煤粒瓦斯放散规律、机理与动力学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤粒的瓦斯放散规律、机理和模型的研究是煤层瓦斯含量测定、突出危险性预测参数测定、落煤的瓦斯涌出和煤层气开发等方面的关键科学问题之一。采用物理模拟试验、孔隙结构实验测定、数学建模、理论分析和数值解算等方法,研究了煤粒瓦斯放散规律及其影响因素、瓦斯放散机理和物理数学模型,研究成果完善了煤粒瓦斯放散规律和理论。
     研制了具有温控功能的大质量煤样高效瓦斯吸附解吸实验系统,实验研究了吸附平衡压力、变质程度、破坏程度、粒度、水分和环境温度等因素对煤粒瓦斯放散动力学的影响规律和机理;采用压汞、低温液氮等温吸附和扫描电镜等手段测定了不同变质程度和不同破坏类型煤的孔裂隙结构参数,结合前人关于煤分子结构和孔隙结构的研究成果,研究了变质程度和破坏程度对煤的孔隙结构控制特征,探讨了动力变质对瓦斯放散规律的影响,进一步完善了变质程度和破坏程度对煤粒瓦斯放散影响规律和机理;在实验研究基础上,根据气体在多孔介质扩散理论,补充完善了煤粒的瓦斯放散机理,结合变扩散系数规律,建立了基于连续性扩散理论的三层孔隙结构物理数学扩散模型,求出了通解,进行了理论探讨和验证。
     实验研究结果表明:不同吸附平衡压力下的瓦斯放散速度随时间变化关系可表示为:V=B·P~(kp)·t~(-kt),但同一煤样,不同时间段,相关参数均发生变化;吸附平衡瓦斯压力对煤粒瓦斯扩散系数的影响可忽略不计;变质程度对极限瓦斯放散量的影响呈U型变化,扩散系数总体随变质程度的提高呈增大趋势,但变质程度为贫瘦煤的鹤壁煤样高于无烟煤的晋城煤样;软、硬煤的极限瓦斯放散量相差不大,软煤稍高于硬煤;相同时间段,软煤瓦斯放散量和瓦斯放散速度明显大于硬煤;9个经验公式中乌式更适合描述整个瓦斯放散过程,但相关系数仍偏低,软煤的扩散系数明显高于硬煤,基本在2~10倍之间变化,随时间延长而衰减,衰减程度相对较大;软、硬煤瓦斯放散初速度差值随粒度的减小而减小,提出了原始粒度概念,粒度差别是软硬煤差别的本质特征之一;瓦斯扩散参数KB随粒度的减小而增大,扩散系数随粒度减小而减小;气态水分减小了极限瓦斯放散量、瓦斯放散初速度和扩散系数,查明了气态水对煤粒水对瓦斯放散的影响机理;理论推导了瓦斯扩散量与温度T呈指数关系,建立了瓦斯放散量随环境温度呈指数变化的修正公式,扩散系数随温度升高而增大,查明了温度对瓦斯扩散系数的影响机理。
     孔隙结构测定结果表明,破坏程度增加了煤的总孔容、中孔、过渡孔、大孔孔容和比表面积,其中中孔增加最显著,孔隙连通性也得到明显改善,微孔变化不明显;随变质程度提高,总体上,总孔容呈指数下降,大孔、中孔和过渡孔呈下降趋势,微孔逐渐升高,比表面积呈U型变化。结合煤的分子结构研究成果,动力变质作用在一定程度上改变了微孔结构。
     理论分析表明,煤粒吸附瓦斯的放散过程,可用气体在多孔介质中的扩散理论描述,扩散模式包括细孔扩散、表面扩散和晶体扩散,其中,细孔扩散决定了煤粒瓦斯的动力学特性,实际煤粒的瓦斯扩散参数受孔隙直径、孔分布、迂曲度和连通性等孔隙结构特征参数控制,表现出随时间衰减的现象,主要由煤粒内孔隙和瓦斯分布不均匀造成的。
     在以上研究的基础上,结合气体在多孔介质扩散物理数学模型存在的问题,建立了基于煤粒瓦斯连续性扩散理论的三层结构新模型,推导出了扩散率关于放散时间的无穷级数通解,扩散率与时间呈指数关系,经数值验证,与煤粒瓦斯扩散实验规律基本一致,拟合的相关参数反映了软、硬煤的孔隙结构和扩散规律方面差异。
The research on gas emission rule, mechanism and model from coal particle is one ofthe key scientific problems to coal seam gas content determination, outburst hazardprediction parameter determination, gas emission of coal drop and CBM development etc.According to a large number of domestic and foreign research contributions, combiningwith the application problems of coal grain gas radiation law, the research objectives andthe main content are determined. The coal grain gas radiation law and its influence factors,gas radiation mechanism and physics&mathematics model are studied by physicalsimulation experiment, experimental determination of pore structure, mathematicalmodeling, theory analysis and numerical solver methods etc, which research resultssupport and promote the consummate of coal grain gas radiation law and mechanism.
