抗树鼩IgG单抗制备与ELISA检测方法初步建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
树鼩(Tupaia, tree shrew)形似松鼠、分类上有羊膜类、哺乳纲、攀鼩目,被认为是最低等的灵长类动物。树鼩主要分布于亚洲东南部的热带、亚热带地区,在东南亚国家及我国的云南、广西、广东和海南等地广泛分布。我国树鼩属中缅树鼩(Tupaia belangeri),是树鼩中分布最广的一个属。树鼩体型小,生长繁殖快,易于捕捉、驯养和繁殖成本低,其新陈代谢特点和解剖学一些特点比啮齿类动物更接近人类。随着国内外非人灵长类资源的逐渐减少和实验动物日益小型化,树鼩作为研究人类相关疾病尤其是病毒性疾病的可能动物模型,受到广泛关注。
     树鼩作为多种疾病的的可能实验动物模型,有很好的应用前景。抗体水平是评价树鼩机体对疾病病原体免疫应答反应的重要指标,然而由于尚缺少有效的树鼩IgG检测手段,对树鼩抗体方面的研究尚未见报道。抗树鼩IgG单克隆抗体的有效制备及其为主要组分的酶联免疫吸附检测方法(Enzyme Link Immunosorbent Assay, ELISA)的建立,可以为树鼩抗体的检测提供有力的工具,促进树鼩作为实验动物模型各方面的研究。
     本论文用分离、纯化得到的树鼩血清IgG免疫雌性BALB/c小鼠,经骨髓瘤/免疫脾细胞细胞融合及阳性细胞亚克隆筛选,获得能稳定分泌抗树鼩IgG抗体的杂交瘤细胞株。实验共获得了两株阳性杂交瘤细胞(TBS-1、TBS-2),细胞融合率为158/480=32.92%,融合阳性率为2/158=1.27%。其中,TBS-2细胞经过了4次亚克隆筛选,细胞阳性率仍未达到100%,并混有很多阴性细胞,培养液中分泌的抗体含量也不高,细胞纯度不高,抗体分泌不稳定;TBS-1细胞经过3次亚克隆筛选,细胞阳性率就达到100%,培养液中能稳定分泌高效价(1:800)的抗树鼩IgG单克隆抗体。用阳性细胞小鼠腹腔注射,收集腹水的方法获得大量单克隆抗体,腹水效价达到1:25600以上。融合细胞在培养不同代次经核型分析发现,杂交瘤细胞染色体数目和形态正常,细胞遗传特征稳定。Western blot结果显示,单克隆抗体可以有效结合树鼩血清IgG,没有产生杂带,特异性较好。
     利用鼠抗树鼩IgG单抗与本实验室已制备的兔抗树鼩IgG多克隆抗体,以纯化的树鼩血清IgG为阳性样本,初步建立起检测树鼩血浆中IgG总量的三抗体夹心ELISA方法。树鼩IgG检测的最佳条件为:①包被:1/400单抗腹水100μl/孔,37℃温育2h,然后4℃过夜;②封闭:2%BSA封闭,200μl/孔,37℃温育2h;③多抗:1/2000多抗,10μl/孔,空白只加PBS,37℃温育1h;④酶标抗体:1/8000酶标羊抗兔,100μl/孔,37℃温育1h;⑤TMB底物溶液,100μl/孔,37℃避光温育15min;⑥2M H2SO4终止反应,100μl/孔,用酶标仪测定OD450值。所建立的方法检测特异性高,可重复性好,树鼩IgG在0.25μg/ml~3.0μg/ml区间内,树鼩IgG量与OD450值呈较好的线性关系(R2=0.9912)。
     本研究成功制备了抗树鼩IgG单克隆抗体,初步建立了检测树鼩总IgG的三抗体夹心ELISA方法,为研究树鼩免疫应答过程中抗体水平提供了有效工具,可作为树鼩的特异性抗体、中和抗体等检测方法建立的重要参考,为树鼩作为相关疾病研究动物模型的建立奠定了基础。
Tree shrew (Tupaia), with the shape of squirrel, was classified into Mammalia, placentalia Scandenti. It had been considered as primate animal, mainly distributed in tropical and subtropical areas of Southeast Asia, and was also inhabitated in Yunnan, Guangxi, Guangdong and Hainan provinces of China. More exactly, trew shrew of China was belonged to Tupaia belangeri, the most distributed subspecies. Tree shrew has small size, grow and reproduce fastly. This animal could be easily captured, domesticated and breed with low cost. Its metabolism and the anatomic characters of were much closer with humans than rodents. Because of the limitation of non-primate animal resource and the miniaturization trend of animal model, the tree shrew, as a possible animal model of human diseases, particularly viral diseases, had attracted the comprehensive attentions.
