无线中继系统的机会协同分集性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种有效的对抗无线衰落的手段,协同分集技术近年来得到了广泛而深入的研究。通过共享天线等资源,地理上分离的网络节点能够形成虚拟多输入多输出系统,充分挖掘空间分集增益来提升系统性能。而作为协同分集技术的重要组成部分,机会协同因其性能优异、实现简单和扩展性良好等特点得到了越来越多的关注,逐渐成为学术界研究的热点问题。考虑到未来通信系统的发展趋势,本论文主要针对基于译码转发的机会协同技术从分集性能方面进行理论研究,深入分析影响该协议性能的关键因素及其制约关系,为在下一代移动通信系统中应用该技术提供必要的理论支持。本论文首先研究了扩展的中继选择方案下机会协同译码转发协议的分集性能,然后评估了普适的衰落信道模型对该协议的影响,并进一步考虑了非理想信道状态信息下该协议的具体性能,最后研究在多天线技术增强之后,机会协同译码转发协议能够达到的理论分集性能。论文的主要工作和创新点在于:
     1.扩展的中继选择方案下机会协同分集性能研究
     首先研究在Rayleigh衰落信道下,基于第N佳中继这种通用选择方案来进行中继选择时,机会协同译码转发协议可以达到的性能,然后针对传统机会协同译码转发可能造成的中继节点参与协同不公平的问题,设计了一种基于归一化信道状态来进行中继选择的方案并对其性能进行分析。针对基于第N佳中继选择方案,分析得到了独立但不一定同分布Rayleigh衰落信道下机会协同译码转发的系统性能表达式,并且考虑了直传链路对于系统性能的影响,从理论上证明了系统分集度与中继选择标准之间存在线性关系。分析了基于归一化信道状态信息进行的机会协同译码转发协议性能,从分集度和公平性两个角度证明了该协议的优势,为实际系统中需要考虑中继选择公平性的场景提供了理论支撑。
     2.普适的衰落信道模型下机会协同分集性能研究
     首先研究对称网络和非对称网络在适用性较强的Nakagami-m衰落信道中采用机会协同译码转发协议可以达到的分集性能,然后结合实际系统的无线传播环境特征,考虑在混合衰落信道,即混合Rayleigh和Rician衰落信道,以及适用性更强的混合κ-μ和η-μ衰落信道下研究机会协同译码转发协议的性能,分析衰落信道参数对于机会协同性能的影响关系。从理论上得到了在Nakagami-m衰落信道下,存在直传链路时采用机会协同译码转发协议和第N佳中继选择标准的端到端中断概率表达式和分集度表达式。所得表达式相对于现有的研究结果更加简单,并且适用场景更加广泛。首次分析得到了混合衰落信道模型下机会协同译码转发时系统端到端中断概率和分集度表达式,所得结果可以直接应用于网络规划和优化,并且所采用的衰落信道模型能够更加精确地体现实际系统特征,使得结果更具推广性。
     3.非理想信道状态信息下机会协同分集性能研究
     首先研究了在接收端存在信道估计误差时机会协同译码转发协议的分集性能,评估了信道估计误差对分集度的影响,然后将非理想信道状态扩展到接收端和发送端,即联合考虑信道估计误差和反馈时延的影响,在此前提条件下得到系统可达的分集性能。从理论上给出了信道估计误差和信道反馈时延对于机会协同译码转发协议的影响,通过推导得到了此时系统端到端传输的中断概率和系统可达分集度表达式,所得结果可以针对实际系统的信道估计能力和控制信道传输能力对机会协同译码转发协议做进一步的校准。
     4.多天线技术增强的机会协同分集性能研究
     首先研究了在源端、中继端、目的端同时部署多天线并采用正交空时块码传输时,机会协同译码转发所能获得的性能提升,然后在此基础之上设计了一种增量中继传输方案,有效地利用正交空时块码和机会协同的分集增益以及直接传输的频谱效率增益来提高系统性能,并从理论上得到了此时的系统分集性能表达式。通过理论推导给出了系统中断概率和天线配置、中继配置、网络拓扑结构之间的关系,并且得到了系统可达分集度的闭式表达式,有利于在多天线场景下部署和应用机会协同传输协议。提出了一种结合正交空时块码和增量中继的机会协同译码转发协议,不仅可以保证传统机会协同译码转发协议满分集性能,而且还能够通过充分利用多天线、多中继资源维度来大幅提高系统传输效率。
As an effective method to combat wireless fading, cooperative diversity technique has been researched extensively and intensively recently. Through sharing the resources such as antennas, geographically isolated network nodes can exploit spatial diversity gain to improve system performance by forming a virtual multiple input multiple output (MIMO) system. As an important aspect of cooperative diversity techniques, opportunistic cooperation has attracted more and more attention due to its features including excellent performance, simple implementation, good scalability et al., and has gradually become a hot issue in academic circles. In consideration of the development tendency of future communication systems, we theoretically study the diversity performance of decode-and-forward based opportunistic cooperation technique in this dissertation, deeply analyze the key factors that impact the performance of the protocol and their relations, provide necessary theoretical support to apply this technique in next generation mobile communication systems. In this dissertation, we firstly study the diversity performance of decode-and-forward opportunistic cooperative protocol with extended relay selection schemes, then evaluate the impact of different universal fading channel models on the protocol, and furthermore take the specific performance of this protocol with imperfect channel state information (CSI) into consideration, and finally we research on the achievable theoretical diversity performance of decode-and-forward opportunistic cooperative protocol enhanced by MIMO techniques. The major work and contributions of this dissertation consist in:
     1. Research on diversity performance of opportunistic cooperation with extended relay selection schemes
     Firstly the performance of decode-and-forward opportunistic cooperation with a general relay selection scheme, i.e., the Nth best relay selection, is studied under Rayleigh fading channels, where the impact of the direct link is taken into consideration. Then considering the unfair problem that might happen when traditional decode-and-forward opportunistic cooperation is implemented, we propose a relay selection scheme based on the normalized channel state and analyze its performance. Based on the Nth best relay selection, we analyze and obtain the expressions of system performance when decode-and-forward opportunistic cooperation is utilized under independent but not necessary identical Rayleigh fading channels, and take the impact of the direct link on system performance into consideration, and prove in theory that the system diversity order varies linearly with the relay selection criterion N. We also analyze the performance of decode-and-forward opportunistic cooperative protocol with normalized channel state, and prove its advantages in terms of both diversity order and fairness, which provides theoretical support when fairness of relay selection is needed in practical systems.
     2. Research on diversity performance of opportunistic cooperation under universal fading channel models
     The achievable diversity performance of decode-and-forward opportunistic cooperation under universal applicable Nakagami-m fading channel model is first analyzed, where both symmetric and asymmetric network topologies are taken into consideration. Then combined with the feature of wireless propagation environment in real systems, the performance of decode-and-forward opportunistic cooperation under mixed fading channel models,ⅰ.e., mixed Rayleigh and Rician fading channel models, and more general mixedκ-μandη-μfading channel models, are studied, and the impact of fading channel parameters on performance is analyzed. Theoretically we derive and obtain the expressions of end-to-end outage probability and diversity order of decode-and-forward opportunistic cooperation under Nakagami-m fading channels, where the availability of the direct link is considered and the Nth best relay selection scheme is implemented. The obtained expressions are simpler than existing ones, and they can be applied in more scenarios. Under mixed fading channel models, the expressions of end-to-end outage probability and diversity order of decode-and-forward opportunistic cooperation are derived for the first time, and the results can be utilized directly in network planning and optimization. Furthermore, the used universal fading models can describe the features of practical systems more accurately, which makes the results more appropriate be used in real networks.
