Wang et al. The Axisymmetric Ejecta of Supernova 1987A[J]. The Astrophysical Journal, 2002, 579: 671-677.
    [36] K. Alfred, Mann. Shadow of a star: The neutrino story of Supernova 1987[M].New York:W. H. Freeman,1997.
    [37] K. Kei, S. Katsuhiko, Y. Shoichi. Gravitational radiation from axisymmetric rotational core collapse[J], Phy. Rev. D, 2003,68: 044023.
    [38] M. C. Miller. Compact Binaries as Sources of Gravitational Radiation[J]. arXiv:astro-ph/0612055v1, 2006.
    [39] H. P. M. Maurice, P. van et al.. Gravitational radiation from gamma-ray burst-supernovae as observational opportunities for LIGO and VIRGO[J], Phys. Rev. D, 2004, 69: 044007.
    [40] S. Kobayashi, P. Miszaros. Gravitational Radiation from Gamma-Ray Burst Progenitors[J]. The Astrophysical Journal, 2003, 589: 861-870.
    [41] S. F. Lee, D. M. Soumya, D. R. Joseph. Detecting an association between gamma ray and gravitational wave bursts[J]. Physical Review D, 1999, 60: 121101.
    [42] B. Abbott et al.. First upper limits from LIGO on gravitational-wave bursts[J]. Phys. Rev. D, 2004, 69:102001.
    [43] B. Abbott et al.. Upper limits on gravitational-wave bursts in LIGO’s second science run[J]. Phys. Rev. D, 2005, 72: 062001.
    [44] B. Abbott et al.. Search for gravitational-wave bursts in LIGO’s third science Run[J]. Class. Quant. Grav., 2006, 23: S29.
    [45] B. Abbott et al.. Search for gravitational-wave bursts in LIGO data from the fourth science run[J]. Class. Quant. Grav., 2007, 24: 5343.
    [46] B. Abbott et al.. Search for Gravitational Waves Associated with 39 Gamma-Ray Bursts Using data from the Second, Third, and Fourth LIGO Runs[J]. Phys. Rev. D, 2008, 77:062004.
    [47] K. C. Hurley. Implications for the Origin of GRB 070201 from LIGO Observations[J]. arXiv:0711.1163v2, 2007.
    [48] T. A. Thompson. Assessing Millisecond Proto-Magnetars as GRB Central Engines[J]. arXiv:astro-ph/0611368v1, 2006.
    [49] K. S. Thorne, edited by S.W. Hawking, W. Israel. 300 Years of Gravitation[M]. CambridgeEngland: Cambridge University Press, 1987.
    [50] B. Abbott et al.. Setting upper limits on the strength of periodic gravitational waves from PSR J1939+2134 using the first science data from the GEO 600 and LIGO detectors[J]. Phys. Rev. D, 2004, 69: 082004.
    [51] B. Abbott et al.. Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts[J]. Phys. Rev. D, 2005, 72:102004.
    [52] B. Abbott et al.. Limits on gravitational wave emission from selected pulsars using LIGO data[J]. Phys. Rev. Lett., 2005, 94: 181103.
    [53] B. Abbott et al.. Coherent searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: results from the second LIGO science run[J]. Phys. Rev. D, 2007, 76: 082001.
    [54] B. Abbott et al.. Upper Limits on GravitationalWave Emission from 78 Radio Pulsars[J]. Phys. Rev. D, 2007,76:042001.
    [56] B. Abbott et al.. All-sky search for periodic gravitational waves in LIGO S4 data[J]. Phys. Rev. D, 2008,77:022001.
    [57] Y. Zhang, Y. F. Yuan, W Zhao,Y.T. Chen. Relic Gravitational Waves in the Accelerating Universe[J]. Classical and Quantum Gravity, 2005, 22 :1383-1394.
    [58] Y. Zhang, W. Zhao, Y. F. Yuan, T. Y. Xia. Numerical Spectrum of Relic GW in Accelerating Universe[J]. Chinese Physics Lettter,2005, 22:1817.
    [59] Y. Zhang, X. Z. Er, T. Y. Xia, W. Zhao, H. X. Miao. Exact Analytic Spectrum of Relic Gravitational Waves in Accelerating Universe[J]. Classical and Quantum Gravity, 2006, 23: 3783-3800.