     As a novel experimental animal model, the application prospect of tree shrew was desirable. Antibody level is a important parameter to evaluate the ability of immune response of bodies to invaded pathogens. But, the records on the immune response of tree shrew were still scare because of the lake of detection methods of IgG globulin. It is urgent to obtain the anti-IgG monoclonal antibodies, and to establish Enzyme Link Immunosorbent Assay (ELISA) IgG detection method. These will predicatively provide a useful tool to promote the related research on tree shrew.
     Here, the purified IgG of tree shrew was used to immune female BALB/c mice, followed with artificial cytomixis hybridization of myeloma cell and spleen derived B-cell, and then screening of positive hybridoma, which could secrete anti tree shrew IgG antibody. It was proved that two positive hybridoma (TBS-1, TBS-2) had been obtained. The cell fusion rate was 32.92%, and the positive rate of hybridoma cells was 1.27%. By sub-clony screening of 4 generation, TBS-2 cells still not below of 100% positive rate, mixed with the negative cells. The valence of secreted antibody was also not high enough. All of these indicated that this strain of hybridoma was not productive and bio-stable. In comparison, the positive rate of TBS-1 had increased to 100% after 3 generations sub-clony screening. The higher valence (1:800) of its secreted antibody had been achieved. After abdominal cavity injection with TBS-1, the valence of antibody in collected ascites had been up to 1:25600. The analysis on chromosome karotype of hybridoma had shown that the number of chromosome in different passge fusion cells was normal, and its genetic characters were stable. With Western blot assay, secreated monoclonal have been proved to hybridize with serum derived tree shrew IgG effectively and specifically, no other hybrid band had been found.
     Uing this prepared anti-IgG monoclonal antibody and previously gotted anti-IgG polyclonal antibody from immuned rabbit, and purified tree shrew IgG taken as positive sample, the ELISA detection method of total IgG. in tree shrew had been established preliminarily. The optimized conditions for detection was listed as below:①Coatting: 100μl 1/400 diluted ascites was used for one hole, incubated at 37℃for 2h, then overnight at 4℃;②seal:200μl 2% BSA was incubated at 37℃for 2h in one hole;③polyclonal antibody concentration:for one hole, 100μl 1/2000 diluted rebbit serum, which containing polyclonal antibody, was incubated at 37℃for 1 hour. PBS was replaced in blank control;④enzyme-labeled antibody was used in 1/8000 diluted goat anti-rabbit IgG (HRP) for 100μl/hole, at 37℃incubation for 1h;⑤TMB substrate was used in 100μl/hole at 37℃dark incubation for 15min;⑥Terminate reaction was performed with 2M H2SO4 for 100μl/hole. The established method was evaluated as high specific, good repeatable. From 0.25μg/ml to 3.0μg/ml of tree shrew IgG, a good linear relationship (R2=0.9912) had been found between OD450 values and IgG concentration.
     In summary, the anti-IgG monoclonal antibody of tree shrew was prepared succefully, and the ELISA detecte method of tree shrew total IgG was established. These will provide a useful tool to evaluate the antibodies level during immune response of tree shrew. Furthermore, these could be considered as the reference for detection of specific antibody and neutralize antibody. For development of tree shrew animal model of human diseases, these would doubtless to be the necessary foundation.
引文
[1]王应祥.中国树鼩的分类研究[J].动物学研究,1987,8(3):213-230.
    [2]Simpson GG. The principles of classification and classification of mammals Bull [J]. Amer Mus nat Hist,1945,95(8):1-22.
    [3]Palley LS, Schlossman SF, Letvin NL, et al.Common Tree Shrew and primates share leukocyte memberane antigens[J]. Med Primatol,1984,13(9):67-71.
    [4]Collins PM, Tsang WN, LoftsB. Anatomy and function of the reproductive tract in the captive male tree shrew (Tupaia betangeri)[J]. Biol Reprod,1982,26(1):169-182.