     3. Research on diversity performance of opportunistic cooperation with imperfect CSI
     We first study the diversity performance of decode-and-forward opportunistic cooperative protocol when channel estimation errors exist at receivers, and evaluate the impact of channel estimation errors on diversity order. Then we extend the imperfect CSI to both transmitters and receivers,ⅰ.e., jointly considering the impact of channel estimation errors and feedback delay, and obtain the achievable diversity performance of the system under such conditions. Theoretically, we prove the impact of channel estimation errors and channel feedback delay on performance of decode-and-forward opportunistic cooperative protocol, and derive and obtain the expressions of end-to-end outage probability and the achievable diversity order. The related results can be utilized to calibrate the performance of decode-and-forward opportunistic cooperative protocol in practical systems when the capability of channel estimation and control channels should be taken into consideration.
     4. Research on diversity performance of opportunistic cooperation enhanced by MIMO techniques
     Firstly we study the performance improvement of decode-and-forward opportunistic cooperation when multiple antennas are implemented at source node, relay nodes, and destination node and enhanced with orthogonal space-time block code (OSTBC) transmission. Then based on the results we design a new incremental relaying transmission scheme, which can effectively improve the system performance by harvesting the diversity gain of OSTBC and opportunistic cooperation together with the spectral efficiency gain of direct transmission, and also we obtain the expressions of diversity performance in theory. Theoretically, we derive and obtain the relation among system outage probability, antenna configuration, relay deployment and network topology, and also obtain the closed-form expressions of system diversity order, which facilitates the implementation and application of decode-and-forward opportunistic cooperative protocol under multiple antenna scenarios. We propose a novel decode-and-forward opportunistic cooperative protocol by combining OSTBC and incremental relaying, and prove that this protocol not only obtains the full diversity order gain, but also improves the system transmission efficiency through making full use of resource dimension including multiple antennas and multiple relays, et al.
引文
[1]Rappaport T. S著,周文安、付秀花、王志辉等译,无线通信原理与应用(第二版),电子工业出版社,2007。
    [2]Goldsmith A著,杨鸿文、李卫东、郭文彬等译,无线通信,人民邮电出版社,2007。
    [3]MacDonal V. H., The cellular concept, the Bell Systems Technical Journal, vol.58, no.1, pp.15-43, Jan.1979.
    [4]彭木根、王文博等著,TD-SCDMA移动通信系统——增强和演进,机械 工业出版社,2008。
    [5](?)
    [6](?)
    [7]Fitzek F. H. P. and Katz M. D., Cooperation in Wireless Networks:Principles and Applications, Real Egoistic Behavior is to Cooperate, Springer,2006.
    [8]van der Meulen E. C., Transmission of information in a t-terminal discrete memoryless channel, PhD dissertation, Dept. of Statistics, University of California, Berkeley.
    [9]van der Meulen E. C., Three-terminal communication channels, Advanced Applied Probability, no.3, pp.120-154.
    [10]Cover T. M. and El Gamal A. A., Capacity theorems for the relay channel, IEEE Trans. on Inform. Theory, vol.25, no.5, pp.572-584, Sept.1979.
    [11]El Gamal A. A. and Aref M., The capacity of the semideterministic relay channel, IEEE Trans. on Inform. Theory, vol.28, no.3, pp.536-536, May 1982.
    [12]Aref M. R., Information flow in relay networks, PhD dissertation, Stanford University
    [13]El Gamal A. A., On information flow in relay networks, in Proc. Of IEEE National Telecommunications Conference,1981 (NTC 1981), New Orleans, USA, Nov.1981, pp. D4.1.1-D4.1.4.
    [14]Zhang Z., Partial converse for a relay channel, IEEE Trans. on Inform. Theory, vol.34, no.5, pp.1106-1110, Sept.1988.
    [15]Zeng C. M., Kuhlmann F., and Buzo A., Achievability proof of some multiuser channel coding theorems using backward decoding, IEEE Trans. on Inform. Theory, vol.35, no.6, pp.1160-1165, Nov.1989.
    [16]Thomas J. A., Feedback can at most double Gaussian multiple access channel capacity, IEEE Trans. on Inform. Theory, vol.33, no.5, pp.711-716, Sept. 1987.
    [17]Sendonaris A., Erkip E., and Aazhang B., User cooperation diversity, part Ⅰ, system description, IEEE Trans. on Commun., vol.51, no.11, pp.1927-1938, Nov.2003.
    [18]Sendonaris A., Erkip E., and Aazhang B., User cooperation diversity, part Ⅱ, implementation aspects and performance analysis, IEEE Trans. on Commun., vol.51, no.11, pp.1939-1948, Nov.2003.
    [19]Laneman J. N., Tse D. N. C., and Wornell G. W., "Cooperative diversity in wireless networks:Efficient protocols and outage behavior," IEEE Trans. on Inform. Theory, vol.50, no.12, pp.3062-3080, Dec.2004.
    [20]Laneman J. N. and Wornell G. W., "Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks," IEEE Trans. on Inform. Theory, vol.49, no.10, pp.2415-2425, Oct.2003.
    [21]Song L. and Hatzinakos D., Cooperative transmission in poisson distributed wireless sensor networks:protocol and outage probability, IEEE Trans. on Wireless Commun., vol.5, no.10, pp.2834-2843, Oct.2006.
    [22]Ding Z., Ratnarajah T., and Cowan C. F. N., Spectrally efficient cooperative diversity protocol for uplink avireless transmission, IET Signal Process., vol. 3, no.5, pp.368-380,2009.
    [23]Huang X., Zhai H., and Fang Y., Robust cooperative routing protocol in mobile wireless sensor networks, IEEE Trans. on Wireless Commun., vol.7, no.12, pp.5278-5285, Dec.2008.
    [24]Siriwongpairat W. P., Sadek A. K., and Liu K. J. R., Cooperative communications protocol for multiuser OFDM networks, IEEE Trans. on Wireless Commun., vol.7, no.7, pp.2430-2435, Jul.2008.
    [25]Ahmed S., Ding Z., and Ratnarajah T. et al., Cooperative transmission protocol with full diversity and iterative detection, IET Signal Process., vol. 2, no.4, pp.361-368,2008.
    [26]Zhou Q. F. and Lau F. C. M., Two incremental relaying protocols for cooperative networks, IET Commun., vol.2, no.10, pp.1272-1278,2008.
    [27]Zhang J., Zhang Q., and Jia W., VC-MAC:a cooperative MAC protocol in vehicular networks, IEEE Trans. on Vehicular Technology, vol.58, no.3, pp. 1561-1571, Mar.2009.
    [28]Sherif A. E., Kwasinski A., and Sadek A. K. et al., Content-aware multiple access protocol for cooperative packet speech communications, IEEE Trans. on Wireless Commun., vol.8, no.2, pp.995-1005, Feb.2009.
    [29]Ding Y., Zhang J. K., and Wong K. M., The amplify-and-forward half-duplex cooperative system:pairwise error probability and precoder design, IEEE Trans. on Signal Process., vol.55, no.2, pp.605-617, Feb.2007.
    [30]Bletsas A., Shin H., and Win M. Z., Outage analysis for co-operative communication with multiple amplify-and-forward relays, Electronics Letters, vol.43, no.6, pp.353-355, Mar.2007.
    [31]Conne C., Ju M., and Yi Z. et al., SER analysis and PDP derivation for multi-hop amplify-and-forward relay systems, IEEE Trans. on Commun., vol. 58, no.8, pp.2413-2424, Aug.2010.
    [32]Zhu Y., Kam P. Y., and Xin Y., Differential modulation for decode-and-forward multiple relay systems, IEEE Trans. on Commun., vol. 58, no.1, pp.189-199, Jan.2010.
