中缅树鼩冷适应的基因学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哺乳动物在低温环境下的适应性产热及其调节机理研究是当前生理生态学研究领域中的热点问题之一,其机理已深入到分子水平上。与动物冷适应密切相关的解偶联蛋白(Uncoupling Protein,UCP)与动物对的能量的分配与利用,以及与人类肥胖症和非胰岛素依赖性糖尿病具有密切的关系。本论文以分布于我国南方的典型热带、亚热带小型哺乳动物,中缅树鼩(Tupaia belangeri)为研究对象,对其冷适应机制的进行了基因学初步研究,以深入探讨其冷适应产热机制,从而帮助解释动物的生存适应机制和进化对策,并为人类肥胖症和非胰岛素依赖性糖尿病的治疗提供一定的实验依据。
     本论文的主要内容有四个部分:1.冷驯化条件下不同肾上腺能受体激动剂对中缅树鼩产热能力的影响;2.冷驯化对中缅树鼩线粒体呼吸的影响;3.冷驯化对中缅树鼩肝脏和BAT RNA含量的影响;4.中缅树鼩UCP1,UCP2的RT-PCR及UCP1基因测序。
     具体的研究结果和结论如下:
     1.与对照组(未冷驯化)相比较,冷驯化后中缅树鼩的RMR有所提高,β_3-NST(注射β_3-肾上腺素激动剂BEL37344)和NST(注射NE)均极显著增加。无论是未驯化还是冷驯化动物,在注射NE和BRL37344后其耗氧量均有极显著的增加。未冷驯化中缅树鼩的NST高于β_3-NST,但并不显著,冷驯化后,中缅树鼩NST与β3-NST相比较具有差异极显著。表明冷驯化可使中缅树鼩的产热能力显著增强,中缅树鼩采用的是通过增加RMR和NST来适应寒冷的对策,其BAT中可能存在有β_3-AR,并且β_3-AR并不是BAT中唯一的肾上腺能受体;NE可能通过多种肾上腺能途径来增加产热。NST主要是由BAT,肝脏和骨骼肌线粒体内膜上的UCPs所产生的,其中BAT所占的成分较大。肾上腺能受体通路在中缅树鼩适应性产热中起到了重要作用,肝脏线粒体质子泄露对决定静止代谢率的大小具有重要影响。
     2.急性冷暴露导致中缅树鼩肝脏线粒体状态Ⅲ和状态Ⅳ呼吸显著增强。但与持续冷暴露的情况不同,短期急性冷暴露条件下中缅树鼩RCR和P/O与对照组相比较却显著增加。短期急性冷暴露条件下中缅树鼩肝脏线粒体状态Ⅳ呼吸的显著增加。这些结果表明中缅树鼩肝脏对冷适应产热的增加起着重要的作用,冷暴露情况下中缅树鼩肝脏线粒体中有明显的质子漏情况出现,UCP2
    
    确实与质子漏有密切关系。短期急性冷暴露条件下中缅树阈RCR和P/O的显
    著增加,这是否是由于短期急性冷暴露条件下动物体内的各种生理变化较为激
    烈,反映在线粒体水平上各项指标变动较大,呈现出不稳定,甚至是与持续冷
    暴露情况下相反的实验结果,还是因为在短期急性冷暴露导致动物体内出现的
    一系列生理变化需要大量ATP,从而出现氧化磷酸化作用的迅速加强,导致了
    RCR的迅速提高,尚不得而知,需要更多的实验证据证明。
     3.中缅树嗣在冷驯化过程中体重显著增加,肝脏和BAT重量均呈先下降
    后上升的趋势,肝脏和BAT总RNA含量的变化趋势均呈逐渐上升的趋势,其
    中肝脏总NA含量开始增加的时间要比BAT总RNA提前,但BAT总KNA
    的总体增加幅度较肝脏的大。持续冷驯化条件下,中缅树酮肝脏和 BAT总 RNA
    含量均能维持在较高的水平,但出现缓慢下降的趋势。这些结果表明冷驯化能
    够诱导中缅树跑肝脏、BAT细胞增加和UCP基因表达活性显著增强,肝脏对
    急性冷暴露的反应要比BAT快,但BAT的产热能力强于肝脏。动物体内具有
    使 UCP mRNA在受冷刺激时爆发性上调,细胞中 UCP浓度迅速提高,一段时
    间后 UCP InRNA 或UCP 处于适当的生理需求水平的双重调节机制
    (Rehnlnark,1992)。
     4.以大鼠 UC*和 UCPZ基因为参照设计引物,采用中缅树酮 BAT总 RNA
    进行 UCP的 RT-PCR,肝脏总 RNA进行 UCPZ的 RT-PCR,均得到单一清晰
    的特异扩增带。分子量大小与理论预期①Cpl:483hp;UCpZ:1015hp)相符。
    我们克隆获得的中缅树酮UCP基因CDNA通过测序得到了450hp的序列,包
    含有五个完整的开放阅读框,主要涵盖了 UCP基因的外显子 2和 3的全部,以
    及外显子4的一部分。RT-PCR的成功首次证明了中缅树阈BAT中有UCPI存
    在,肝脏中有UCPZ存在,表明UCPS家族的保守序列在不同的物种中的序列
    相似度较高,同时也暗示着中缅树跑与大鼠在进化关系上可能比较接近。我们
    得到的中缅树酮 UCP基因 cDNA序列与其它一些动物的 UCPs基因序列相比
    较,具有较高的同源性,具有 UCPS基因所共有的 DNA序列和 UCP所特有的
    一些氨基酸残基,据此可判断该基因确实属于UCPS基因家族。
     以上实验结果表明,低温是诱导中缅树酮的产热能力显著增强的环境因
    子,肝脏和 BAT是小型哺乳动物体内重要的产热器官。在冷暴露条件下,中缅
    树嗣从个体水平、细胞水平到分子水平都产生了一系列与冷适应产热有关的变
    化。这些变化都与位于线粒体内膜上的一种特殊产热蛋白——解偶联蛋白有密
    切的关系。
The studies of the adaptive thermogenic capacity and mechanisms of small mammals in cold were one of the hottest issues in ecophysiology, and had gone deeply the molecular level. The uncoupling protein (UCP) played an important role in the adaptive thermogenesis of animals. And it also tightly associated with energy allocating and utilizing and human's adiposity and NIDDM.
    Tree shrew (Tupaia belangeri), which was the representative tropic and sub-tropic small mammal distributed in the south of China, had studied on cold adaptive characters of genie level in cold stress as the experimental animal in our research. This study would help to probe into adaptive thermogenic mechanism, survival mechanism and evolution strategy of small mammals at low temperature. The study also offered the substantial basis to the cure of adiposity and diabetes which not tying on insulin.
    This thesis consisted of four parts: 1. The effects of different p-AR agonist selectivity on the thermogenic capacity of tree shrews; 2. The effects of cold exposure on mitochondrial respiration of liver in tree shrews; 3. The effects of cold exposure on total RNA in liver and BAT of tree shrews; 4. The RT-PCR of UCP 1 and UCP2 and the sequencing of UCP 1 of tree shrews.
    The detailed results and conclusions were as follow as:
    1. Compared with control (out of cold exposure), the RMR of tree shrews after cold exposure increased, the Pa-NST and NST increased mighty significantly. Whether out of or under cold exposure, the Ps-NST and NST both increased mighty significantly. The NST was higher than P3-NST in control, but not significant., The NST was significantly higher than P3-NST in cold exposure. These indicated that the thermogenic capacity of tree shrews could increase significantly after cold exposure. Tree shrews could adopt the strategy that increased thermogenic capacity to adapt the cold stress. There were Ps-AR in the BAT of tree shrews and the p3-AR was not the only AR in BAT. Perhaps, NE enhanced thermogenesis by P-AR approach. UCPs which lay in the mitochondrial inner membrane of EAT^ liver and skeletal
    6
    