    [5]曹筱梅.树鼩精子发生的细胞学观察[J].动物学研究,1986,7(1):69-77.
    [6]Collins PM, Tsang WN. Growth and reproductive development in the male tree shrew from birth to sexual maturity [J]. Bieol Reprod,1987,37(5):266-267.
    [7]苏秋香,杨晓霞,王素华,等.树鼩卵巢和输卵管结构观察[J].上海实验动物科学,1999,19(3):143-145.
    [8]Dieter Glebe, Mehriar Aliakbari, Peter Krass, et al. Pre-S1 antigen-dependent infection of Tupaia hepatocyte cultures with human hepatitis B virus[J]. J.Virol,2003,77: 9511-9521.
    [9]杨春,李瑗,陈茂伟,等.巢式聚合酶链反应检测感染树鼩中乙型肝炎病毒DNA[J].现代预防医学,2007,34(14):2627-2629.
    [10]赵西平,田展飞,陈义春,等.丙型肝炎病毒体外可感染树鼩肝细胞[J].中华肝脏病杂志,2005,13(11):805-807.
    [11]Maura Dandri, Martin R.Burdal, David M.Zuckerman, Chronic infection with hepatitis B viruses and antiviral drug evaluation in uPA mice after liver repopulation with tupaia hepatocytes[J]. Journal of Hepatology,2005,42(1):54-60.
    [12]Xinping Xu, Hongbo Chen, Xiaomei Cao, et al. Efficient infection of tree shrew (Tupaia belangeri) with hepatitis C virus grown in cell culture or from patient plasma[J]. J.Gen.Virol,2007,88:2504-2512.
    [13]Barth H, R Cerino, M Arcuri, et al. Scavenger receptor class B type Ⅰ and hepatitis C virus infection of primary tupaia hepatocytes[J]. J.Virol,2005,79:5774-5785.
    [14]李奇芬,毛青,吴纯清,等.树鼩传代感染HDV后肝脏内抗原表达及病理变化[J].世界华人消化杂志.1999,7:378-381.
    [15]刘崇海,杨锡强,李瑗.树鼩呼吸道合胞病毒感染动物模型的建立[J].病毒学报,2006,22(5):345-348.
    [16]郭学军,陈英华,李志强,等.升降散在建立流感病毒树晌模型中的作用初探[J].中国医学研究与临床,2004,2(23):1-3.
    [17]Darai G, Zoller L, Matz B, et al. Experimental infection and the state of viral latency of adult Tupaia with herpes simplex virus type 1 and 2 and infection of juvenile Tupaia with temperature-sensitive mutants of HSV type 2[J]. Arch Virol,1980,65:311-318.
    [18]Udo Bahr, Edda Tobiasch, Gholamreza Darai. Structural organization and analysis of the viral terminase gene locus of Tupaia herpesvirus[J]. Virus Research,2001,74: 27-38.
    [19]万新邦,庞其方,丘福禧,等.成年的中国云南树鼩对人轮状病毒易感性的实验研究[J].中华微生物学和免疫学杂志,1985,5(9):304-306.
    [20]刘丽华,李正平,俞永新.树鼩对登革热病毒敏感性的研究[J].中华微生物学和免疫学杂志,1985,5(5):329-330.
    [21]张海林,米竹青,施华芳,等.树鼩实验感染后血清中抗基孔肯雅病毒IgM和IgG抗体检查[J].地方病通报,1997,12(2):26-27.
    [22]侯宗柳,白登云,黄文丽,等.树鼩对森林脑炎病毒的敏感性及发病机理的研究[J].中国病毒学,1991,6:298-303.
    [23]张立,贲昆龙.树鼩免疫细胞体外感染Ⅰ型人免疫缺陷病毒的实验研究[J].动物学研究,2001,22(1):33-40.
    [24]Hiroaki Okamoto, Masaharu Takahashi, Tsutomu Nishizawa, et al. Genomic characterization of TT viruses (TTVs) in pigs, cats and dogs and their relatedness with species-specific TTVs in primates and tupaias[J]. J.Gen.Viro, Jun 2002,83:1291-1297.
    [25]TANG Dai-bin, LI Shu-qing. Possible Mechanism of the Hippocampus BBB Permeability and after Photo-chemistry Induced Thrombotic Cerebral Ischemia in Tree Shrews[J]. JOURNAL OF CHINESE MICROCIRCULATION,2008,12(2):76-80.