     A novel high-efficiency gas absorption-desorption experimental system on largemass coal sample with temperature controlling function is designed and, by which theinfluence law and mechanism of adsorption balance pressure, metamorphic degree, theextent of damage, grain size, water and environmental temperature to coal grain gasradiation dynamics are studied; pore-crack structure parameters of different metamorphicdegree and different failure types tectonic coal using the mercury injection, lowtemperature liquid nitrogen adsorption isotherm and scanning electron microscopy (SEM)are measured. Combining previous research results of coal molecular and pore-crackstructure, the control characteristics of metamorphic degree and the extent of damage tocoal pore-crack structure are studied, and the dynamic metamorphism problem arediscussed, so that it further perfects the influence law and mechanism of metamorphicdegree and the extent of damage to coal pore-crack structure; According to the gasdiffusion theory in porous media complemented coal grain gas radiation mechanismbased on the experiment study, combined with the changing diffusion coefficient ruleestablished physics-mathematics diffusion model of coal grain gas having three storey’spore-crack structure, found the general solution of the model which got theoreticalanalysis and verification.
     The results of the study show that gas radiation speed under different adsorptionbalance pressure changes with time, which agree with the relationship: V=B·P~(kp)·t~(-kt) adsorption balance pressure gas have little influence on diffusioncoefficient which can be ignored. Metamorphic degree have the same influence on themax ultimate gas radiation and adsorption ability, diffusion coefficient increase with thedegree of metamorphic generally, metamorphic degree have little influence on the maxultimate gas radiation. gas radiation quantity, radiation coefficient and gas radiationspeed of soft coal significantly greater than the hard coal during the same time, basically,the changes between2to10times which decay with time significantly. Difference ofinitial velocity of the gas emission between soft coal and hard coal reduce with thedecrease of the coal sample size, put forward the original particle size concept, differenceof coal grain size is one of the defining features between soft and hard coal, gas radiationparameter KB increase with coal grain size decreases while gas radiation parameterdecreases with coal grain size decreases; Found out the influence mechanism lead to thatgaseous water not only decreases the amount of max ultimate gas radiation, bur alsoreducing initial velocity of the gas emission and diffusion coefficient; Set upexponentially correction change formula of gas radiation quantity and environmentaltemperature, diffusion coefficient increased with temperature rise, found out theinfluence mechanism of the temperature on the diffusion coefficient.
     The results of pore structure determination show that the degree of damage increasescoal of the total pore volume, mesopores, transition pores, the pore volume of macroporesand the specific surface area, of which mesopores increase most significantly, theconnectivity of pores also significantly improve, and micropores changeunconspicuously; With the improvement of metamorphic degree, overall, coal of totalpore volume have an index decreased, in the same time, macropores, mesopores and thetransition pores also appeared downward trend, micropores gradually increase, and thespecific surface area changes with U-shaped. With the molecular structure of coalresearch, dynamic metamorphism is not obvious.
     Theoretical analysis shows that it is a gas adsorption-desorption process of coalgrain, which describe by the available gas diffusion in porous media theory, the diffusionmodel includes pore diffusion, surface diffusion and crystal proliferation, in which coalparticles and pore diffusion determines the dynamics of gas the actual parameters of coalparticles by the pore diameter of the diffusion, pore size distribution, tortuosity and connectivity controlled pore structure, which has features with time attenuation.
     According to the research progress on cognition and gas in porous medium model,this paper established physics-mathematics diffusion model of coal grain gas having threelayers pore-crack structure, derived infinite series general solution of diffusion rate onbleeding time, and gained the exponential relationship between diffusion rate and time,which consistent with the law of coal gas diffusion experiment.
引文
[1] BP. statistical_review_of_world_energy_full_report_2010. http://www.bp.com/statisticalreview,2011-06.