    
    muscle brought on the most NST, and the BAT gave the most contributions among the all. The proton leak was very important to BMR. The AR approach played an important role in the adaptive thermogenesis of tree shrews.
    2. The state III and IV of nutochondrial respiration of liver in tree shrews were enhanced significantly in cold. Different with persistent cold exposure compared with control, the RCR and P/O increased significantly in acute cold exposure. The respiration of state IV also increased significantly in acute cold exposure. These facts suggested that the liver indeed played an important role in the adaptive thermogenesis of tree shrews. There were obvious proton leak in live mitochondrial in cold exposure and the proton leak nearly connected with UCP2. As for the reason of the RCR and P/O increased significantly in acute cold exposure, whether drastic physiologic changes induced big changes in mitochondrial level, so the experiment results became instability even opposition to that in persistent cold exposure, or oxidative phosphorylation came into being a plenty of ATP witch needed by the physiologic change and induced the increasing of RCR. Now all of these were not clear and needed more experiments to testify.
    3. During cold exposure, the body weight of tree shrews increased significantly and the mass of liver and BAT decreased firstly and increased subsequently. The total RNA contents of liver and BAT increased gradually. The time that the total RNA of liver began increasing was earlier than that of BAT, but the increasing range of total RNA content of BAT was bigger than that of liver. In persistent cold exposure. The total RNA contents of liver and BAT were at high levels, but fell slowly. All these results indicated that the cells of liver and BAT could add and the expression activity of UCPs would enhance significantly in cold exposure. It suggested that the liver of tree shrews responded more rapidly to cold e
引文
Alexander V., Medvedev, Sheridan K., et al., 2001, Transcriptional Regulation of the Mouse Uncoupling Protein-2 Gene, J. Biol. Chem., 276(14):10817-10823
    Alvarez, R., de Andres, J., Yubero, P., et al., 1995, A novel regulatory pathway of brown fat thermogenesis, J. Biol. Chem. 270(10):5666-5673
    Aquila, H., Link, T. and Klingenberg, M., 1985, EMBO J. 4, 2369-2376
    Arechaga, I., Raimbault, S., Prieto, S., et al., 1993, Biochem. J., 296:693~700
    Balogh A G, Ridley R G, Patel H V, Freeman K B, 1989. Rabbit adipose tissue uncoupling protein mRNA: use of only one of the two polyadenylation signals in its processing. Biochem. Biophys. Res. Commun. 161:156-161.
    Bienengraeber, M., K. S. Echtay, and M. Klingenberg. 1998, H~+ transport by uncoupling protein (UCP-1) is dependent on a histidine pair, absent in UCP-2 and UCP-3. Biochemistry. 37:3-8
    Bokowieeki L., J. Himma-Hagen, 1971, Decreased half-life of some mitochondrial proteins in skeletal muscle and brown adipose tissue of cold-acclimated rats, Can. J. Physiol. Pharmacol., 49:1015~1018
    Boss O, Samec S, Paoloni G A, Rossier C, Dulloo A, Seydox J, Muzzin P, Giacobino J P, 1997. FEBS Lett. 408:39-42.
    Bouillaud F, Couplan E, Pecqueur C, et al., 2001, Homologues of the uncoupling protein from brown adipose tissue (UCP1): UCP2, UCP3, BMCP1 and UCP4. Biochimica et Biophysica Acia 1504:107-119.
    Bouillaud F., Raimbault S., Ricquier D.,1994. Biochem. Biophys. Res. Commun. 157:783-792.
    Bouillaud, F., Weissenbach, J. and Ricquier, D., 1986, J. Biol. Chem. 261.1487-1490
    Bouillaud, F., Raimbault, S., Ricquier, D. 1988. The gene for rat uncoupling protein: complete sequence, structure of primary transcript and evolutionary relationship between exons. Biochem. Biophys. Res. Commun. 157(2):783-792
    Brand M D, Bishop T, Boutilier R G, et al., 2000, mitochondrial proton conductance, standard metabolic rate and metabolic depression. In: Heldmaier G, Klingenspor M, eds. Life in the cold. Berlin: springer, 2000,413~430
    Brand M D, Chien L F, Aidacow E K, et al., 1994, The causes and functions of mitochondrial proton leak, Biochim Biophys Acta., 1187(1):132~139
    