    [26]ZHANG Ying, LI Shu-qing, CHEN Jing. The mechanisms of hippocampal mitochondrial stress and neuronal injury after thrombotic cerebral ischemia in Tree Shrews[J]. JOURNAL OF APOPLEXY AND NERVOUS DISEASES,2007,24(2): 140-142.
    [27]ZHU Chun-hui, XIAN Su, WEI Min-yi, et al. Pathologic analysis of the liver of experimental diabetic tree shrews[J]. CHINA JOURNAL OF MODERN MEDICINE, 2007,17(5):543-546.
    [28]Yu Fa-rong, Lian Xiu-zhen. Effects of the social environment stress on the indexes of hematology and myelogram in Chinese tree shrews[J]. CHINESE JOURNAL OF CLINICAL REHABILITATION,2006,10(34):171-173.
    [29]莫肖敏,蒙碧辉,梁莹,等.实验性胰岛素抵抗树鼩骨骼肌微血管超微病变观察[J].电子显微学报,2003,22(5):373-376.
    [30]SHEN Lijie, LI Wei. Helminth Infection of Tupaia belangeri chinensis in the Wild[J]. CHINESE JOURNAL OF VECTOR BIOLOGY AND CONTROL,2005,16(6): 440-441.
    [31]Li Gui, Yan Ye, Chang Yunyan, et al. New Method of the Tree Shrews (Tupaia belangeri chinensis) Breeding Laboratory[J]. MODERN JOURNAL OF ANIMAL HUSBANDRY AND VETERINARY MEDICINE,2009,3:18-21.
    [32]陈丽玲,李玛琳,刘汝文,等.树鼩驯化中应激综合征的防治[J].野生动物,2009,30(4):177-179.
    [33]钱玉婧,蒋金萍,张瑞忠.树鼩人工哺育初步研究[J].实验动物与比较医学,2008,28(2):129-130.
    [34]沈培清,刘美芳,刘汝文,等.树鼩的应用和标准化产业化研究[J].实验动物科学,2008,25(1):49-52.
    [35]Isogawa M, Furuichi Y, Chisari F V.Oscillating CD8+ T cell effector functions after antigen recognition in the liver[J]. Immunity,2005,23(1):53-63.
    [36]Yony J L, Tevethia S S, Sehell T D. Rapid accumulation of adoptively transferred CD8+T cells at the tumor site is associated with long-term control of SV40 T antigen-induced tumors[J]. Cancer Immunol lmmunother,2008,57:883-895.
    [37]Hanson H L, Donenneyer D L, Ikeda H, et al. Eradication of established tumors by CD8+T cell adoptive immunotherapy[J]. Immunity,2000,13:265-276.
    [38]邵晓丽,张旭东,张远旭,等.树鼩IL-2Ra(CD25)基因的分离鉴定及表达分析 [J].中国科学技术大学学报,2009,7(39):722-727.
    [39]Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologicselftolerance alntained by activated T cells expressing IL-2receptora2chains(CD25).Breackdown of single mechanism of self tolerance causcs various autoinnnnne diseases[J]. J Immunol,1995, 155(1):1151-1164.
    [40]Franzese O, Kenned y PT, GehringAJ, et al. Modulation of the CD8+ T cell response by CD4+ CD25+ regulatory T cells in patients with hepatitis B virus infection[J]. Virology,2005,79:3322-3328.
    [41]福军亮,徐东平,施明,等.乙型肝炎患者外周血CD4+CD25+调节性T细胞型与功能分析[J].中华内科杂志,2006,45(8):642-645.
    [42]Pileri P, Uematsu Y, Campagnoli S, et al. Binding of hepatitis C virus to CD81[J]. Science,1998,282(5390):938-941.
    [43]Flint M, Maidens C, Loomis-Price LD, et al. Characterization of hepatitis C virus E2 glyeoprotein interaction with a putative cellular reoeptor, CD81 [J]. J Virol,1999,73(8): 6235-6244
    [44]Castet V, Moradpour D. A modelforthe study of hepatitis C virus entry[J]. Hepatology, 2003,38:771-774.
    [45]Barth H, Cerino R, Arcuri M, et al. Scavenger receptor class B type I and hepatitis C virus infection of primary tupaia hepatocytes[J]. J Virol,2005,79:5774-5785.