    [2]盛来运,钟守洋.中国统计摘要2010[M],中国统计出版社,2010.
    [3]国际煤炭网[EB/OL]. http://www.in-en.com/coal/html/coal-0841084182782136.html,2010-10-15.
    [4]张平.2010年能源工作[EB/OL].http://www.dnong.com/info/china/2010/293516.shtml.
    [5]中国产业经济信息网.煤炭行业“十二五”发展规划.http://www.cinic.org.cn/site951/zcdt/2011-06-22/486183.shtml.
    [6]李灵杰.中美煤矿事故调查处理对比研究[D].河南:河南理工大学,2011.
    [7]中国新闻网,http://www.chinanews.com/gn/2011/02-25/2869137.shtml.
    [8]李毅中.中国矿难世界最多[EB/OL]. http://www.dahe.cn/xwzx/gn/t20070313_879448.html.
    [9]王树鹤.认真履行总工程师职责进一步加强安全技术管理和瓦斯防治工作.全国煤矿总工程师安全培训班开班仪式课件.2011-06-30.
    [10] R.M.Barrer, Diffusion in and through Solid [M]. Cambridge University Press,1951.
    [11] P.G.Sevenster, Diffusion of Gases through Coal [J]. Fuel,195938(1):403-418.
    [12] Satyendra, P.Nandi and Philip L.Walker. Activated Diffusion of Methane from Coal at elevatedpressure [J]. Fuel,1975,54(2):81-86.
    [13] Douglas M-smith, Frankl Williams. Diffusion Models for Gas Production from Coals [J]. Fuel,1984,63(2):251-255.
    [14] K.Winter&H.Janas. Gas Emission characteristics of coal and Methods of Determining theDesorbable Gas Content by Means of Desorbometers[C]. XIV International Conference of CoalMine Safety Research.
    [15]宋世钊译.煤矿沼气涌出[M].北京:煤炭工业出版社,1983.
    [16]王兆丰.空气、水和泥浆介质中煤的瓦斯解吸规律与应用研究[D].徐州:中国矿业大学,2001.
    [17]苏文叔.综采工作面沼气涌出规律及预测[J].煤炭工程师,1986,(1):11-15.
    [18]于良臣等.矿井瓦斯涌出量预测方法的研究[R].煤炭科学研究总院抚顺分院.1990.
    [19]王佑安,杨思敬.煤和瓦斯突出煤层的某些特征[J].煤炭学报,1981,(1):47~53.
    [20]孙重旭.煤样解吸瓦斯泄出的研究及其突出煤层煤样瓦斯解吸的特点[C].煤与瓦斯突出第三次学术论文选集,重庆研究所,1983.
    [21] E.M.Airey. Gas Emission from Broken Coal [J]. International Journal of Rock Mechanics andMining Sciences&Geomechanics Abstracts,1968,5(6):475-494.
    [22]渡边伊温等.关于煤的瓦斯解吸特性的几点考察[J].煤矿安全,1985,(4):52-60.
    [23]大牟田秀文等.煤层瓦斯涌出机理[J].矿业译丛,焦作矿业学院科研处,1982.
    [24] B.A.Bolt&Innes, Diffusion of Carbon Dioxide from Coal [J]. Fuel,1959,38(2):35-38.
    [25]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [26]杨其銮.煤屑瓦斯放散随时间变化规律的探讨[J].煤矿安全,1986,(4):3-11.
    [27]杨其銮,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报,1986,(3):87-94.
    [28] AQ/T1066-2008,煤层瓦斯含量井下直接测定方法[S].北京:国家安全生产监督管理总局,2008.
    [29] AQ/T1065-2008,钻屑瓦斯解吸指标测定方法[S].北京:国家安全生产监督管理总局,2008.
    [30]缑发现等.用直接法测定煤层瓦斯含量来推算损失量的方法[J].煤矿安全.1997,(7):9-11.
    [31]杨其銮,王佑安.瓦斯球向流动数学模拟[J].中国矿业学院学报,1988,(3):55-61.
    [32]温志辉.构造煤瓦斯解吸规律的实验研究[D].河南:河南理工大学,2008.
    [33]陈向军.强烈破坏煤瓦斯解吸规律研究[D].河南:河南理工大学,2008.
    [34]陈昌国.煤吸附与解吸甲烷的动力学规律[J].煤炭转化:1996,19(1):68-71.