    [33]Liu P. and Kim I. M., Average BER analysis for binary signallings in decode-and-forward dissimilar cooperative diversity networks, IEEE Trans. on Wireless Commun., vol.8, no.8, pp.3961-3968, Aug.2009.
    [34]Chatzigeorgiou I., Guo W., and Wassell I. J. et al., Exact and asymptotic outage probability analysis for decode-and-forward networks, IEEE Trans. on Commun., vol.59, no.2, pp.376-381, Feb.2011.
    [35]Janani M., Hedayat A., and Hunter T. E. et al., Coded cooperation in wireless communications:space-time transmission and iterative decoding, IEEE Trans. on Signal Process., vol.52, no.2, pp.362-371, Feb.2004.
    [36]Hunter T. E. and Nosratinia A., Diversity through coded cooperation, IEEE Trans. on Wireless Commun., vol.5, no.2, pp.283-289, Feb.2006.
    [37]Hunter T. E., Sanayei S., and Nosratinia A., Outage analysis of coded cooperation, IEEE Trans. on Inform. Theory, vol.52, no.2, pp.375-391, Feb. 2006.
    [38]Jing Y. and Jafarkhani H., Distributed differential space-time coding for wireless relay networks, IEEE Trans. on Commun., vol.56, no.7, pp. 1092-1110, Jul.2008.
    [39]Hasna M. O. and Alouini M. S., End-to-end performance of transmission systems with relays over Rayleigh-fading channels, IEEE Trans. on Wireless Commun., vol.2, no.6, pp.1126-1131, Nov.2003.
    [40]Anghel P. A. and Kaveh M., Exact symbol error probability of a cooperative network in a Rayleigh-fading environment, IEEE Trans. on Wireless Commun., vol.3, no.5, pp.1416-1421, Sept.2004.
    [41]Farhadi G. and Beaulieu N. C., On the ergodic capacity of wireless relaying systems over Rayleigh fading channels, vol.7, no.11, pp.4462-4467, Nov. 2008.
    [42]Suraweera H. A., Smith P. J., and Armstrong J., Outage probability of cooperative relay networks in Nakagami-m fading channels, IEEE Commun. Letters, vol.10, no.12, pp.834-836, Dec.2006.
    [43]Lee Y., Tsai M. H., and Sou S. I., Performance of decode-and-forward cooperative communications with multiple dual-hop relays over Nakagami-m fading channels, IEEE Trans. on Wireless Commun., vol.8, no.6, pp. 2853-2859, Jun.2009.
    [44]da Costa D. B. and Aissa S., Cooperative dual-hop relaying systems with beamforming over Nakagami-m fading channels, IEEE Trans. on Wireless Commun., vol.8, no.8, pp.3950-3954, Aug.2009.
    [45]Zhu Y., Xin Y., and Kam P. Y., Outage probability of Rician fading relay channels, IEEE Trans. on Vehicular Technology, vol.57, no.4, pp. 2648-2652, Jul.2008.
    [46]Ding H., Ge J., and Jiang Z., Asymptotic performance analysis of amplify-and-forward with partial relay selection in Rician fading, Electronics Letters, vol.46, no.3, pp., Feb.2010.
    [47]Zhao Q. and Li H., Performance of differential modulation with wireless relays in Rayleigh fading channels, IEEE Commun. Letters, vol.9, no.4, pp. 343-345, Apr.2005.
    [48]Zhao Q. and Li H., Performance of cooperative relay with binary modulation in Nakagami-m fading channels, IEEE Trans. on Vehicular Technology, vol. 57, no.5, pp.3310-3315, Sept.2008.
    [49]da Costa D. B. and Aissa S., End-to-end performance of dual-hop semi-blind relaying systems with partial relay selection, IEEE Trans. on Wireless Commun., vol.8, no.8, pp.4306-4315, Aug.2009.
    [50]Renzo M. D., Graziosi F., and Santucci F., A unified framework for performance analysis of CSI-assisted cooperative communications over fading channels, IEEE Trans. on Commun., vol.57, no.9, pp.2551-2557, Sept.2009.
    [51]Yi Z. and Kim I. M., Approximate BER expressions of distributed Alamouti's code in dissimilar cooperative networks with blind relay, IEEE Trans, on Commun., vol.57, no.12, pp.3571-3578, Dec.2009.
    [52]Morgado E., Jimenez I. M., and Vinagre J. J. et al., End-to-end average BER in multihop wireless networks over fading channels, IEEE Trans. on Wireless Commun., vol.9, no.8, pp.2478-2487, Aug.2010.
    [53]Ribeiro A., Cai X., and Giannakis G. B., Symbol error probabilities for general cooperative links, IEEE Trans. on Wireless Commun., vol.4, no.3, pp.1264-1273, May 2005.
    [54]Gong F., Ge J., and Zhang N., SER analysis of the mobile-relay based M2M communication over double Nakagami-m fading channels, IEEE Commun. Letters, vol.15, no.1, pp.34-36, Jan.2011.
    [55]Hst-Madsen A. and Zhang J., Ergodic capacity and power allocation in wireless relay channels, in Proc. of IEEE Global Telecommunications Conference,2004 (GLOBECOM 2004), Dallas, USA, Nov.2004, pp.26-30.
    [56]Farhadi G. and Beaulieu N. C., On the ergodic capacity of multi-hop wireless relaying systems, IEEE Trans. on Wireless Commun., vol.8, no.5, pp. 2286-2291, May 2009.
    [57]Chen S., Wang W., and Zhang X., Ergodic and outage capacity analysis of cooperative diversity systems under Rayleigh fading channels, in Proc. of IEEE International Conference on Communications Workshops,2009 (ICC 2009), Dresden, Germany, Jun.2009, pp.1-5.
    [58]Maric I. and Yates R. D., Cooperative multicast for maximum network lifetime, IEEE journal on Selected Areas in Commun., vol.23, no.1, pp. 127-135, Jan.2005.
    [59]Himsoon T., Siriwongpairat W. P., and Han Z. et al., Lifetime maximization via cooperative nodes and relay deployment in wireless networks, IEEE Journal on Selected Areas in Commun., vol.25, no.2, pp.306-317, Feb. 2007.
    [60]Lee I. H. and Kim D., Outage probability of multi-hop MIMO relaying with transmit antenna selection and ideal relay gain over Rayleigh fading channels, IEEE Trans. on Commun., vol.57, no.2, pp.357-360, Feb.2009.
    [61]Elfituri M., Ghrayeb A., and Hamouda W., Antenna/relay selection for coded cooperative networks with AF relaying, IEEE Trans. on Commun., vol.57, no.9, pp.2580-2584, Sept.2009.
    [62]Lee I. H. and Kim D., End-to-end BER analysis for dual-hop OSTBC transmission over Rayleigh fading channels, IEEE Trans. on Commun., vol. 56, no.3, pp.347-351, Mar.2008.
    [63]Chen S., Wang W., and Zhang X. et al., Performance analysis of OSTBC transmission in amplify-and-forward cooperative relay networks, IEEE Trans. on Vehicular Technology, vol.59, no.1, pp.105-113, Jan.2010.
    [64]Louie R. H. Y., Li Y., and Suraweera H. A. et al., Performance analysis of beamforming in two hop amplify and forward relay networks with antenna correlation, IEEE Trans. on Wireless Commun., vol.8, no.6, pp.3132-3141, Jun.2009.