    
    Brand M. D., P. Couture, P. L. Else, et al., 1991. Evolution of energy metabolism. Biochem. J. 275:81~86.
    Brand M. D., 1990, The contribution of the leak of proton across the mitochondrial inner membrane to standard metabolic rate. J. Theor. Biol. 145:267-286.
    Brand-MD; Brindle-KM; Buckingham-JA et al., 1999, The significance and mechanism of mitochondrial proton conductance. Int-J-Obes-Relat-Metab-Disord. 16: S4-11
    Bray, G. A., Greenway, F. L., 1999, Current and Potential Drugs for Treatment of Obesity. Endocr Rev 20:805-875
    Cabrero, A., Llaverias, G., Roglans, N., et al., 1999, Biochem. Biophys. Res. Commun. 260,547-556
    Cambon, B., Reyne, Y. and Nougues, J., 1998, Mol. Cell. Endocrinol. 146,49-58
    Cannon, B. and Nedergaard, J., 1995, Essays Biochem. 20:110-164
    Carey C, Florant G L, Wunder B A, Horwitz B, 1993. Life in the Cold: Ecological, Physiological, and Mechamisms. Westtview Press. p1-575
    Cassard, A. M., Bouillaud, F., Mattei, M. G., et al., 1990, J. Cell. Biochem. 43:255-264
    Cassard-Doulcier, A. M. Gelly, C., Bouillaud, F. et al., 1998, Biochem. J. 333,243-246
    Cassard-Doulcier, A. M., Gelly, C., Fox, N., et al., 1993, Mol. Endocrinol. 7:497-506
    Cassard-Doulcier, A. M., Larose, M., Matamala, J. C., et al., 1994, J. Biol. Chem. 269:24335-24342
    Casteilla L, Champigny O, Bouillaud F, Robelin J, Ricquier D, 1989. Sequential changes in the expression of mitochondrial protein RNA during the development of brown adipose tissue in bovine and ovine species. Biochem. J. 257:665-671.
    Chaffee R. R. J., and J. C. Roberts. 1971. Comparative effects of temperature esposure on mass and oxidative enzyme activity of brown fat in insectivores, tupaiads and primates. Lipids, 5(1):23-29.
    Chan, C. B., MacDonald P. E., Saleh, M. C. et al., 1999, Diabetes, 48:1482-1486
    Chavin, K. D., Yang, S. Q., Lin, H. Z. et al., 1999, J. Biol. Chem., 274:5692-5700
    Chomczynski P. and Nicoletta S., 1987, Sigle-step method of RNA isolation by acid guanidiniu thiocyanate-phenol-chloroform extraction, Analytical Biochemistry, 162:156-159.
    
    
    Chung W K, Luke A, Cooper R S, et al., 1999. Genetic and physiologic analysis of the role of uncoupling protein 3 in human energy homeostasis. Diabetes. 48(9):1890-5
    Claudia R. et al., 2001, Cloning and functional characterization of an uncoupling protein homolog in hummingbirds, Physiological Genomics 5:137-145
    Claussen T., C. V. Hardeveld, and M. E. Everts. 1991. Significance of cation transport in vontrol of energy metabolism and thermogenesis. Physiol. Review. 71(3):733-773.
    Coutre, P. and A. J. Hulbert, 1995, Relationship between body mass, tissue metabolic rate, and sodium pump activity in mammalian liver and kidney. Am. J. Physiol. 268:R641~650
    Cunningham S. A., H. Wiesinger, D. G. Nicholls, 1986, Quantification of fatty acid activation of the uncoupling protein in brown adipocytes and mitochondria from the guinea-pig, Eur, J. Biochem. 157:415-420
    Desautels M., G. Zaror-Behrens, J. Himms-Hagen, 1978, Increased purine nuleltide binding, altered polypeptide composition, and thermogenesis in brown adipose issue mitochondria of cold-acclimated rats, Can. J. Biochem. J. 249:378-383
    Desautels M., J. Himms-Hagen, 1980 Parallel regression of cold induced changes in ultrastructure, composition, and properties of brow fat mitochondria during recovery of rats from acclimation to cold, Can. J. Biochem. 58:1057-1068
    Diehl-AM; Hoek-JB, 1999, Mitochondrial uncoupling: role of uncoupling protein anion carriers and relationship to thermogenesis and weight control "the benefits of losing control", J-Bioenerg-Biomembr. 31(5):493-506
    Echtay K. S., Winkler E., Frischmuth K., and Klingenberg M., 2001, Uncoupling proteins 2 and 3 are highly active H~+ transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone), Proc. Natl. Acad. Sci. USA, 98(4):1416-1421
    Echtay, K. S., Bienengraeber, M. and Klingenberg, M., 1998, Biochemistry, 36:8253-8260
    Eckerskorn C., M. Klingenberg, 1987, In the uncoupling protein from brown adipose tissue the C-terminus protrudes to the c-side If the membrane as shown by tryptic cleavage, FEBS Lett, 226:166-170
    Enerback, S., Jacobsson, A., Simpson, E. M., et al., 1997, Mice lacking
    
    mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387,90-94
    Feder M. E. and B. A. Block. 1991. On the future of animal physiological ecology. Functional Ecology. 5:135-144.
    Feil S., and J. Rafael. 1994. effect of acclimation temperature on the concetration of uncocpling protein and GDP binding in rat brown fat mitochondria. Eur. J. Biochem., 219:681-690.
    Fleury C, Neverova M, Collins S, et al., 1997. Uncoupling protein-2:a novel gene linked to obesity and hyperinsulinemia. Nat. Genet. 15:269-272
    Fleury-C; Sanchis-D, 1999, The mitochondrial uncoupling protein-2: current status. Int-J-Biochem-Cell-Biol. 31(11):1261-78
    Foellmi-Adams, L. A., Wyse, B. M., Herron, D., et al., 1996, Biochem. Pharmacol. 52,693-701
    Foster D. O., and M. L. Frydman, 1978, Nonshivering thermogenesis in the rat.Ⅱ. Measurements of blood flow with microspheres point to brown adipose tissue as the dominant site of the calorigenesis by noradreneline. Can. J Physiol. Pharmacol., 56:110-122.
    Frederic Bouillaud, Elodie Couplan, Claire Pecqueur et al., 2001, Homologues of the uncoupling protein from brown adipose tissue (UCP1): UCP2, UCP3, BMCP1 and UCP4, Biochimica et Biophysica Acta, 1504:107~119
    Fregly M. J., 1990. Activty of the hypohthalamic pilucitary-thyriod axis during exposureto cold. In: E. Schonbaum and P. Lomax (ed), Thermoregulation Physiology and Biochemstry (PP:437-494). New York: Pergamoa press. Garlid, K. D. and Jaburek, M., 1998, FEBS Lett. 438,57-61
    Gimeno, R. E., Dembski, M., Weng, X., et al., 1997, Diabetes 46,900-906
    Girardier, L., 1983, in Mammalian Thermogenesis (Girardier, L. and Stock, M. E., eds.), pp. 51-97, Chapman and Hall, London
    Gong D W, He Y, Karas M, Reitman M, 1997, Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin. J-Biol-Chem. 272(39):24129-32
    Gonzalez-Barroso, M. M., Fleury, C., Levi-Meyrueis, C., et al., 1997, Biochemistry, 36:10930~10935
    Gordon C J, 1993, Temperature regulation in laboratory rodents. Cambridge University Press. 1-276.
    Gribskov C. L., M. F. Henningfield, A. G. Swick, et al., 1986, Evidence for unmasking of rat brown-adipose-tissue mitochondrial GDP-binding sites in response to acute cold exposure. Effects of washing with
    