    [35]富向,王魁军,杨天鸿.构造煤的瓦斯放散特征[J].煤炭学报,2008.33(7):775-779.
    [36]杨其銮.关于煤屑瓦斯放散规律的试验研究[J].煤矿安全,1986,18(2):9-17.
    [37]曹垚林,仇海生.碎屑状煤芯瓦斯解吸规律研究[J].中国矿业,2007,16(12):119-123.
    [38]周世宁.瓦斯在煤层中流动的机理[J].煤炭学报,1990,15(1):15-24.
    [39]卢平,朱德信.解吸法测定煤层瓦斯压力和瓦斯含量的实验研究[J].淮南矿业学院学报,1995,15(4):34-40.
    [40] Nandi SP, Walker Jr PL. Activated diffusion of methane in coal [J]. Fuel,1970,49(3):309-323.
    [41] Bielicki RJ, Perkins JH, Kissell FN. Methane diffusion parameters for sized coal particles: ameasuring apparatus and some preliminary results [M].[Washington, D.C.]: U.S. Dept. ofInterior, Bureau of Mines,1972.
    [42] Crank J. Mathematics of diffusion [M]. London: Oxford University Press,1975.
    [43] Joubert J I, Grein C T. Bienstock D. Sorption of Methane in Moist Coa1[J]. Fuel,1973,52(3):181-185.
    [44] Joubert J I. Effect of Moisture on the Methane Capacity of American Coals[J]. Fuel,1974,53(3):186-191.
    [45] Claskson C R, Bustin B M. Binary gas adsorption/desorption isotherms: effect of moisture andcoal composition upon carbon dioxide selectivity over methane [J]. Int.J.of Coal GeoL,2000,42(4):241-271.
    [46]桑树勋,朱炎铭,张时音等.煤吸附气体的固气作用机理I煤孔隙结构与固气作用[J].天然气工业,2005,25(1):13-15.
    [47]朱履冰.表面与界面物理[M].天津:天津大学出版社,1992.
    [48]桑树勋,朱炎铭,张井等.液态水影响煤吸附甲烷的实验研究:以沁水盆地南部煤储层为例[J].科学通报,2005,50(增刊I):70-75.
    [49]张时音,桑树勋.不同煤级煤层气吸附扩散系数分析.中国煤炭地质,2009,21(3):24-27.
    [50]刘明举.煤与瓦斯突出的热动力模型研究结题报告[R].焦作:焦作工学院,2002.
    [51]颜爱华.煤与瓦斯突出的热动力模型[D].焦作:焦作工学院,2001.
    [52]郭立稳,俞启香,王凯.煤吸附瓦斯过程温度变化的实验研究[J].中国矿业大学学报,2000,29(3):287-289.
    [53]赵志根,唐修义,张光明.较高温度下煤吸附甲烷实验及其意义[J].煤田地质与勘探,2001,29(4):29-30.
    [54]梁冰.温度对煤的瓦斯吸附性能影响的实验研究[J].黑龙江矿业学院学报,2000,10(1):20-22.
    [55]钟玲文,郑玉柱,员争荣等.煤在温度和压力综合影响下的吸附性能及气含量预测[J].煤炭学报,2002,27(6):581-585.
    [56]曾社教,马东民,王鹏刚.温度对煤层气解吸效果的影响[J].西安科技大学学报,2009,29(4):449-454.
    [57]陈昌国,鲜晓红,张代钧等.温度对煤和炭吸附甲烷的影响[J].煤炭转化,1995,18(3):88-92.
    [58] B.B霍多特著,宋士钊,王佑安译.煤与瓦斯突出[M].北京:中国工业出版社,1966.
    [59]李小彦,解光新.孔隙结构在煤层气运移过程中的作用一以沁水盆地为例[J].天然气地球科学,2004,15(4):341-344.
    [60]聂百胜,何学秋,王恩元.瓦斯气体在煤层中的扩散机理及模式[J].中国安全科学学报,2000,10(6):24-28.
    [61] Hower J C. Observation on the role of Bemice coal field (Sullivan County, Pennsylvania)anthracites in the development of coal lification theories in the Appalachians [J]. Int J Coal Geol,1997,33(2):95-102.
    [62]姚多喜,吕劲.淮南谢一矿煤的孔隙研究[J].中国煤田地质,1996,8(4):31-33.
    [63]张红日.构造煤的孔隙特征—河北下花园矿Ⅰ3~Ⅲ3煤层分析[J].山东矿业学院学报,1999,18(1):12-16.