    [46]su L, Zhang J, Xu H, et al. Differential expression of CXCR4 is associated with the metastatic potential of human nonsmall ceillung cancer cells[J]. Clin Cancer Res,2005, 11(23):8273-8280.
    [47]Hu J, Deng X, Bian x, et al. The expression of functional ehemokine receptor CXCR4 is associated with the metastatic potential of human nasopharyngeal carcinoma[J]. Clin Cancer Res,2005,11(13):4658-4665.
    [48]Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis[J]. Nature,2001,410(6824):50-56.
    [49]Sun YX, Schneider A, Jung Y, et al. Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo[J].J Bone Miner Res,2005,20(2):318-329.
    [50]Eisenhardt A, Frey U, Tack M, et al. Expression analysis and potential functional role of the CXCR4 chemokine receptor in bladder cancer[J]. Eur Urol,2005,457(1): 111-117.
    [51]Balkwill F. Cancer and the chemokine network[J]. Nat Rev Cancer,2004,4(7): 540-550.
    [52]杨敏,贲昆龙.树鼩CXCR4 cDNA的克隆和序列分析[J].中国实验动物学报,2004,1(12):3-6.
    [53]龚非力.医学免疫学[M].北京:科学出版社,2004.
    [54]杨汉春.动物免疫学[M].北京:中国农业大学出版社,1996,18-29.
    [55]Aldo S Sansinanea, Silvia I Cerone, Alicia Elperding, et al. Glucose-6-phosphate dehydrogenase activity in erythrocytes from chronically copper-poisoned sheep[J]. Comparative Biochemistry and Physiology Part C:Pharmacology, Toxicology and Endocrinology,1996,114(3):197-200.
    [56]WU Tao, ZHANG Xi-chen, LI Jian-hua, et al. Observation on antitumous effect of crude Trichinella antigen to SP2/0 myeloma in mice[J]. JOURNAL OF PATHOGEN BIOLOGY,2007,2(4):269-272.
    [57]王延华,李官成,Zhou Xinfu.抗体理论与技术(M).科学出版社,2005,74-77.
    [58]李金明.小分子免疫测定的研究进展[M].国外医学临床生物化学与检验学分册,1996,17(1):266.
    [59]Mayorga C, Obispo T, Jimeno L, et al. Epitope'mapping of β-lactam antibiotics with the use of monoclonal antibodies[J]. Toxicology,1995,97:225-234.
    [60]陈慰峰.医学免疫学(第三版)[M].人民卫生出版社,2000.
    [61]Galfre G, S C Howe, C Milstein, et al. Antibodies to major histocompatibility antigens produced by hybrid cell lines[J]. Nature,1977,23(7)266:550.
    [62]Zou X, Li X, Liu J, et al. Preparation and characterization of a specific monoclonal antibody against a new gene product:URG11[J]. Hybridoma,2006,25(6):378-381.
    [63]Alvarfz D M. Cell fusion:Biological sperstives and potential regenerative medicine[J]. Front Biosci,2007,12:1-12.
    [64]Penteconvo G. Production of indeflnitely multiplying mammalian somatic cell hybrids by polyethylene glycol (PEG) treatment [J]. Somatic Cell Genet,1976,1(7):397.
    [65]Ramos C, Bonenfant D, Te Issie J. Cell Hybridization by electrofusion on filters[J]. Analytical Biochemistry,2002,302(2):213-219.
    [66]Alison M Skelley, Oktay Kirak, Heikyung Suh, et al. Microfluidic control of cell pairing and fusion[J]. Nature methods,2009,6:147-152.
    [67]Littlefleld JW. Selection of hybrids from mating of flbroblasts in vitro and their presumed recombinats[J]. Science,1964,145(9):709-714.
    [68]Ozturk SS, Palsson BO. Loss of antibody productivity during long-term cultivation of a hybridoma cell line in low serum and serum-free media[J]. Hybridoma,1990,9(2): 167-175.
    [69]Kromenaker SJ, Srienc F. Stability of producer hybridoma cell lines after cell sorting:a case study [J]. Biotechnol Prog,1994,10(3):299-307.
    [70]Mariani E, Mariani AR, Monaco MC, et al. Commercial serum-free media:hybridoma growth and monoclonal antibody production[J]. J Immuno Methods,1991,145(1-2): 175-183.