    [65]Nguyen D. H. N., Nguyen H. H., and Pham T. T., Distributed Beamforming in Multiuser Multi-Relay Networks with Guaranteed QoS, in Proc. of IEEE Global Telecommunications Conference,2009 (GLOBECOM 2009), Honolulu, USA, Nov.2009, pp.1-6.
    [66]Zhang X. J. and Gong Y., Adaptive power allocation for regenerative relaying with multiple antennas at the destination, IEEE Trans. on Wireless Commun., vol.8, no.6, pp.2789-2794, Jun.2009.
    [67]Li Y., Yin Q., Wang J., and Wang H., Diversity exploitation in multi-source cooperations with multiple antennas at the destination, IEEE Commun. Letters, vol.14, no.12, pp.1152-1154, Dec.2010.
    [68]Gao F., Cui T., and Nallanathan A., On channel estimation and optimal training design for amplify and forward relay networks, IEEE Trans. on Wireless Commun., vol.7, no.5, pp.1907-1916, May 2008.
    [69]Wu Y. and Patzold M., Performance analysis of amplify-and-forward cooperative communication systems with channel estimation errors, in Proc. of the 11th IEEE Singapore International Conference on Communication Systems,2008 (ICCS 2008), Guangzhou, China, Nov.2008, pp.1620-1624.
    [70]Vicario J. L., Morell A., and Bel A. et al., Optimal power allocation in opportunistic relaying with outdated CSI, in Proc. of the 5th IEEE Sensor Array and Multichannel Signal Processing Workshop,2008 (SAM 2008), Darmstadt, Germany, Jul.2008, pp.49-53.
    [71]Vicario J. L., Bel A., and Morell A. et al., A robust relay selection strategy for cooperative systems with outdated CSI, in Proc. of IEEE 69th Vehicular Technology Conference,2009 (VTC Spring 2009), Barcelona, Spain, Apr. 2009, pp.1-5.
    [72]Vicario J. L., Bell A., and Salcedo J. A. L. et al., Opportunistic relay selection with outdated CSI:outage probability and diversity analysis, IEEE Trans. on Wireless Commun., vol.8, no.6, pp.2872-2876, Jun.2009.
    [73]Hasna M. O. and Alouini M. S., Optimal power allocation for relayed transmissions over Rayleigh-fading channels, IEEE Trans. on Wireless Commun., vol.3, no.6, pp.1999-2004, Nov.2004.
    [74]Cheng M., Gong X., and Cai L., Joint routing and link rate allocation under bandwidth and energy constraints in sensor networks, IEEE Trans. on Wireless Commun., vol.8, no.7, pp.3770-3779, Jul.2009.
    [75]Han Z., Himsoon T., and Siriwongpairat W. P. et al., Resource allocation for multiuser cooperative OFDM networks:who helps whom and how to cooperate, IEEE Trans. on Vehicular Technology, vol.58, no.5, pp. 2378-2391, Jun.2009.
    [76]Lin Y., Wang W., and Fan B. et al., Resource allocation for dual-hop OFDM systems with multiple decode-and-forward relays, IEEE Vehicular Technology Conference Fall 2009, pp.1-5.
    [77]Leinonen J., Hamalainen J., and Juntti M., Outage capacity analysis of downlink OFDMA resource allocation with multiple transmit antenna and limited feedback, in Proc. of IEEE Global Telecommunications Conference, 2008 (GLOBECOM 2008), New Orleans, USA, Nov.2008, pp.3746-3750.
    [78]Ng C. T. K. and Goldsmith A. J., the impact of CSI and power allocation on relay channel capacity and cooperation strategies, IEEE Trans. on Wireless Commun., vol.7, no.12, pp.5380-5389, Dec.2008.
    [79]Fareed M. M. and Uysal M., BER-optimized power allocation for fading relay channels, IEEE Trans. on Wireless Commun., vol.7, no.6, pp. 2350-2359, Jun.2008.
    [80]Luo J., Lin L., and Yates R. et al., Service outage based power and rate allocation, IEEE Trans. on Inform. Theory, vol.49, no.1, pp.323-330, Jan. 2003.
    [81]Luo J., Yate R., and Spasojevic P., Service outage based power and rate allocation for parallel fading channels, IEEE Trans. on Inform. Theory, vol. 51, no.7. pp.2594-2611, Jul.2005.
    [82]Zhou H., Fan P., and Yang H. C., Cross-layer scheduling for multiuser downlink transmissions with opportunistic relaying, in Proc. of 18th International Conference on Computer Communications and Networks,2009 (ICCCN 2009), San Francisco, USA, Aug.2009, pp.1-6.
    [83]Babaee R. and Beaulieu N. C., Cross-layer design for multihop wireless relaying networks, IEEE Trans. on Wireless Commun., vol.9, no.11, pp. 3522-3531, Nov.2010.
    [84]Bletsas A., Khisti A., and Reed D. et al., A simple cooperative diversity method based on network path selection, IEEE J. Sel. Areas Commun., vol. 24, no.3, pp.659-672, Mar.2006.
    [85]Beres E. and Adve R. S., On selection cooperation in distributed networks, in Proc. of IEEE Conference on Information Sciences and Systems,2006 (CISS 2006), Princeton, USA, Mar.2006, pp.1056-1061.
    [86]Beres E. and Adve R. S., Selection cooperation in multi-source cooperative networks, IEEE Trans. on Wireless Commun., vol.7, no.1, Jan.2008.
    [87]Beres E. and Adve R. S., Outage probability of selection cooperation in the low and medium SNR regime, IEEE Commun. Lett., vol.11, no.7, Jul.2007.
    [88]Bletsas A., Hyundong S., and Win M. Z., Cooperative communications with outage-optimal opportunistic relaying, IEEE Trans. on Wireless Commun., vol.6, no.9, pp.3450-3460, Sept.2007.
    [89]Bletsas A., Khisti A., and Win M. Z., Opportunistic cooperative diversity with feedback and cheap radios, IEEE Trans. on Wireless Commun., vol.7, no.5, pp.1823-1827, May 2008.
    [90]Bletsas A., Dimitriou A. G., and Sahalos J. N., Interference-limited opportunistic relaying with reactive sensing, IEEE Trans. on Wireless Commun., vol.9, no.1, pp.14-20, Jan.2010.
    [91]Ding Z., Gong Y., and Ratnarajah T. et al., On the performance of opportunistic cooperative wireless networks, IEEE Trans. on Commun., vol. 56, no.8, pp.1236-1240, Aug.2008.
    [92]Hwang K. S., Ko Y. C., and Alouini M. S., Performance analysis of incremental opportunistic relaying over identically and non-identically distributed cooperative paths, IEEE Trans. on Wireless Commun., vol.8, no. 4, pp.1953-1961, Apr.2009.
    [93]Zhou Q. F., Lau F. C. M., and Hau S. F., Asymptotic analysis of opportunistic relaying protocols, IEEE Trans. on Wireless Commun., vol.8, no.8, pp. 3915-3920, Aug.2009.
    [94]Chen J. S. and Wang J. X., Cooperative transmission in wireless networks using incremental opportunistic relaying strategy, IET Commun., vol.3, no. 12, pp.1948-1957, Dec.2009.
    [95]Zou Y., Zheng B., and Zhu J., Outage analysis of opportunistic cooperation over Rayleigh fading channels, IEEE Trans. on Wireless Commun., vol.8, no. 6, pp.3077-3085, Jun.2009.
    [96]Lee S., Han M., and Hong D., Average SNR and ergodic capacity analysis for opportunistic DF relaying with outage over Rayleigh fading channels, IEEE Trans, on Wireless Commun., vol.8, no.6, pp.2807-2812, Jun.2009.