    [64]张井,于冰,唐家祥.瓦斯突出煤层的孔隙结构研究[J].中国煤田地质,1996,8(2):71-74.
    [65]聂继红,孙进步.瓦斯突出煤的显微结构研究[J].东北煤炭技术,1996,(6):40-42.
    [66]徐龙君,鲜学福,刘成伦,张代钩.突出区煤的孔隙结构特征研究[J].矿业安全与环保,1999,(2):25-27.
    [67] Frisen WI, Mikula RJ. Mercury Porosimetry of Coals [J]. Fuel,1988,67(11):1516-1520.
    [68]琚宜文,姜波,侯泉林等.华北南部构造煤纳米级孔隙结构演化特征及作用机理[J].地质学报,2005,79(2):269-285.
    [69]琚宜文,李小诗.构造煤超微结构研究新进展[J]自然科学进展,2009,19(2):131-140.
    [70]琚宜文,姜波,侯泉林等.煤岩结构纳米级变形与变质变形环境的关系[J].科学通报,2005,50(17):1884-1892.
    [71]郝吉生,袁崇孚.构造煤及其对煤与瓦斯突出的控制作用[J].焦作工学院学报,2000,19(6):403-406.
    [72]吴俊,金奎励,童有德等.煤孔隙理论及在瓦斯突出和抽放评价中的应用[J].煤炭学报,1991,16(3):86-95.
    [73]郭德勇,韩德馨,王新义.煤与瓦斯突出的构造物理环境及其应用[J].北京科技大学学报,2002,24(6):582-592.
    [74]降文萍,宋孝忠,钟玲文.基于低温液氮实验的不同煤体结构煤的孔隙特征及其对瓦斯突出影响[J],煤炭学报,2011,36(4):609-614.
    [75]张子敏,张玉贵.瓦斯地质规律与瓦斯预测[M].北京:煤炭工业出版社,2005.
    [76]张慧.煤中显微裂隙的成因类型及其研究意义[J].岩石矿物学杂志,2002,21(3):279-284.
    [77]石强,潘一山.煤体内部裂隙和流体通道分析的核磁共振成像方法研究[J].煤矿开采,2005,10(6):7-9.
    [78] A. Busch, Y. Gensterblum, Bernhard M. Krooss. Investigation of High-pressure SelectiveAdsorption/Desorption Behaviour of CO2and CH4on Coals: An experimental study [J].International Journal of Coal Geology,2006,66(1-2):53~68.
    [79] Gra yna Ceglarska-Stefańska, Katarzyna Zarebska. Sorption of carbon dioxide–methanemixtures [J]. International Journal of Coal Geology,2005,62(4):211~222.
    [80]张玉涛,王德明.煤孔隙分形特征及其随温度的变化规律[J].煤炭科学技术,2007,35(11):73-77.
    [81]琚宜文,姜波,王桂樑,侯泉林等.构造煤结构及储层物性[M].徐州:中国矿业大学出版社,2005.
    [82]叶欣,刘洪林,王勃等.高低煤阶解吸机理差异性分析[J].天然气技术,2008,2(2):19-22.
    [83]何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学出版社,1995.
    [84]近藤精一,石川达雄,安部郁夫.吸附科学,李国希译.北京:化学工业出版社,2005.
    [85]何学秋,聂百胜.孔隙气体在煤层中扩散的机理[J].中国矿业大学学报,2001,30(1):1-4.
    [86]桑树勋,朱炎铭,张井等.煤吸附气体的固气作用机理-煤吸附气体的物理过程与理论模型[J].天然气工业,2005,25(1):16-21.
    [87]易俊,姜永东,鲜学福.煤层微孔中甲烷的简化双扩散数学模型[J].煤炭学报.2009,34(3):355-366.
    [88]靳朝辉.离子交换动力学的研究[D].天津:天津大学,2004.
    [89] Yoshida H, Kataoka工Ikeda S. Intraparticle mass transfer in bidispersed porous ion exchangerpart I: isotopicio ne xchange [J]. Can.J. Chem. Eng,1985,63:422-435.
    [90] Gray P G, Do D D. A graphical method for determining pore and surface diffusivities inadsorption systems [J]. Ind. Eng.Chem. Res,1992,31:1176-1182.
    [91] Jun Yi, I.Yücel Akkutlu, C. zgen Karacan, C.R. Clarkson. Gas sorption and transport in coals: Aporoelastic medium approach [J]. International Journal of Coal Geology,2009,77(1-2):137-144.