    [60] Y. Zhang,W. Zhao, T. Y. Xia, X. Z. Er, H. X. Miao. Relic Gravitational Waves and CMB Polarizations in Accelerating Universe[J]. Int.JMPD, 2008, 17: 1105-1123.
    [61] S. Wang, Y. Zhang, T.Y. Xia, H. X. Miao. Modifications by QCD transition and e+e- annihilation on analytic spectrum of relic gravitational waves in accelerating universe[J]. Physics Review D, 2008, 77: 104016.
    [62] W.Zhao and Y.Zhang. Relic gravitational waves and their detection[J]. Physics Review D, 2006, 74: 043503.
    [63] Y. Zhang , M. L. Tong, and Z.W. Fu. Constraints upon the spectral indices of relic gravitational waves by LIGO S5[J]. Physics Review D, 2010, accepted, arXiv:1004.2944
    [64] M.L.Tong and Y Zhang. Detecting very-high-frequency relic gravitational waves by electromagnetic wave polarizations in a waveguide[J]. CJAA, 2008, 8: 314.
    [65] B. Schutz. Gravitational Waves Astronomy[J]. Classical and Quantum Gravity, 1999, 16:A131-A156.
    [66] K. S. Thorne. Gravitational Waves[J]. arXiv:gr-qc/9506086v1, 1995.
    [67] M. K. Lawrence, W. Martin. Grand unification, gravitational waves, and the cosmic microwave background anisotropy[J]. Physical Review Letter, 1992, 69: 869– 872.
    [68] V. Alexander. Cosmic strings[J]. Physical Review D, 1981, 24: 2082– 2089.
    [69] Laura Cadonati. Astrophysical Sources, Analysis Methods and Current Results in LIGO's Quest for Gravitational Waves. SESAPS 2006.
    [70] V. Ferrari, S. Matarrese, R. Schneider. Gravitational Wave Background from a Cosmological Population of Core-Collapse Supernovae[J]. Mon.Not.Roy.Astron.Soc., 1999, 303: 247.
    [71] B. Abbott et al.. Analysis of first LIGO science data for stochastic gravitational Waves[J]. Phys. Rev. D, 2004, 69:122004.
    [72] B. Abbott et al.. Upper limits on a stochastic background of gravitational Waves[J]. Phys. Rev. Lett., 2005, 95:221101.
    [73] B. Abbott et al.. Searching for Stochastic Background of Gravitational Waves with LIGO[J], Ap. J., 2007, 659: 918.
    [74] B. Abbott et al.. Upper limit map of a background of gravitational waves[J]. Phys. Rev. D, 2007,76: 082003.
    [75] B. Abbott et al.. An upper limit on the stochastic gravitational-wave background of cosmological origin[J]. Nature, 2009, 460: 08278.
    [76] B. Abbott et al.. First Cross-Correlation Analysis of Interferometric and Resonant-Bar Gravitational-Wave Data for Stochastic Backgrounds[J]. Phys. Rev. D, 2007, 76: 022001.
    [77] S. Babak et al.. "Kludge" gravitational waveforms for a test-body orbiting a Kerr black hole[J]. Physical Review D, 2007, 75: 024005.
    [78] R. G. Jonathan, et al.. Event rate estimates for LISA extreme mass ratio capture sources[J]. Classical Quantum Gravity, 2004, 21: S1595.
    [79] E. K. Henry, M. E. Mahon. Gravitational radiation from supermassive black holes[J]. Physical Review D, 1992, 45: 1013-1016.
    [80] J. C. Neil , K. P. Edward. Catching supermassive black hole binaries without a net[J]. Physical Review D, 2007, 75: 021301(R).
    [81] J. H. Krolik. Active Galactic Nuclei. Princeton[M]. New Jersey: Princeton University Press, 1999.
    [82] L. S. Sparke, J. S. Gallagher III. Galaxies in the Universe: An Introduction[M]. Cambridge: Cambridge University Press, 2000.
    [83] S. Don, R. Steve, W. Megan. Never Before Seen: Two Supermassive Black Holes in SameGalaxy[R]. Chandra X-ray Observatory, 2002.