    [97]Maham B. and Hjorungnes A., Performance analysis of amplify-and-forward opportunistic relaying in Rician Fading, IEEE Signal Process. Letters, vol. 16, no.8, pp.643-646, Aug.2009.
    [98]Duong T. Q., Bao V. N. Q., and Zepernick H. J., On the performance of selection decode-and-forward relay networks over Nakagami-m fading channels, IEEE Commun. Letters, vol.13, no.3, pp.172-174, Mar.2009.
    [99]Alexandropoulos G. C., Papadogiannis A., and Berberidis K., Performance analysis of cooperative networks with relay selection over Nakagami-m fading channels, IEEE Signal Process. Letters, vol.17, no.5, pp.441-444, May 2010.
    [100]Yang C, Wang W., and Zhao S. et al., Location optimization for decode-and-forward opportunistic cooperative networks, in Proc. of the 5th Annual ICST Wireless Internet Conference,2010 (WICON 2010), Singapore, Singapore, Mar.2010, pp.1-5.
    [101]Yang C., Wang W., and Zhao S. et al., Power and location optimization for decode-and-forward opportunistic cooperative networks, in Proc. of IEEE Global Telecommunications Conference,2009 (GLOBECOM 2009), Honolulu, USA, Dec.2009, pp.1-7.
    [102]Kadloor S. and Adve R., Optimal relay assignment and power allocation in selection based cooperative cellular networks, in Proc. of IEEE International Conference on Communications,2009 (ICC 2009), Dresden, Germany, Jun. 2009, pp.1-5.
    [103]Wang H., Yang S., and Lin J. et al., Single relay selection with feedback and power allocation in multisource multidestination cooperative networks, IEEE Signal Process. Letters, vol.17, no.12, pp.997-1000, Dec.2010.
    [1]da Costa D. B. and Aissa S., Capacity analysis of cooperative systems with relay selection in Nakagami-m fading, IEEE Commun. Letters, vol.13, no.9, pp.637-639, Sept.2009.
    [2]Ding H., Ge J., and Jiang Z., Asymptotic performance analysis of amplify-and-forward with partial relay selection in Rician fading, Electronics Letters, vol.46, no.3, pp.248-249, Feb.2010.
    [3]Krikidis I., Thompson J., and McLaughlin S. et al., Amplify-and-forward with partial relay selection, IEEE Commun. Letters, vol.12, no.4, pp.235-237, Apr. 2008.
    [4]Shah V., Mehta N. B., and Yim R., Analysis, insights and generalization of a fast decentralized relay selection mechanism, in Proc. of IEEE International Conference on Communications,2009 (ICC 2009), Dresden, Germany, Jun.2009, pp.1-6.
    [5]Tannious R. and Nosratinia A., Spectrally-efficient relay selection with limited feedback, IEEE Journal on Selected Areas in Commun., vol.26, no.8, pp. 1419-1428, Oct.2008.
    [6]Wei Y., Yu F. R., and Song M., Distributed optimal relay selection in wireless cooperative networks with finite state Markov channels, IEEE Trans. on Vehicular Technology, vol.59, no.5, pp.2149-2158, Jun.2010.
    [7]Wei Y., Song M., and Yu F. R. et al., Distributed optimal relay selection for QoS provisioning in wireless multi-hop cooperative network, in Proc. of IEEE Global Telecommunications Conference,2009 (GLOBECOM 2009), Honolulu, USA, Nov. 2009, pp.1-6.
    [8]Wei Y., Yu F. R., and Song M. et al., Energy efficient distributed relay selection in wireless cooperative networks with finite state Markov channels, in Proc. of IEEE Global Telecommunications Conference,2009 (GLOBECOM 2009), Honolulu, USA, Nov.2009, pp.1-6.
    [9]Fareed M. M. and Uysal M., On relay selection for decode-and-forward relaying, IEEE Trans. on Wireless Commun., vol.8, no.7, pp.3341-3346, Jul.2009.
    [10]Beres E. and Adve R. S., On Selection Cooperation in Distributed Networks, in Proc. of IEEE Conference on Information Sciences and Systems,2006 (CISS 2006), Princeton, USA, Mar.2006, pp.1056-1061.
    [11]Bletsas A., Shin H., and Win M. Z., Cooperative Communications with Outage-Optimal Opportunistic Relaying, IEEE Trans. on Wireless Commun., vol.6, no.9, pp.3450-3460, Sep.2007.
    [12]Duong T. Q., Vo N. Q. B., and Zepernick H. J., On the performance of selection decode-and-forward relay networks over Nakagami-m fading channels, IEEE Commun. Lett., vol.13, no.3, pp.172-174, Mar.2009.
    [13]Michalopoulos D. S. and Karagiannidis G. K., Performance analysis of single relay selection in rayleigh fading, IEEE Trans. on Wireless Commun., vol.7, no.10, pp. 3718-3724, Oct.2008.
    [14]Jing Y. and Jafarkhani H., Single and multiple relay selection schemes and their achievable diversity orders, IEEE Trans. on Wireless Commun., vol.8, no.3, pp. 1414-1423, Mar.2009.
    [15]Ding Z., Gong Y., and Ratnarajah T. et al., On the performance of opportunistic cooperative wireless networks, IEEE Trans. on Commun., vol.56, no.8, pp. 1236-1240, Aug.2008.
    [16]Xu F., Lau F. C. M., and Zhou Q. F. et al., Outage performance of cooperative communication systems using opportunistic relaying and selection combining receiver, IEEE Signal Processing Letters, vol.16, no.4, pp.237-240, Apr.2009.
    [17]Ikki S. S. and Ahmed M. H., Performance analysis of adaptive decode-and-forward cooperative diversity networks with best-relay selection, IEEE Trans. on Commun., vol.58, no.1, pp.68-72, Jan.2010.
    [18]Seyfi M., Muhaidat S., and Liang J. et al., Relay selection in dual-hop vehicular networks, IEEE Signal Processing Letters, vol.18, no.2, pp.134-137, Feb.2011.
    [19]Ikki S. S. and Ahmed M. H., On the performance of amplify-and-forward cooperative diversity with the Nth best-relay selection scheme, in Proc. of IEEE International Conference on Communications,2009 (ICC 2009), Dresden, Germany, Jun.2009, pp.1-6.
    [20]Ikki S. S. and Ahmed M. H., On the performance of cooperative-diversity networks with the Nth best-relay selection scheme, IEEE Trans. on Commun., vol.58, no.11, pp.3062-3069, Nov.2010.
    [21]Yang C., Wang W., and Zhao S. et al., Lifetime maximization of cooperative networks with mean channel gain information, Journal of China Universities of Posts and Telecommunications, vol.16, no.4, pp.98-103, Aug.2009.
    [22]Yang C., Wang W., and Yuan G. et al., A power allocation method with maximum effective configuration duration in wireless sensor networks, in Proc. of the 5th International Conference on Broadband Communications, Networks and Systems, 2008 (BROADNETS 2008), London, UK, Sept.2008, pp.46-51.
    [23]D. S. Michalopoulos, G. K. Karagiannidis, and T. A. Tsiftsis, Introducing PHY-layer fairness in amplify and forward cooperative diversity systems, in Proc. of IEEE International Conference on Communications,2007 (ICC 2007), Glasgow, UK, Jun.2007, pp.4040-4045.
    [24]L. Dai, W. Chen, L. J. Cimini, and K. B. Letaief, Fairness improves throughput in energy-constrained cooperative ad-hoc networks, IEEE Trans. on Wireless Commun., vol.8, no.7, pp.3679-3691, Jul.2009.
    [25]E. Liu, Q. Zhang, and K. K. Leung, Theoretical analysis of selective relaying, cooperative multi-hop networks with fairness constraints, in Proc. of IEEE International Conference on Communications,2009 (ICC 2009), Dresden, Germany, Jun.2009, pp.1-5.