    [92] Helferich FG. Models and physicalerality in ion-exchange kinetics [J]. React. Polym,1990,13(1-2):191-194.
    [93] Ruckenstein E, Vaidyanathan A S, Youngquist G R. Sorption by solids with bidisperse porestructures [J].Chem.Eng.Sci,1971,26:1305-1318.
    [94] Weatherley L R, Tunrer J C R. Ion-exchange kinetics comparison between a macroporous and agel resin [J]. Trans.Inst.Chem.Eng,1976,54:89-94.
    [95] Patell S, Turner J C R. Equilibrium and sorption properties of some porous ion-exchangers [J].Process Technol,1979,1(1):42-49.
    [96] Douglas M. Smith, Frank L.Williams. Direct method of determining the methane content of coal-a modification [J]. FUEL,1984,63(3):425-427.
    [97] Peter J. Crosdale, B. Basil Beamish, Marjorie Valix. Coalbed methane sorption related to coalcomposition [J]. International Journal of Coal Geology,1998,35:147-158.
    [98] Gamson PD, B. Basil Beamish, Johnson D. Coal microstructure and micropermeability and theireffects on natural gas recovery [J]. Fule,1993,72(1):87-99.
    [99] Clarkson C R, Bustin RM. The effect of pore structure and gas pressure upon the transportproperties of coal: a laboratory and modeling study.2. Adsorp tion rate modeling [J]. Fuel,1999,78(11):1345-1362.
    [100] J.Q. Shi, S. Durucan. A bidisperse pore diffusion model for methane displacement desorption incoal by CO2injection [J]. Fuel,2003,82(10):1219-1229.
    [101] C. zgen, Karacan. An effective method for resolving spatial distribution of adsorption kineticsin heterogeneous porousmedia: application for carbon dioxide sequestration in coal [J]. ChemicalEngineering Science,2003,58(20):4681-4693.
    [102]聂百胜,郭勇义,吴世跃等.煤粒瓦斯扩散的理论模型及其解析解[J].中国矿业大学学报,2001,30(1):19-22.
    [103] A.D. Alexeev, E.P. Feldman,T.A. Vasilenko. Methane desorption from a coal-bed [J]. Fuel,2007,86(16):2574-2580.
    [104] C.Bertard, B.Bruyet, J.Gunther. Determination of Desorbable Gas Concentration of Coal (DirectMethod), International Journal of Rock Mechanics and Mineral Science,1970,7(1):43-65.
    [105] Kissell, F.N. Meculloch. The Direct Method of Determining Methane Content of Coalbeds forVentilation Design [M]. U.S. Bureau of Mines Report of Invstiegations, RI7767,1973.
    [106] D.M.Smith and F.L.Williams. A New Technique for Defermining the Methane Content of Coal
    [C]. Proceedings of the16th Intersociety Energy Conversion Engineering Conference, Atlanta,GA,1981.
    [107] Douglas M. Smith, Frank L.Williams. Diffusion models for gas production from coals:application to methane content determination [J]. FUEL,1984,63(2):251-255.
    [108] J.P. Seidle, R.S.Metcalfe. Development of Coalbeds Methane [M]. SPE23025,1991.
    [109]于良臣.地质勘探过程中应用解吸法直接测定煤层瓦斯含量的试验研究[R].抚顺:煤炭科学研究总院抚顺分院,1981.
    [110]包剑影主编,阳泉煤矿瓦斯治理技术[M].北京:煤炭工业出版社,1996.
    [111]贾东旭,王兆丰,袁军伟等.我国地勘解吸法存在的问题分析[J].煤炭科学技术,2006,34(6):88-90.
    [112] William P Diamond, Steven J Schatzel. Measuring the gas content of coal: A review [J].International Journal of Coal Geology,1998,35(1-4):311-331.
    [113] H.Janas等.西德用测定值方法早期预测瓦斯突出危险.《国外煤和瓦斯突出资料汇编》第一集,1978.
    [114]陶玉梅.煤的钻屑瓦斯解吸指标△h2的实验室考查及应用[J].煤矿安全,2004,35(8):15-17.
    [115]王日存,王佑安.钻孔钻屑量测定及其与突出危险性关系[J].煤矿安全,1983,14(9):1-8.
    [116]邵军. K1指标的实验室研究[J].煤矿安全,1994,25(12):1-5.