    albumin on GDP binding, Biochem. J. 233:743-747
    Grodzinski W, Klekowski R Z, Duncan A, 1975. Pages 309-313 in W. Grodzinski, et al ed. Methods for Ecological Biogenergetics. Blackwell Scientific Publications, Oxford London Edinburgh Melbourne.
    Haim A, Rubal A, Harari J, 1993. Thermoregulatory "strategies"of two Apodemus species inhabiting a cold environment on mount hermon. In: Life in the Cold: Ecological, Physiological, and Mechamisms. Westtview
    Hamann, A., Tafel, J., Busing, B., et al., 1998, Int. J. Obesity 22:939-941
    Harper, Jean H. H., A. D. Strosberg, et al., 1998, Mice expressing human but not murine β_3-adrenergic receptors under the control of human regulatory elements Diabetes 47:1464-1471
    Heaton G. M., R. J. Wagenvoord, A. Kemp Jr., et al., 1978, Brown-adipose-tissue mitochondria: photoaffinity labelling of the regulatory site of energy dissipation, Eur. J. Biochem. 82:515-521
    Heldmaier G, Klaus S, Wiesenger H, 1990. Seasonal adaptation of thermoregulatory heat production in small mammals. In: Thermorecption and Temperature Regulation(Edited by Bligh J and Voigt K) Springer Berlin. pp.235-243.
    Heldmaier, D., 1985, Source if heat during nonshivering thermogenesis in Djungarian hamster, J. Comp. Physiol., 156:237-245
    Hidaka S, Kakuma T, Yoshimatsu H, et al., 1998, Molecular cloning of rat uncoupling protein 2 cDNA and its expression in genetically obese Zucker fatty (fa/fa) rats. Biochim-Biophys-Acta. 1389(3):178-186
    Himms-Hagen J, 1989, Brown adipose tissue thermogenesis: role in thermoregulation, energy regulation and obesity. In:E Shonbaum and P Lomax(eds), Thermoregulation: Physiology and Biochemstry. New York, Pergamon Press. pp327-414.
    Himms-Hagen J. 1990. Brown adipose tissue thermogenesis: interdisciplinary studies. FASEB J. 4:2890-2893
    Hosoda K, Matsuda J, Itoh H, et al., 1999, New members of uncoupling protein family implicated in energy metabolism. Clin-Exp-Pharmacol-Physiol. 26(7):561-2
    Huang S. G., M. Klingenberg, 1995a, Fluorescent nucleotide derivatives as specific probes for the uncoupling protein thermodynamics and kinetics and kinetics of binding and the control by pH, Biochemistry, 34:349-360
    Huang S. G., M. Klingenberg, 1995b, Nature of the masking of nucleotide-binding sites in brown adipose tissue mitochondria.
    
    Involvement of endogenous adenosine triphosphate, Eur. J. Biochem. 229:718-725
    Huang S. G., M. Klingenberg, 1996, Two-stage nucleotide binding mechanism and its implications to H~+ transport inhibition of the uncoupling protein from brown adipose tissue mitochondria, Biochemistry, 35:7846-7854
    Huang S. G., Q. S. Lin, M. Klingenberg, 1998, Slow-phase kinetics of nuleotide binding to the uncoupling protein from brown adopose tissue mitochondria, J. Biol. Chem, 273:859-864
    J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯,1995,分子克隆,北京:科学出版社,34~66
    Jabrek M., Vaecha M., Gimeno R. E., et al., 1999, Transport Function and Regulation of Mitochondrial Uncoupling Proteins 2 and 3, J. Biol. Chem., 274(37):26003-26007
    Jacobsson A., Stadler U., Glotzer M. A., Kozak L. P., 1985, Mitochonrial uncoupling protein from mouse brown fat. Molecular cloning, genetic mapping and mRNAexpression. J. Biol. Chem. 260:16250-16254.
    Jacobsson A., M. Muhleisen, B. Cannon, and J. Nedergaad, 1994, The uncoupling thermogenin during acclimation: indications for pretraslational control. Am. J. Phhysiol., 267:R999-R1007.
    Jansky L., 1973. Non-shivering thermogenesis and thermoregulatory significance. Biol. Rev. 48:85-132.
    Jekabsons, M. B., Gregoire, F. M., Schonfeld-Warden, N. A., et al., 1999, Am. J. Physiol. 277, E380-E389
    Jezek P., Zackova M., Rehakova Z. et al., 1999a, FEBS Lett., 455:79-82
    Jezek-P, 1999b, Fatty acid interaction with mitochondrial uncoupling proteins, J-Bioenerg-Biomembr. 31(5):457-66
    Jezek-P; Gartid-KD., 1998,. Mammalian mitochondrial uncoupling proteins. Int J Biochem Cell Biol. 30(11):1163-8
    Karim S. Echtay, Edith Winkler, Karina Frischmuth, et al., 2001, Uncoupling proteins 2 and 3 are highly active H~+ transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone), Proc. Natl. Acad. Sci. USA, 98(4):1416~1421
    Kawamichi T. and M. Kawamichi, 1979, Spatial organization and territory of tree shrews(Tupaia glis). Anim. Behav., 27:381-293.
    Klaus S, Cassard-Doulcier AM, Champigny O, et al., 1993, Brown adipode tissue and the uncoupling protein UCP: cellular and molecular studies. In: Carvey C, Florant GL, Wunder BA, et al., Life in the cold: Ecological, Physiological, and Molecular Mechanisms. Colorado: Westview Press
    