    [26]Vicario J. L., Bel A., and Morell A. et al., Outage probability versus fairness trade-off in opportunistic relay selection with outdated CSI, EURASIP Journal on Wireless Commun. and Networking, vol.2009,2009.
    [27]Bletsas A., Khisti A., and Reed D. et al., A simple cooperative diversity method based on network path selection, IEEE J. Sel. Areas Commun., vol.24, no.3, pp. 659-672, Mar.2006.
    [28]Wengerter C., Ohlhorst J., and Elbwart A. G. E. V., Fairness and throughput analysis for generalized proportional fair frequency scheduling in OFDMA, in Proc. of 2005 IEEE 61st Vehicular Technology Conference (VTC 2005-Spring), vol.61, no.3, Stockholm, Sweden, May 2005, pp.1903-1907.
    [29]Gradshteyn I. S. and Ryzhik I. M., Table of Integrals, Series, and Products,7th ed. Academic Press,2007.
    [1]Goldsmith A著,杨鸿文、李卫东、郭文彬等译,无线通信,人民邮电出版社,2007。
    [2]Rappaport T. S著,周文安、付秀花、王志辉等译,无线通信原理与应用(第二版),电子工业出版社,2007。
    [3]Simon M. K. and Alouini M. S., Digital Communication over Fading Channels, Second Edition, John Wiley&Sons,2005.
    [4]Bletsas A., Shin H., and Win M. Z., Cooperative communications with outage-optimal opportunistic relaying, IEEE Trans. on Wireless Commun., vol.6, no.9, pp.3450-3460, Sept.2007.
    [5]Hwang K. S., Ko Y. C., and Alouini M. S., Outage probability of cooperative diversity systems with opportunistic relaying based on decode-and-forward, IEEE Trans. on Wireless Commun., vol.7, no.12, pp.5100-5107, Dec.2008.
    [6]Lee S., Han M., and Hong D., Average SNR and ergodic capacity analysis for opportunistic DF relaying with outage over Rayleigh fading channels, IEEE Trans. on Wireless Commun., vol.8, no.6, pp.2807-2812, Jun.2009.
    [7]Ikki S. S. and Ahmed M. H., Performance analysis of adaptive decode-and-forward cooperative diversity networks with best-relay selection, IEEE Trans. on Commun. vol.58, no.1, pp.68-72, Jan.2010.
    [8]Duong T. Q. and Bao V. N. Q., Performance analysis of selection decode-and-forward relay networks, Electronics Letters, vol.44, no.20, pp. 1206-1207, Sept.2008.
    [9]Adinoyi A., Fan Y., and Yanikomeroglu H. et al., Performance of selection relaying and cooperative diversity, IEEE Trans. on Wireless Commun., vol.8, no.12, pp.5790-5795, Dec.2009.
    [10]Michalopoulos D. S. and Karagiannidis G. K., Performance analysis of single relay selection in Rayleigh fading, IEEE Trans. on Wireless Commun., vol.7, no.10, pp.3718-3724, Oct.2008.
    [11]Lee Y., Tsai M. H., and Sou S. I., Performance of decode-and-forward cooperative communications with multiple dual-hop relays over Nakagami-m fading channels, IEEE Trans. on Wireless Commun., vol.8, no.6, pp. 2853-2859, Jun.2009.
    [12]Maham B. and Hjorungnes A., Asymptotic performance analysis of amplify-and-forward cooperative networks in a Nakagami-m fading environment, IEEE Commun. Lett., vol.13, no.5, pp.300-302, May.2009.
    [13]Datsikas C. K., Sagias N. C., and Lazarakis F. I. et al., Outage analysis of decode-and-forward relaying over Nakagami-m fading channels, IEEE Signal Processing Lett., vol.15,, pp.41-44, Mar.2009.
    [14]Liu F., Zhang X., and Chen Z. et al., Performance measure analysis of amplify-and-forward relaying over non-identical Nakagami-m fading channel, in Proc. of IEEE International Conference on Communications,2009 (ICC 2009), Dresden, Germany, Jun.2009, pp.1-6.
    [15]Suraweera H. A. and Karagiannidis G. K., Closed-form error analysis of the non-identical Nakagami-m relay fading channel, IEEE Commun. Lett., vol. 12, no.4, pp.259-261, Apr.2008.
    [16]Duong T. Q., Vo N. Q. B., and Zepernick H. J., On the performance of selection decode-and-forward relay networks over Nakagami-m fading channels, IEEE Commun. Lett., vol.13, no.3, pp.172-174, Mar.2009.
    [17]Yang Q., Kwak K. S., and Fu F., Outage performance of opportunistic amplify-and-forward relay under Nakagami fading, in Proc. of International Symposium on Communications and Information Technologies, 2008 (ISCIT 2008), Oct.2008, pp.1-4.
    [18]Alexandropoulos G. C., Papadogiannis A., and Berberidis K., Performance analysis of cooperative networks with relay selection over Nakagami-m fading channels, IEEE Signal Processing Letters, vol.17, no.5, pp.441-444, May 2010.
    [19]Suraweera H. A., Louie R. H. Y., and Li Y. et al., Two hop amplify-and-forward transmission in mixed Rayleigh and Rician fading channels, IEEE Commun. Lett., vol.13, no.4, pp.227-229, Apr.2009.
    [20]Yacoub M. D., The κ-μ distribution and the η-μ distribution, IEEE Antennas and Propag. Mag., vol.49, no.1, pp.68-81, Feb.2007.
    [21]Jimenez D. M. and Paris J. F., Outage probability analysis for η-μ fading channels, IEEE Commun. Lett., vol.14, no.6, pp.521-523, Jun.2010.
    [22]Karagiannidis G. K., Sagias N. C., and Tsiftsis T. A., Closed-form statistics for the sum of squared Nakagami-m variates and its applications, IEEE Trans. on Commun., vol.54, no.8, pp.1353-1359, Aug.2006.
    [23]Gradshteyn I. S. and Ryzhik I. M., Table of Integrals, Series and Products. San Diego:CA, Academic Press,2007.
    [30]Vicario J. L., Bel A., and Salcedo J. A. L. et al., Opportunistic relay selection with outdated CSI:Outage probability and diversity analysis, IEEE Trans. on Wireless Commun., vol 8, no.6, pp.2872-2876, Jun.2009.
    [1]Goldsmith A著,杨鸿文、李卫东、郭文彬等译,无线通信,人民邮电出版社,2007。
    [2]Guizani M., Wireless Communications Systems and Networks, Plenum Press New York, NY, USA,2004.
    [3]Simon M. K., Alouini M. S., Digital Communication over Fading Channels, Second Edition, John Wiley & Sons,2005.
    [4]Rey F., Lamarca M., and Vazquez G., Robust power allocation algorithms for MIMO OFDM systems with imperfect CSI, IEEE Trans. on Signal Processing, vol.53, no.3, pp.1070-1085, Mar.2005.
    [5]Samad A. A., Davidson T. N., and Gershman A. B., Robust transmit eigen beamforming based on imperfect channel state information, IEEE Trans. on Signal Processing, vol.54, no.5, pp.1596-1609, May 2006.
    [6]Wang C. and Murch R. D., Adaptive downlink multi-user MIMO wireless systems for correlated channels with imperfect CSI, IEEE Trans. on Wireless Commun., vol.5, no.9, pp.2435-2446, Sept.2006.
    [7]Wang R. and Lau V. K. N., Cross layer design of downlink multi-antenna OFDMA systems with imperfect CSIT for slow fading channels, IEEE Trans. on Wireless Commun., vol.6, no.7, pp.2417-2421, Jul.2007.