    [84] M. Cole.Binary Sources of Gravitational Radiation[R].Astrophysics of GW Sources: Gravitational Wave Astronomy Summer School, 2006.
    [85] J. Michell, Philos. On the Means of Discovering the Distance, Magnitude, &c. of the Fixed Stars[J]. Trans. R. Soc. London, 1784, 74: 35-57.
    [86] K. Schwarzschild, Sitzungsber. On the gravitational field of a sphere of incompressible fluid according to Einstein's theory[J]. Math.Phys.,1916, 424-434.
    [87] J. A. Wheeler, R. Ruffini. Introducing the Black Hole[J]. Phys. Today, 1971, 24: 30-41.
    [88] F. J. Zerilli, Gravitational Field of a Particle Falling in a Schwarzschild Geometry Analyzed in Tensor Harmonics[J], phys. rev. D, 1970, 2: 2141-2160.
    [89] S.Chandrasekhar,On the Equations Governing the Perturbations of the Schwarzschild Black Hole [J]. Proc.Roy.Soc.(London)A., 1975, 343: 289-298.
    [90] S.Chandrasekhar and S. Detweiler,The Quasi-Normal Modes of the Schwarzschild Black Hole [J] .Proc.Roy.Soc.(London)A. 1975, 344: 441-452.
    [91] E. W. Leaver. An Analytic Representation for the Quasi-Normal Modes of Kerr Black Holes[J]. Proc. R. Soc. Lond., 1985, 402:285-298.
    [92] F. Echeverria. Gravitational-wave measurements of the mass and angular momentum of a black hole[J]. Phys. Rev. D, 1989, 40: 3194-3203.
    [93] G. Fabbiano. The Hunt for Intermediate-Mass Black Holes[J]. Science, 2005, 307: 533-534.
    [94] S. F. Portegies Zwart, S. L. W. McMillan. The Runaway Growth of Intermediate-Mass Black Holes in Dense Star Clusters [J]. The Astrophysical Journal, 2002, 576:899-907.
    [95] M. Freitag, F. A. Rasio, H. Baumgart. Stellar Collisions in Young Clusters: Formation of (Very) Massive Stars?[J]. MNRAS, 2006a, 368:121-130.
    [96] M. Freitag, M. A. Gurkan, F. A. Rasio. The influence of initial mass segregation on the runaway merging of stars[J]. MNRAS, 2006b, 368: 141-167.
    [97] T. K. Suzuki, N. Nakasato, H. Baumgardt, A. Ibukiyama, J. Makino, T. Ebisuzaki. Evolution of Collisionally Merged Massive Stars [J]. The Astrophysical Journal, 2007, 668:435-448.
    [98] L. R.Yungelson, E. P. J. van den Heuvel, J. S. Vink, S. F. Portegies Zwart, A. de Koter. On the evolution and fate of super-massive stars[J]. Astronomy&Astrophysics, 2008, 477: 223– 237.
    [99] C. Ott. The gravitational-wave signature of core-collapse supernovae[J]. Classical and Quantum Gravity, 2009, 26: 063001.
    [100] S. F. Portegies Zwart, S. L. W. McMillan. The Runaway Growth of Intermediate-Mass Black Holes in Dense Star Clusters[J]. Ap. J., 2002, 576: 899.
    [101] R. Soria. Runaway Core Collapse and Cluster Survival: Where are the Parent Clusters ofULXs?[R], in Proceedings of the XXII Texas Symposium on Relativistic Astrophysics at Stanford University, edited by P. Chen, E. Bloom, G. Madejski, and V. Patrosian, eConf C041213, 2004.
    [102] M. Freitag, F. A. Rasio, H. Baumgart. Runaway collisions in young star clusters - I. Methods and tests[J], Mon. Not. R. astr. Soc., 2006a, 368: 121.
    [103] M. Freitag, M. A. Gurkan, F. A. Rasio. Runaway collisions in young star clusters - II. Numerical results[J], Mon. Not. R. astr. Soc., 2006b, 368:141.
    [104] T. K. Suzuki, N. Nakasato, H. Baumgardt, A. Ibukiyama, J. Makino, T. Ebisuzaki. Evolution of Collisionally Merged Massive Stars[J]. Ap. J., 2007, 668: 435.