    [117]赵旭生,刘胜.钻屑瓦斯解吸指标K1值测定误差的影响因素[J].矿业安全与环保,2002,29(2):3-5.
    [118]镡志伟,程五一,牛聚粉等.利用钻屑解吸法测定煤层瓦斯压力的应用[J].华北科技学院学报,2006,3(1):17-19.
    [119]唐本东,邓全封.用井下实测煤的瓦斯解吸强度确定煤层瓦斯压力和瓦斯含量[J].煤矿安全,1987,19(8):1-9.
    [120]国家安全生产监督管理总局,国家煤矿安全监察局.防治煤与瓦斯突出规定[M].北京:煤炭工业出版社,2009.
    [121] MT/T752-1997,煤的甲烷吸附量测定方法(高压容量法)[S].北京:煤炭工业部,1997.
    [122] GB/T19560-2004.煤的高压等温吸附试验方法容量法[S].北京:中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会,2004.
    [123] GB/T212-2008.中华人民共和国国家标准-煤的工业分析方法[S].北京:中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会,2008.
    [124] GB/T217-2008.煤的真相对密度测定方法[S].北京:中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会,2008.
    [125] GB/T23561.12-2010.根据煤的坚固性系数测定方法[S].北京:中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会,2010.
    [126]张庆玲.煤储层条件下水分—平衡水分测定方法研究[J].煤田地质与勘探,1999,4(27):25-27.
    [127] GB4632—1997,煤的最高内在水分测定方法[S].北京:煤炭工业部,1997.
    [128]吴世跃.煤层气与煤层耦合运动理论及其应用的研究——具有吸附作用的气固耦合理论[D].沈阳:东北大学,2005.
    [129]绍军.关于煤屑瓦斯解吸经验公式的探讨[J].煤炭工程师,1989,(3):21-27.
    [130]李云波.构造煤瓦斯解吸初期特征实验研究[D].河南:河南理工大学,2011.
    [131]李宏.环境温度对颗粒煤瓦斯解吸规律的影响实验研究[D].河南:河南理工大学,2011.
    [132] Ruppel T C. Adsorption of methane on dry coal at elecated pressure [J]. Fuel,1974(53):152-162.
    [133]张晓东,桑树勋,秦勇等.不同粒度的煤样等温吸附研究[J].中国矿业大学,2005,34(4):427-432.
    [134]张天军,许鸿杰,李树刚等.粒径大小对煤吸附甲烷的影响[J].湖南科技大学学报:自然科学版,2009,24(1):9-12.
    [135]许江,刘东,彭守建等.煤样粒径对煤与瓦斯突出影响的试验研究[J].岩石力学与工程学报,2010,29(6):1231-1237.
    [136]张占存,马丕梁.水分对不同煤种瓦斯吸附特性影响的实验研究[J].煤炭学报,2008.33(2):144-147.
    [137]李祥春,聂百胜.煤吸附水特性的研究[J].太原理工大学学报,2006,37(4):417-419.
    [138]聂百胜,何学秋,聂百胜.煤吸附水的微观机理[J].中国矿业大学学报,33(4):379-383.
    [139]降文萍,崔永君,钟玲文.煤中水分对煤吸附甲烷影响机理的理论研究[J].天然气地球科学.2007,18(4):576-583.
    [140]李惠娟.矿井降温中的空气调节技术[J].暖通空调,1994,(13):43-45.
    [141]李红阳,朱耀武,易继承.淮南矿区地温变化规律及其异常因素分析[J].煤矿安全,2007,38(11):68-71.
    [142]何志刚.温度对构造煤瓦斯解吸规律的影响研究[D].河南:河南理工大学,2010.
    [143]张玉涛,王德明,仲晓星.煤孔隙分形特征及其随温度的变化规律[J].煤炭科学技术,2007,35(11):73-76.
    [144]李志强.重庆沥鼻峡背斜煤层气富集成藏规律及有利区带预测研究[D].重庆:重庆大学,2008.
    [145]翁成敏,潘志贵,峰峰煤田煤的X射线衍射分析[J].地球科学.1981,(1):214-221.
    [146]张玉贵.构造煤演化与力化学作用[D].太原:太原理工大学,2006.
    [147]琚宜文,姜波,侯泉林等.构造煤结构———成因新分类及其地质意义[J].煤炭学报,2004,29(5):513-517.