    [8]Huang M., Zhou S., and Wang J., Analysis of Tomlinson-Harashima precoding in multiuser MIMO systems with imperfect channel state information, IEEE Trans. on Vehicular Technology, vol.57, no.5, pp. 2856-2867, Sept.2008.
    [9]Zhou X., Sadeghi P., and Lamahewa T. A. et al., Optimizing antenna configuration for MIMO systems with imperfect channel estimation, IEEE Trans. on Wireless Commun., vol.8, no.3, pp.1177-1121, Mar.2009.
    [10]Kim H. T., Lim S. H., and Lee I. et al., Code design for MIMO downlink with imperfect CSIT, IEEE Trans. on Commun., vol.58, no.1, pp.89-94, Jan. 2010.
    [11]Rey F., Lamarca M., and Vazquez G., Linear precoder design through cut-off rate maximization in MIMO-OFDM coded systems with imperfect CSIT, IEEE Trans. on Signal Processing, vol.58, no.3, pp.1741-1755, Mar.2010.
    [12]Holma H. and Toskala A., WCDMA for UMTS-HSPA Evolution and LTE (Fourth Edition), John Wiley & Sons Ltd,2007.
    [13]Lescuyer P. and Lucidarme T., Evolved Packet System (EPS), The LTE and SAE Evolution of 3G UMTS, John Wiley & Sons Ltd,2008.
    [14]Sesia S., Toufik I., and Baker M., LTE-The UMTS Long Term Evolution, From Theory to Practice, John Wiley & Sons Ltd,2009.
    [15]Holma H. and Toskala A., LTE for UMTS-OFDMA and SC-FDMA Based Radio Access, John Wiley & Sons Ltd,2009.
    [16]Khan F., LTE for 4G Mobile Broadband, Air Interface Technologies and Performance, Cambridge University Press,2009.
    [17]3GPP TS 36.211 V9.3.0, E-UTRA Physical Channels and Modulation (Release 9), available from http://www.3gpp.org/ftp/Specs/html-info/3621 1.htm.
    [18]3GPP TS 36.212 V9.3.0, E-UTRA Multiplexing and Channel Coding (R elease 9), available from http://www.3gpp.org/ftp/Specs/html-info/36212. htm.
    [19]3GPP TS 36.213 V9.3.0, E-UTRA Physical Layer Procedures (Release 9), available from http://www.3gpp.org/ftp/Specs/html-info/36213.htm.
    [20]Li J., Petropulu A. P., and Poor H. V., Cooperative transmission for relay networks based on second-order statistics of channel state information, IEEE Trans. on Signal Processing, vol.59, no.3, pp.1280-1291, Mar.2011.
    [21]Pham T. T., Nguyen H. H., and Tuan H. D., Power allocation in orthogonal wireless relay networks with partial channel state information, IEEE Trans. on Signal Processing, vol.58, no.2, pp.869-878, Feb.2010.
    [22]Shi J., Yu G., and Zhang Z. et al., Partial channel state information based cooperative relaying and partner selection, in Proc. of IEEE Wireless Communications and Networking Conference,2007 (WCNC 2007), Kowloon, China, Mar.2007, pp.976-980.
    [23]Wu Y. and Patzold M., Performance analysis of amplify-and-forward cooperative communication systems with channel estimation errors, in Proc. of the 11st IEEE Singapore International Conference on Communication Systems,2008 (ICCS 2008), Guangzhou, China, Nov.2008, pp.1620-1624.
    [24]Tabataba F. S., Sadeghi P., and Lamahewa T. et al., Statistical properties of amplify and forward relay links with channel estimation errors, in Proc. of the 2009 Australian Communications Theory Workshop (AusCTW 2009), Sydney, Australia, Feb.2009, pp.44-49.
    [25]Tabataba F. S., Sadeghi P., and Pakravan M. R., Outage probability and power allocation of amplify and forward relaying with channel estimation error, IEEE Trans. on Wireless Commun., vol.10, no.1, pp.124-134, Jan. 2011.
    [26]Gao F., Cui T., and Nallanathan A., On channel estimation and optimal training design for amplify and forward relay networks, IEEE Trans. on Wireless Commun., vol.7, no.5, pp.1907-1916, May 2008.
    [27]Vicario J. L., Morell A., and Bel A. et al., Optimal power allocation in opportunistic relaying with outdated CSI, in Proc. of the 5th IEEE Sensor Array and Multichannel Signal Processing Workshop,2008 (SAM 2008), Darmstadt, Germany, Jul.2008, pp.49-53.
    [28]Vicario J. L., Bel A., and Morell A. et al., A robust relay selection strategy for cooperative systems with outdated CSI, in Proc. of IEEE 69th Vehicular Technology Conference,2009 (VTC Spring 2009), Barcelona, Spain, Apr. 2009, pp.1-5.
    [29]Vicario J. L., Bell A., and Salcedo J. A. L. et al., Opportunistic relay selection with outdated CSI:outage probability and diversity analysis, IEEE Trans. on Wireless Commun., vol.8, no.6, pp.2872-2876, Jun.2009.
    [30]Ibrahim A. S. and Liu K. J. R., Mitigating channel estimation error via cooperative communications, in Proc. of IEEE International Conference on Communications,2009 (ICC 2009), Dresden, Germany, Jun.2009, pp.1-5.
    [31]Proakis J. G., Digital Communications, McGraw-Hill Inc.,4th ed.,2000.
    [32]Bletsas A., Shin H., and Win M. Z., Cooperative communications with outage-optimal opportunistic relaying, IEEE Trans. on Wireless Commun., vol.6, no.9, pp.3450-3460, Sep.2007.
    [33]Gradshteyn I. S., Ryzhik I. M., and A. J. (Ed), Tables of Integrals, Series and Products. Academic Press,1984.
    [34]Chen Y. X. and Tellambura C., Performance analysis of maximum ratio transmission with imperfect channel estimation, IEEE Commun. Lett., vol.9, no.4, pp.322-324, Apr.2005.
    [35]Onggosanusi E. N., Gatherer A., and Dabak A. G. et al., Performance analysis of closed-loop transmit diversity in the presence of feedback delay, IEEE Trans. on Commun., vol.49, no.9, pp.1618-1630, Sep.2001.
    [36]Vicario J. L. and Haro C. A., Analytical assessment of multi-user vs. spatial diversity trade-offs with delayed channel state information, IEEE Commun. Lett., vol.10, no.8, pp.588-590, Aug.2006.
    [37]Laneman J. N., Tse D. N. C., and Wornell G. W., "Cooperative diversity in wireless networks:Efficient protocols and outage behavior," IEEE Trans. on Inform. Theory, vol.50, no.12, pp.3062-3080, Dec.2004.
    [1]Paulraj A., Nabar R., and Gore D著,刘威鑫译,空时无线通信导论,清华大学出版社,2007年12月。
    [2]Telatar I., Capacity of multi-antenna Gaussian channels, Bell Labs Technical Memorandum, Jun.1995.
    [3]Foschini G., Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas, Bell Labs Tech. J. 41-59,1996.
    [4]3GPP TR 25.913 V9.0.0, Requirements for E-UTRA and E-UTRAN (Release 9), available from http://www.3gpp.org/ftp/Specs/html-info/25913.htm.
    [5]3GPP TR 36.913 V9.0.0, Requirements for further advancements for E-UTRA (LTE-Advanced) (Release 9), available from http://www.3gpp.org /ftp/Specs/html-info/36913.htm.