    
    Klaus S, Casteilla L, Bouillaud F, et al., 1991, The uncoupling protein UCP: a membraneous mitochondrial ion carrier exclusively expressed in brown adipose tissue. Int. J. Biochem. 23:791-801
    Klingenberg M. 1990. Mechanism and evolution of the uncoupling protein of brown adipose tissue. TIBS, 108—112
    Klingenberg M., 1988, Nucleotide binding to uncoupling protein. Mechanism of control by protonation, Biochemistry 27:781-791
    Klingenberg M., Karim S. Echtay, 2001, Uncoupling proteins: the issues from a biochemist point of view, Biochimica et Biophysica Acta, 1504:128-143
    Klingenberg-M, 1999, Uncoupling protein--a useful energy dissipator. J-Bioenerg-Biomembr. 31(5):419-30
    Kozak L. P., Mary-Ellen Harper, 2000, Mitochondrial uncoupling proteins in energy expenditure, Annu. Rev. Nutr., 20:339-363
    Kozak, L. P., Britton, J. H. Kozak, U. C. et al., 1988, J. Biol. Chem. 263.,12274-12277
    Kozak, U. C., Kopecky, J., Teisinger, J., et al., 1994, Mol. Cell. Biol. 14,59-67
    Krauss S., Chen-Yu Zhang, and Bradford B. Lowell, 2002, A significant portion of mitochondrial proton leak in intact thymocytes depends on expression of UCP2, Proc. Natl. Acad. Sci. USA, 99(1):118-122
    Krook A, Digby J, O'Rahilly S, et al., 1998, Diabetes 47:1528-1531
    Kumar M. V. and. Scarpace P. J, 1998. differential effects of retinoic acid on uncoupling protein-1 and leptin gene expression Journal of Endocrinology:157—237.
    Laloi, M., Klein, M., Riesmeier, J. W., et al., 1997, Nature (London) 389,135-136
    Langham N. P. E. 1982. The ecology of the common tree shrew, Tupaia glis in peninsular Malaysia. J. Zool., Lond., 197:323-344.
    Langham N. 1983. Distribution and ecology of small mammals in three rain forest localitites of peninsuia Malaysia with particular references to Kedah Peak. Biotropica, 15(3):199-206.
    Lanni, A., De Felice, M., Lombardi, A., et al., 1997, FEBS Lett. 418,171-174
    Larose, M., Cassard-Doulcier, A. M., Fleury, C., et al., 1996, J. Biol. Chem. 271,31533-31542
    Larrouy, D., Laharrague, P., Carrera, G. et al., 1997, Biochem. Biophys. Res. Commun. 235,760-764
    Lee SC, Nuceitelli R, Pappone PA., 1993, Adrenergically activated Ca~+ increase in brown adipose fat cells: effects of Ca~+, K~+, and K channel block. Am J Physiol., 264C: 271-228
    
    
    Lin, C. S. and Klingenberg, M., 1980, FEBS Lett. 113.299-303
    Liu and L. C. H. Wang. 1993. Regulation of cardiac cytosolic free Ca~(2+) at low temperature in the Richardson's ground squirrel. In: Life in the Cold: Ecological, Physiological, and Mechamisms. Westtview Press, Edited by Carey C., Florant G. L., B. A. Wunder, and B. Horwitz. p. 207-216.
    Locke R. M., E. Rial, D. G. Nicholls, 1982, The acute regulation of mitochondrial proton conductance in cells and mitochondria from the brown fat of cold-adapted and warm-adapted guinea pigs, Eur. J. Biochem. 1291:15528-15532
    Lowell B. B., MD, PhD, and J. S. Flier, MD, 1997, Brown adipode tissue, β3-adrenergic receptors, and obesity, Annu. Rev. Med. 48:307-316.
    Mao W, Yu X X, Zhong A, et al., 1999, UCP4, a novel brain-specific mitochondrial protein that reduces membrane potential in mammalian cells [published erratum appears in FEBS Lett 1999 Apr 23,449(2-3):293] FEBS-Lett. 443(3):326-30
    Maria del Mar Gonzalez-Barroso, Claire Pecqueur, Chantal Gelly et al., 2000, Transcriptional Activation of the Human ucp1 Gene in a Rodent Cell Line, THE JOURNAL OF BIOLOGICAL CHEMISTRY. 275(41):31722-31732
    Masaki T, Yoshimatsu H, Kakuma T, et al., 1997, FEBS Lett. 418:323-326
    Masaki-T; Yoshimatsu-H; Chiba-S; et al., 1999, Up-regulation of uterine UCP2 and UCP3 in pregnant rats. Biochim-Biophys-Acta. 1440(1):81-8.
    Mathias, A., Ohlson, K. B. E., Fredriksson, J. M., et al., 2000, Thermogenic responses in brown fat cells are fully UCP1-dependent. UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty acid-indduced thermogenesis. Journal of Biological Chemistry 275,25073-25081
    Matsuda, J., Hosoda, K., Itoh, H., et al., 1997, FEBS Lett., 418:200~204
    McNab B K, 1995, Energy expenditure and consevation in frigivorous and mixed-diet carnivorans. J. Mammal. 76(1):206-222
    McNab BK, 1997, On the utility of uniformity in the definition of basal rate of metabolism, Physiol Zool, 70:718~720.
    Merritt J F., 1986, Winter survival mechanisms of soricid mammal, J. Mammal., 67:450-464
    Michio S., yan-T. Z., young 1., et al., 1997, Induction of uncoupling protein-2 mRNA by troglitazone in the pancreatic islets of zucker diabetic fatty rats Biochemical and biophyssical research communications 237:359-361.
    Millet L, Vidal H, Andreelli F, et al., 1997, J. Clin. Invest. 100:2665-2670
    Millet L, Vidal H, Larrouy D, et al., 1998. mRNA expression of the long and
    