    [71]Eto N, Yamada K, Shito T, et al. Development of a protein-free medium with ferric citrate substituting transferring for the cultivation of mouse-mouse hybridomas[J]. Agric Biol Chem,1991,55(3):863-865.
    [72]Nagira K, Hara T, Hayashida M, et al. Development of a protein-free medium with iron salts replacing transferring for a human-human hybridoma[J]. Biosci Biotechnol Biochem,1995,59(4):743-745.
    [73]Franek F, Dolnikova J. Nucleosomes occurring in protein-free hybridomacell culture. Evidence for programmed cell death[J]. FBS Lett,1991,284(2):285-297.
    [74]Klein CP, Groot K, Vermediden JP, et al. Interaction of some serum proteins with hydroxylapatite and other materials[J]. Biomed Mater Res,1980,14(6):705-712.
    [75]Smeenk R, Aarden L. The use of polyethylene glycol precipitation to detect low-avidity anti-DNA antibodies in systemic lupus erythematosus[J]. J Immunol Methods, 1980,39(1-2):165-180.
    [76]Sluyterman LA, Wijdenes J, Voom G, et al. Dimerization of papain induced by mer-chloride and a bifunctional organic mercurial[J]. Eur J Biochem,1977,77(1):107-110.
    [77]Van Loghem E, Frangione B, Recht B, et al. Staphylococcal protein A and human IgG subclasses and allotypes[J]. Scand J Immuno,1982,15(3):275-278.
    [78]Van Riel PL, Van de Putte, Gribnau FW, et al. IgA deficiency during aurothioglucose Treatment[J]. A case report. Scand J Rheumato,1984,13(4):334-336.
    [79]Ed Harlow, david Lane.Antibodies:a laboratory manual [M]. New York:Cold Spring Harbor Laboratory,1988.
    [80]Kellner R, Mermet J M, Widmer H M,等.分析化学[M].李克安,金钦汉,等译.北京:北京大学出版社,2001.
    [81]赵永芳.生物化学技术原理与应用[M].北京:科学出版社,2002.
    [82]焦奎,张书圣.酶联免疫分析技术及应用[M].北京:化学工业出版社,2004.
    [83]Qing Ling, Wu Jian-xiang, Qi Yi-jun, et al. Production of monoclonal antibodies to broad bean wilt virus and application in virus detection [J]. Acta Microbiologica Sinica, 2000,40(2):166-173.
    [84]司徒镇强,吴军正.细胞培养(Ccell Cuture)(第2版)[M].西安:世界图书出版西安公司,2007.
    [85]Wu Jianxiang, Lin Fucheng, Li Debao, et al. Studies on monoclonal antibodies of Magnaporthe grisea and its interfering effect on appressorium formation[J]. Acta Microbiologica Sinica,2000,40(6):638-645.
    [86]Mekinny M M, Parkinson A. A simple non chromatographic purification procedure to purify immunologlobulins from sermandasites fluid[J], J Immunol methods,1987, 96(2):271-278.
    [87]沈关心.现代免疫学实验技术[M].湖北科学技术出版社(第二版),2002.
    [88]SHI Manling, Wu Jianxiang, Guo Wei, et al. Preparation of monoclonal antibodies to turnip mosaic virus and its application for the virus detection[J]. Acta Microbiologica Sinica,2004,44(2):185-188.
    [89]Lan Guo, Benliang Yin, Junli Zhou, et al. Development of rabbit monoclonal and polyclonal antibodies for detection of site-specific histone modifications and their application in analyzing overall modification levels[J]. Cell Research,2006,16(5): 519-527.
    [90]邱玉华,张学光.一种显著提高小鼠腹水产量的新方法[J].中国免疫学杂志,1995,11(5):361-3673.
    [91]Sambrook J, Fritsch EF, Maniatis T. Molecular cloning:a laboratory manual[M]. New York:Cold spring Harbor,2001,14.1-14.13.
    [92]Van Regenmortel M H C, Azimzadeh A. Determination of antibody affinity [J]. J Immunoassay,2000,21(2&3):211.
    [93]Butler JE. Enzyme-linked immunosorbent assay[J]. J Immunoassay,2000,21(2&3): 165.
    [94]金伯泉.细胞和分子免疫学实验技术[M].西安:第四军医大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700