    [148]徐龙君,鲜学福.突出区煤的化学组成和大分子结构研究[J].重庆大学学报(自然科学版),1997,20(2):69-73.
    [149]姜波,秦勇,金法礼.高温高压实验变形煤XRD结构演化[J].煤炭学报,1998,23(2):188-193.
    [150]琚宜文,姜波,王桂樑等.构造煤结构与储层物性[M].徐州:中国矿业大学出版社,2005.
    [151]张玉贵,曹运兴,李凯琦.构造煤顺磁共振波谱特征初探[J].焦作工学院学报,1997,16(2):37-40.
    [152]郝琦.煤的显微孔隙形态特征及其成因探讨[J].煤炭学报,1987,12(4):51-57.
    [153]杨思敬,杨福蓉,高照祥.煤的孔隙系统和突出煤的孔隙系统[A].中国矿业大学,第二届中国国际采矿科学技术会论文集[C].徐州:中国矿业大学出版社,1991.
    [154]秦勇.中国高煤级煤的显微岩石学特征及结构演化[M].徐州:中国矿业大学出版社,1994.
    [155] Gan H, Nandi S P, Walker P L. Nature of porosities in the American coals, Fuel,51(3):272-277.
    [156]谈幕华,黄蕴元.表面物理化学[M].北京:中国建筑工业出版社,1985.
    [157]钟玲文,张慧,员争荣等,煤的比表面积、孔体积及其对煤吸附能力的影响,煤田地质与勘探[J],2002,30(3):31-35.
    [158]邹艳荣,杨起.煤中的孔隙与裂隙[J].中国煤田地质,1998,10(4):39-40.
    [159]唐书恒,蔡超,朱宝存等.煤变质程度对煤储层物性的控制作用[J].天然气工业.2008,28(12):30-33.
    [160]吴俊.中国煤成烃的基本理论与实践[M].北京:煤炭工业出版社,1994.
    [161]张晓东,秦勇,桑树勋.煤储层吸附特征研究现状及展望[J].中国煤田地质,2005,17(1):16-29.
    [162]严继民,张启元,高敬琮.吸附与凝聚——固体的表面和孔[M].北京:科学出版社,1986.
    [163]吴俊,我国富烃煤层(突出煤层)岩石学和孔隙特征及成烃机理研究—兼论煤成油[D].北京:中国矿业大学研究生部,1989.
    [164] J H de Boer.The shape of capillaries, in:Everett D H, Stone F S,ed.The structure and propertiesof porous materials [M]. London: Butterworth,1958.
    [165]陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,2001,26(5):552-556.
    [166]降文萍,宋孝忠,钟玲文.基于低温液氮实验的不同煤体结构煤的孔隙特征及其对瓦斯突出影响的研究[J].煤炭学报,2011,36(4):609-614.
    [167]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005.
    [168]何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学出版社,1995.
    [169] Houst Y F, wittmann F H. Influence of porosity and water content on the diffusivity of CO2andO2through hydrated cement paste[J]. Cement and Concrete Research,1994,24(6):1l65-1176.
    [170]王绍亭,陈涛.动量、热量与质量传递[M].天津:天津科学技术出版社,1986.
    [171] A.T.艾鲁尼.煤矿瓦斯动力现象,唐修义,宋德淑,王荣龙,译[M].北京:煤炭工业出版社,1992.
    [172]刘志勇,孙伟,周新刚.混凝土气体扩散系数测试方法理论研究[J].混凝土,2005,193(11):3-9.
    [173]李玉辉,李育辉,崔永君,钟玲文等.煤基质中甲烷扩散动力学特性研究[J].煤田地质与勘探,2005,33(6):31-34.
    [174] Smith, D.M., Williams, F.L. Diffusion models for gas production from coal-determination ofdiffusion parameters [J]. Fuel,1984,63:256-261.
    [175] Beamish, B.B., Crosdale, P.J. The influence of maceral content on the sorption of gases by coaland the association with outbursting [A]. In: Lama, R.D._Ed.., Int. Symposium-Cum-Workshopon Management and Control of High Gas Emissions and Outbursts in Underground CoalMines[C]. National Organising Committeeof the Symp., Wollongong, pp.353-361.
    [176] Yi J, Akkutlu I Y, Deutsch C V. Gas adsorption/diffusion in bidisperse coal particles:investigation for an effective diffusion coefficient in coalbeds [J]. J.of Canadian Pet Tech.,2008,47(10):20-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700