    short forms of uncoupling protein-3 in obese and lean humans. Diabetologia. 41(7):829-32
    Miroux, B., Frossard, V., Raimbault, S., et al., 1993, EMBO J. 12. 3739-3745
    Mitchell JRD, Jacobasson A, Kirchgessner TG., et al., 1992, Regulation of expression of the lipoprotein lipase in brown adipose tissue, Am. J. Physiol., 263: E500-E506
    Modriansky, M., Murdzainglis, D. L., Patel, H. V., et al., 1997, J Biol. Chem., 272:24759~24762
    Moriko I., Danica G., E. D. Abel, Antonio V. P., et al., 1993, Body mass dependence of Hleak in mitochondria and its relevance to metabolic rate. Nater. 362(15):628-629.
    Murphy et al., 1993
    Muzzin-P; Boss-O; Giacobino-JP, 1999, Uncoupling protein 3: its possible biological role and mode of regulation in rodents and humans, J-Bioenerg-Biomembr. 31(5):467-73
    Nedergaard J., B. Cannon, 1985, [~3H]GDP binding and thermogenin amount in brown adipose tissue mitochondria from cold-exposed rat, Am. J. Physiol. 248:C365-C371
    Nedergaard J., Valeria Golozoubova, Anita Matthias et al., 2001, UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency, Biochimica et Biophysica Acta 1504:82~106
    Nedergaard-J; Matthias-A; Golozoubova-V, et al., 1999, UCP1: the original uncoupling protein--and perhaps the only one? New perspectives on UCP1, UCP2, and UCP3 in the light of the bioenergetics of the UCP1 -ablated mice, J-Bioenerg-Biomembr. 31(5):475-91
    N(?)gre-Salvayre, A., Hirtz, C., Carrera, G., et al., 1997, FASEB J. 11,809-815
    Nicholls D. G., Locke R. M., 1984. Thermogenic mechanisms in brown fat. Physiol. Rev. 64:1-64.
    Nicholls-DG; Rial-E, 1999, A history of the first uncoupling protein, UCP1. J-Bioenerg-Biomembr. 31(5):399-406
    Nobes C D, Brown G C, Olive P N, et al., 1990, Non-ohmic proton conductance of the mitochondrial inner membrane in hepatocytes. J Biol. Chem., 265(22):12903~12902
    Oberkofler, H., Liu, Y. M., Esterbauer, H., et al., 1998, Diabetologia 41,940-946
    Palou-A; Pico-C; Bonet-ML et al., 1998, The uncoupling protein, thermogenin. Int-J-Biochem-Cell-Biol. 30(1):7-11
    Paulik, M. A. and Lenhard, J. M., 1997, Cell Tissue Res. 290,79-87
    
    
    Pecqueur-C; Cassard-Doulcier-AM; Raimbault-S, et al., 1999, Functional organization of the human uncoupling protein-2 gene, and juxtaposition to the uncoupling protein-3 gene. Biochem-Biophys-Res-Commun. 255(1):40-6
    Pedersen-SB; Kristensen-K; Fisker-S, et al., 1999, Regulation of uncoupling protein-2 and -3 by growth hormone in skeletal muscle and adipose tissue in growth hormone-deficient adults. J-Clin-Endocrinol-Metab. 84(11):4073-8
    Porter R K, 2001, Mitochondrial proton leak: a role for uncoupling proteins 2 and 3, Biochimica et Biophysica Acta 1504:120-12
    Rabelo, R., Camirand, A., Silva, J. E., 1997, Endocrinology 138,5325-5332
    Rabelo, R., Reyes, C. Schifman, A. et al., 1996, Endocrinology 137,3488-3496
    Rabelo, R., Schifman, A., Rubio, A., et al., 1995, Delineation of thyroid hornome-responsvie sequencs within a critical enhancer in the rat uncoupling gene. Endocrinology 136(3):1003-1013.
    Rafael J., I. Pampel, X. Wang, 1994, Effect of pH and MgCl_2 on the binding of purine nucleotides to the uncoupling protein in membrane particles from brown fat mitochondria, Methods Enzymol. 126:971-980
    Rehnmark S, Bianco AC, Kieffer JD, et al., 1992, Transcriptional and post-transcriptional mechanisms in the uncoupling protein mRNA response to cold., Am J Physiol., 262:E58~E67.
    Rial E., A. Poustie, D. G. Nicholls, 1983a, Brown-adipose-tissue mitochondria: the regulation of the 32000-M. uncoupling protein by fatty acid and purine mucleotides, Eur. J. Biochem. 137:197-203
    Rial E., D. G. Nicholls, 1983b, The regulation of the proton conductance of brown fat mitochondria. Identification of functional and non-functional nucleotide-binding sites, FEBS Lett. 161:284-288
    Rial E., M. Gonzalez-Barroso, C. Fleury, S. et al., 1999, Retinoids activate proton transport by the uncoupling protein UCP1 and UCP2, WMBO J. 18:5827-5833
    Richard K. Porter, 2001, Mitochondrial proton leak: a role for uncoupling proteins 2 and 3?, Biochimica et Biophysica Acta 1504:120~127
    Ricquier D, Casteilla L, Bouillaud F. 1991. Mocular studies of the uncoupling protein. FASEB J. 5:2237-2242.
    Ricquier D. and Bouillaud F., 2000a, The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP, Biochem. J. 345:161-179
    