    [6]Nassab V. H., Shahbazpanahi S., and Grami A. et al., Distributed beamforming for relay networks based on second-order statistics of the channel state information, IEEE Trans. on Signal Processing, vol.56, no.9, pp.4306-4316, Sept.2008.
    [7]Khoshnevis B., Yu W., and Adve R., Grassmannian beamforming for MIMO amplify-and-forward relaying, IEEE Journal on Selected Areas in Commun., vol.26, no.8, pp.1397-1407, Oct.2008.
    [8]Koyuncu E., Jing Y., and Jafarkhani H., Distributed beamforming in wireless relay networks with quantized feedback, IEEE Journal on Selected Areas in Commun., vol.26, no.8, pp.1429-1439, Oct.2008.
    [9]da Costa D. B. and Aissa S., Cooperative dual-hop relaying systems with beamforming over Nakagami-m fading channels, IEEE Trans. on Wireless Commun., vol.8, no.8, pp.3950-3954, Aug.2009.
    [10]da Costa D. B. and Aissa S., Beamforming in dual-hop fixed gain relaying systems, in Proc. of IEEE International Conference on Communications, 2009 (ICC 2009), Dresden, Germany, Jun.2009, pp.1-5.
    [11]Liang Y. and Scholber R., Cooperative amplify-and-forward beamforming for OFDM systems with multiple relays, in Proc. of IEEE International Conference on Communications,2009 (ICC 2009), Dresden, Germany, Jun. 2009, pp.1-6.
    [12]Zhang B., He Z., and Niu K. et al., Robust linear beamforming for MIMO relay broadcast channel with limited feedback, IEEE Signal Processing Letters, vol.17, no.2, pp.209-212, Feb.2010.
    [13]Zheng L. and Zhang X., Cooperative beamforming with mobile wireless sensor nodes:performance analysis and optimal node locations, IEEE Trans. on Commun., vol.58, no.12, pp.3375-3380, Dec.2010.
    [14]Nagpal V., Pawar S., and Tse D. et al., Cooperative multiplexing in the multiple antenna half duplex relay channel, in Proc. of IEEE International Symposium on Information Theory,2009 (ISIT 2009), Seoul, Korea, Jun. 2009, pp.1438-1442.
    [15]Levorato M., Tomasin S., and Zorzi M., Cooperative spatial multiplexing for ad hoc networks with hybrid ARQ:system design and performance analysis, IEEE Trans. on Commun., vol.56, no.9, pp.1545-1555, Sept.2008.
    [16]Fan Y., Wang C., and Poor H. V. et al., Cooperative multiplexing:toward higher spectral efficiency in multiple-antenna relay networks, IEEE Trans. on Information Theory, vol.55, no.9, pp.3909-3926, Sept.2009.
    [17]Yang T., Yuan J., and Zhang W., Recovering cooperative multiplexing gain in wireless relay networks, IEEE Trans. on Commun., vol.58, no.12, pp. 3538-3549, Dec.2010.
    [18]Darmawan A., Kim S. W., and Morikawa H., Amplify-and-forward scheme in cooperative spatial multiplexing, in Proc. of the 16st 1ST Mobile and Wireless Communications Summit,2007, Budapest, Hungary, Jul.2007, pp. 1-5.
    [19]Fan Y., Poor H. V., and Thompson J. S., Cooperative multiplexing in full-duplex multi-antenna relay networks, in Proc. of IEEE Global Telecommunications Conference,2008 (GLOBECOM 2008), New Orleans, USA, Nov.2008, pp.4001-4005.
    [20]Kim S. W., Cooperative spatial multiplexing in mobile ad hoc networks, in Proc. of 2nd IEEE International Conference on Mobile Ad-hoc and Sensor Systems,2005 (MASS 2005), Washington, USA, Nov.2005, pp.380-387.
    [21]Zhang Y., Wang G., and Amin M. G., Cooperative spatial multiplexing in multi-hop wireless networks, in Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing,2006 (ICASSP 2006), Toulouse, France, May 2006, pp.821-824.
    [22]Fan Y. and Thompson J. S., On the performance of MIMO spatial multiplexing relay channels, in Proc. of IEEE International Conference on Communications,2007 (ICC 2007), Glasgow, UK, Jun.2007, pp.2773-2778.
    [23]Lee I. and Kim D., Coverage extension and power allocation in dual-hop space-time transmission with multiple antennas in each node, IEEE Trans. on Vehicular Technology, vol.56, no.6, pp.3524-3532, Nov.2007.
    [24]Savazzi S. and Spagnolini U., Cooperative space-time coded transmissions in Nakagami-m fading channels, in Proc. of IEEE Global Telecommunications Conference,2007 (GLOBECOM 2007), Washington, USA, Nov.2007, pp. 4334-4338.
    [25]Lee I. and Kim D., End-to-end BER analysis for dual-hop OSTBC transmissions over Rayleigh fading channels, IEEE Trans. on Commun., vol. 56, no.3, pp.347-351, Mar.2008.
    [26]Chalise B. K. and Vandendorpe L., Outage probability analysis of a MIMO relay channel with orthogonal space-time block codes, IEEE Commun. Lett. vol.12, no.4, pp.280-282, Apr.2008.
    [27]Chen S., Wang W., and Zhang X., Performance analysis of OSTBC transmission in amplify-and-forward cooperative relay networks, IEEE Trans. on Vehicular Technology, vol.59, no.1, pp.105-113, Jan.2010.
    [28]Laneman J. N., Tse D. N. C., and Wornell G. W., Cooperative diversity in wireless networks:Efficient protocols and outage behavior, IEEE Trans. on Inform. Theory, vol.50, no.12, pp.3062-3080, Dec.2004.
    [29]Ikki S. S. and Ahmed M. H., Performance analysis of incremental relaying cooperative diversity networks over Rayleigh fading channels, in Proc. of IEEE Wireless Communications and Networking Conference,2008 (WCNC 2008), Las Vegas, USA, Mar.2008, pp.1311-1315.
    [30]Hwang K. S., Ko Y. C., and Alouini M. S., Performance analysis of opportunistic incremental relaying with adaptive modulation over cooperative networks, in Proc. of 3rd International Symposium on Wireless Pervasive Computing,2008 (ISWPC 2008), Santorini, Greece, May.2008, pp. 586-590.
    [31]Hwang K. S., Ko Y. C., and Alouini M. S., Performance analysis of incremental opportunistic relaying over identically and non-identically distributed cooperative paths, IEEE Trans. on Wireless Commun., vol.8, no. 4, pp.1953-1961, Apr.2009.
    [32]Ikki S. S. and Ahmed M. H., Performance analysis of decode-and-forward incremental relaying cooperative-diversity networks over Rayleigh fading channels, in Proc. of IEEE 69th Vehicular Technology Conference,2009 (VTC Spring 2009), Barcelona, Spain, Apr.2009, pp.1-6.
    [33]Bao V. N. Q. and Kong H. Y., Performance analysis of incremental selection decode-and-forward relaying over Rayleigh fading channels, in Proc. of IEEE International Conference on Communications Workshops,2009 (ICC 2009), Dresden, Germany, Jun.2009, pp.1-5.
    [34]Chen J. S. and Wang J. X., Cooperative transmission in wireless networks using incremental opportunistic relaying strategy, IET Commun., vol.3, no. 12, pp.1948-1957, Dec.2009.
    [35]Gradshteyn I. S. and Ryzhik I. M., Table of Integrals, Series and Products. San Diego:CA, Academic Press,2007.
    [36]Bletsas A., Khisti A., and Reed D. et al., A simple cooperative diversity method based on network path selection, IEEE J. Sel. Areas Commun., vol. 24, no.3, pp.659-672, Mar.2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700