    [105] L. R. Yungelson, E. P. J. van den Heuvel, J. S. Vink, S. F. Portegies Zwart, A. de Koter. On the evolution and fate of super-massive stars[J]. Astronomy & Astrophysics, 2008, 477: 223.
    [106] Saenz, R.A. and Shapiro, S.L.: Gravitational Radiation from Stellar Collapse: Ellipsoidal Models, ApJ, 221, 286 (1978)
    [107] R. A. Saenz, S. L. Shapiro. Gravitational and Neutrino Radiation from Stellar Core Collapse: Improved Ellipsoidal Model Calculations[J]. Ap. J., 1979, 229: 1107.
    [108] S. Detweiler, L. Lindblom. On the Evolution of the Homogeneous Ellipsoidal Figures. II. Gravitational Collapse and Gravitational Radiation[J]. Ap. J., 1981, 250: 739.
    [109] J. Li, M. Benacquista. Phenomenological gravitational radiation from rotating stellar collapse to an intermediate mass Kerr black hole[J]. General Relativity and Gravitation, 2010, accepted, DOI: 10.1007/s10714-010-0979-3.
    [110] B. James, T. Scott. Galactic Dynamics[M]. New Jersey USA: princeton university press, 1987.
    [111] Ya.B. Zel'dovich, I. D. Novikov. Relativistic Astrophysics[M]. Vol 1: Stars and Relativity. Chicago, USA: University of Chicago Press, 1971.
    [112] S.L. Shapiro, S. A.Teukolsky. Black Holes, White Dwarfs and Neutron Stars[M]. New York, USA: John Wiley \& Sons, 1983.
    [113] T. Padmanabhan. Theoretical Astrophysics[M]. Vol @: Stars and Stellar Systems. Cambridge, UK: Cambridge University Press, 2001.
    [114] B. W. Carroll, D. A. Ostlie. An Introduction to Modern Astrophysics[M]. San Francisco, USA: 2nd Ed., Pearson/Addison Wesley, 2007.
    [115] B. Abbot et al. Search for gravitational wave Ringdowns from perturbed black holes in LIGO S4 data[J]. Phys. Rev. D, 2009, 80: 062001.
    [116] A. Buonanno, Y. Pan, J.
    [117] P. Ajith, S. Babak et al.. A template bank for gravitational waveforms from coalescing binary black holes: non-spinning binaries[J]. Phys. Rev. D, 2008, 77:104017.
    [118] J. L. Friedman, B. F. Schutz. Secular instability of rotating Newtonian stars[J]. Astrophysical Journal Letters, 1978, 222: 281-296.
    [119] S. David. The Debut of LIGO II [EB/OL]. 2000. http://www. phys.l su.edu/ mog/mog15/ node14.html
    [120] S. E. Strigina, S. P. Vyatchanin. Analysis of parametric oscillatory instability in signal recycled LIGO interferometer with different arms[J]. Physics Letters A, 2007, 365: 10-16.
    [121] A. Peter, D. Karsten. Gravitational wave detectors[J]. New Journal of Physics, 2005, 7: 202.
    [122] P. Saulson, Gravitational Wave Detection #3: Precision of interferometry[R]. Summer School on Gravitational Wave Astronomy, 2004.
    [123] A. H. Scott, S. T. Kip. Seismic gravity-gradient noise in interferometric gravitational-wave detectors[J]. Physical Review D, 1998, 58: 122002.
    [124] S. Kip , Thorne , J. W. Carolee. Human Gravity-Gradient Noise in Interferometric Gravitational-Wave Detectors[J]. Physical Review D, 1999, 60: 082001.
    [125] L. M. Goggin. A Search For Gravitaional Waves from Perturbed Black Hole Ringdowns in LIGO Data[M]. USA: California Institude of Technology, 2007.
    [126] Adam Frank.破解爱因斯坦的代码[EB/OL]. Ed. By Shea.天文爱好者, 2009, 8. http://songshuhui.net/archives/18241.html.
    [127] R. C. Woods, R. M. L. Baker et al. A theoretical new technique for the measurement of high frequency relic gravitational waves[R]. unpublished, 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700