    
    Ricquier D. and Bouillaud F., 2000b, Mitochondrial uncoupling proteins: from mitochondria to the regulation of energy balance, The Journal of Physiology, 529.1, pp. 3-10
    Ricquier D., 1999a, Uncoupling protein-2 (UCP2): molecular and genetic studies. Int-J-Obes-Relat-Metab-Disord. 23 Suppl 6: S38-42.
    Ricquier, D. and Bouillaud, F., 1997, Prog. Nucleic Acid Res. Mol. Biol. 56,83-108
    Ricquier, D. and Kadet, J. C., 1976, Biochem. Biophys. Res. Commun. 73.577-583
    Ricquier, D., Lin. C., Klingenberg, M., 1982, Biochem. Biophys. Res. Commun. 106,582-589
    Ricquier-D; Miroux-B; Cassard-Doulcier-AM, et al., 1999b, Contribution to the identification and analysis of the mitochondrial uncoupling proteins, J-Bioenerg-Biomembr. 31(5):407-18
    Ridley, R. G. Patel, H. V., Gerber, G. E., et al., 1986, Nucleic Acids Res. 14,4025-4035
    Rolef D F, Hulbert A J, Brand M D, 1994, Characteristics of mitochondrial proton leak and control of oxidative phosohorylation in the major oxygen consuming tissues of the rat. Biochim Biophys Acta., 1188(3):405~416
    Rolfe D F, Brown G C, 1997a, Cellular energy utilization and molecular origin of standard metabolic rate in mammals, Physiol Rev., 77(3):731~758
    Rolfe D F, New man J M B, Buckingham J A, et al., 1999, Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR, Am J Physol., 276(3):C692~699
    Rolfe, D. F. and Brand, M. D., 1997b, Biosci. Rep., 17:9~16
    Rothwell N. J. and M. J. Stock. 1985.Thermogenic capacity and brown addipose tissue activity in the commom marmoset. Comp. Biochem. Physiol., 81A:683-686.
    Rothwell, N. J., Stock, M. J., 1979, Nature (London) 281,31-35
    Ruigserver P., D. Herron, M. Gianotti, et al., 1992, Induction and degradation of the uncoupling protein in vitro and in vivo, Evidence for a rapidly degradable pool, Biochem. J., 284:393-398
    Ruigserver P., D. Herron, M. Gianotti, et al., 1992, Induction and degradation of the uncoupling protein in vitro and in vivo, Evidence for a rapidly degradable pool, Biochem. J., 284:393-398
    Sanchis D., C. Fleury, N. Chomiki, et al., 1998, J. Biol. Chem. 273:34611~34615
    
    
    Scarpace, phillip J., michael Matheny, et al., 1997, Leptin increases uncoupling protein expression and energy expenditure. Am. J. Physiol. 273 (Endocrinol. Metab. 36): E226-E230
    Schrauwen P, Walder K, Ravussin E. 1999. Human uncoupling proteins and obesity. Obes-Res. 7(1): 97-105
    Sears, I. B., Macginnitie, M. A., Kovacs, L. G., et al., 1996, Mol. Cell. Biol. 16,3410-3419
    Shimokawa, T., Kato, M., Watanabe, Y., et al., 1998, Biochem. Biophys. Res. Commun., 251:374~378
    Shuji Hidaka, Tetsuya Kakuma, Hironobu Yoshimatsu, et al., 1998, Molecular cloning if rat uncoupling protein 2 cDNA and its expression in genetically obese Zucker fatty (fa/fa) rats Biochimica et Biophysica Acta 1389,178—186
    Silva, J. E. and Rabelo, R., 1997, Eur. J. Endocrinol., 136.251-264
    Simoneau J A, Kelley D E, Neverova M, et al., 1998. Overexpression of muscle uncoupling protein 2 content in human obesity associates with reduced sdeletal muscle lipid utilization. FASEB: 1739-1745.
    Skulachev, V. P., 1998, Biochim. Biophys. Acta Bioenerg. 1363,100-124
    Skulachev-VP, 1999, Anion carriers in fatty acid-mediated physiological uncoupling, d-Bioenerg-Biomembr. 31(5):431-45
    Solanes G, Vidal-Puig A, Grujic D, et al., 1997.The human uncoupling protein-3 gene. Genomic structure, chromosomal localization, and genetic basis for short and long form transcripts, J-Biol-Chem. 272(41):
    Stefa(?)s, Chen-Yu Zhang, and Bradford B. Lowell, 2002, A significant portion of mitochondrial proton leak in intact thymocytes depends on expression of UCP2, Proc. Natl. Acad. Sci. USA, 99(1):118-122
    Stone R T, Rexroad C E, Smith T P ,1999. Bovine UCP2 and UCP3 map to BTA15. Anim-Genet 30(5):378-81
    Strosberg A. D., 1997, Structure and function of the adrenergic receptor, Annu. Rev. Pharmacol. Toxicol. 37:421-450.
    Stuart J.A., S. Cadenas, M.B. Jekabsons et al., 2001, Mitochondrial proton leak and the uncoupling protein 1 homologues, Biochimica et Biophysica Acta, 1504:144~158
    Stuart-JA; Brindle-KM; Harper-JA, et al., 1999, Mitochondrial proton leak and the uncoupling proteins, J-Bioenerg-Biomembr. 31(5):517-25
    Surwit R S, Wang S, Petro A E, et al., 1998, Proc. Natl. Acad. Sci. U.S.A. 95:4061-4065
    Terry L D, Mitzi W A, 1998. Changes in gut capacity with location and
    
    cold-exposure in a species with low rates of energy use, the pine vole (Microtus pintorum), Physiological Zoology. 71(6):611-623
    Tomasi T E, Horton T H, 1993, Mammalian Energetics: Interdisciplinary Views of Metabolism and Reproduction. Comstock, Ithaca, N. Y.
    Tomasi T E, Horton T H, 1992, Mammalian Energetics: Interdisciplinary Views of Metabolism and Reproduction. Comstock, Ithaca, N. Y. Trayhrun et al., 1986
    Trayhurn P., Duncan J. S., 1994, Rapid chemiluminescent detection of the mRNA for uncoupling protein in brown adipose tissue by Northern hybridization with a 32-mer oligonucletide end-labelled with dig oxigenin, Int. j. obes. 18:449-452
    Trayhurn P., M. Ashwell, G. Jennings, D. et al., 1987, Effect of warm or cold exposure on GDP binding and uncoupling protein in rat brown fat, Am. J. Physiol. 252:E237-E243
    Trayhurn P. 1993. Species distribution of brown adipose tissue: characterization of adipose tissues from uncoupling protein adn its mRNA. In: Life in the Cold: Ecological, Physiological, and Mechamisms. Westtview Press, Edited by Carey C., Florant G. L., B. A. Wunder, and B Horwitz. p.361-380.
    Tu-N; Chen-H; Winnikes-U; Reinert-I, 1999, Molecular cloning and functional characterization of the promoter region of the human uncoupling protein-2 gene. Biochem-Biophys-Res-Commun. 265(2):326-34
    Vidal-H; Langin-D; Andreelli-F; Millet-L, et al., 1999, Lack of skeletal muscle uncoupling protein 2 and 3 mRNA induction during fasting in type-2 diabetic subjects. Am-J-Physiol. 277(5 Pt 1): E830-7
    Vidal-Puig A, Solanes G, Grujic D, et al., 1997. UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem-Biophys-Res-Commun. 235(1):79-82
    Vladimir P S, 1998. Uncoupling: new approaches to an old problem of bioengergetics. Biochimica et Biophysica Acta 1363:100-124
    Wang M. Y., Shimabukuro, M., Lee et al., 1999, Diabetes, 48:1020-1025
    Watt W. B. 1991. Biochemistry, physiologicalecology, and population genetics the methanistic tools of evolutionary biology. Functional Ecology. 5:145-154.
    Wilnkler E., and M. Kingenberg. 1992. Photoaffinity labeling of the nucleotide-binding site of the uncoupling protein from hamster brown adipose tissue. Eur. J. Biochm. 203:295-304.
    
    
    Winkler E., M. Klingenberg, 1994, Effect of fatty acids on H~+ transport activity of the reconstituted uncoupling protein, J. Biol. Chem. 269:13402-14305
    Winkler, E., Wachter, E. and Klingenberg, M., 1997, Biochemistry, 36:148155
    Wunder B. A. 1992. Mophohpysiological indicators of the energy state of small mammals. In: Mammalian Energetics: Interdisciplinary views of metzbolism and reproduction, Edited by Tomasi T. E. and T. H. Horton. Comstock Publishing Associats. Ithaca and London. 1-276. p.83-104.
    Yamada, M., Hashida, T., Shibusawa, N., et al., 1998, FEBS Lett., 432:65~69
    Yoshitomi H, Yamazaki K, Tanaka I,1998. Cloning of mouse uncoupling protein 3 cDNA and 5'-flanking region, and its genetic map. Gene. 215(1):77-84
    Yoshitomi H, Yamazaki K, Tanaka I,1999. Mechanism of ubiquitous expression of mouse uncoupling protein 2 mRNA: control by cis-acting DNA element in 5'-flanking region. Biochem-J. 340(Pt2):397-404
    Yu, X. X., Mao, W., Zhong, A., et al., 2000, Characterization of novel UCP5/BMCP1 isoforms and differential regulation of UCP4 and UCP5 expression through dietary or temperature manipulation, The FASEB Journal., 14:1611-1618.
    Yubero, P., Barbera, M. J. Alvarez, R., et al., 1998, Mol. Endocrinol. 12,1023-1037
    Yubero, P., Manchado, C., Cassard-Doulcier, et al., 1994, Biochem. Biophys. Res. Commun. 198:653-659
    Yubero, P., Vinas, O., Iglesias, R., et al., 1994, Biochem. Biophys. Res. Commun. 204,867-873
    Zhao J, Unelius L, Bengtsson T, et al., 1994 Coexisting β_1-adrenoceptor subtypes: significance for thermogenic process in brown fat cells. Am J Physiol, 267:C969-979
    Zhao J., Barbara Cannon, and Jan Nedergaard, 1998, Thermogenesis is β_3- but not β_1-adrenergically mediated in rat brown fat cells, even after cold acclimation, 275(6): R2002-R2011
    北京师范大学,华东师范大学合编,1984,动物生态学实验指导,北京:高等教育出版社8~18
    蔡理全,黄晨西,李庆芬,1998.长爪沙鼠褐色脂肪组织的适应性产热.动物学报,44(4):391~397
    侯建军,李庆芬,黄晨西,1999,布氏田鼠冷暴露中的适应性产热机理,动物学报,45(2)
    李庆芬,李宁,孙儒泳,1994.布氏田鼠对低温的适应性产热.兽类学报,
    
    14(4):286-293
    李庆芬,刘小团,黄晨西,2001,长爪沙鼠冷驯化过程众褐色脂肪组织产热活性及解偶联蛋白基因表达,动物学报,47(4):388~393
    苗振春等,1999,解偶联蛋白的产热机制及调控的研究进展,国外医学内分泌学分册19(5)
    彭燕章,叶智彰,邹如金等,1991.树鼩生物学.昆明:云南科技出版社,46~47.
    宋志刚,王德华,2001,基础代谢产热的分子机制,生理科学进展32(4)
    汪谦 主编,现代医学试验方法,人民卫生出版社,1997,第341-347,712-715页
    王德华,王祖望,1990.小哺乳动物在高寒环境中的生存对策Ⅱ:高原鼠兔和根田鼠非颤抖(NST)的季节变化.兽类学报,10(1):40-53
    王德华等,1996,根田鼠冷驯化过程中的适应性产热特征,动物学报42(4):368-376。
    王应祥,李崇云,马世来,1991,树鼩的分类与生态,彭燕章等主编,树鼩生物学,云南科技出版社,昆明:pp.21-70.
    王煜,黄晨西,李庆芬,孙儒泳,2001.布氏田鼠冷暴露中褐色脂肪组织的增补及解偶联蛋白基因表达.动物学研究,22(1):41~45
    王政昆,1996.我国热带亚热带小型兽类适应性产热对策的比较研究(博士论文),14~79
    王政昆,李庆芬,孙儒泳,1996.褐色脂肪组织产热及其调节机制.生理科学进展,27(4)353-355
    王政昆,李庆芬,孙儒泳,2000.外源性褪黑激素对中缅树鼩适应性产热特征的影响.动物学报,46(2):154-159.
    王政昆,李庆芬,孙儒泳等,1999.光周期和温度对中缅树鼩产热能力的影响.动物学报45(3):287-293。
    王政昆,孙儒泳,李庆芬1995a.倭蜂猴静止代谢率和体温的研究.动物学报4(12):149-157.
    王政昆,孙儒泳,李庆芬等,1994.中缅树鼩静止代谢率的研究.北京师范大学学报(自然科学版),30(3):408-414.
    王政昆等,1995a,倭蜂猴静止代谢率和体温的研究,动物学报4(12):149-157
    王政昆等,1995b,中缅树鼩的非颤抖性产热及细胞呼吸特征,动物学研究16(3):239-248
    王政昆等,1999,大绒鼠体温调节和产热,兽类学报19(4):276-286
    张启元等,1992,现代生物学实验技术,北京:北京师范大学出版社,89~96
    张武先,王政昆,念永坤等,2001.冷驯化对中缅树鼩产热能力的影响,动物学研究22(4):287~291

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700