天泰1号对Aβ_(25-35)联合D-半乳糖诱导老年性痴呆模型的干预作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过筛选,将筛选合格的健康正常SD大鼠40只,随机分为正常对照组,假手术对照组、AD对照模型组、模型+中药低剂量组、模型+中药高剂量组,每组各8只。参照文献方法,应用Aβ25-35,依照大鼠脑立体图谱,通过脑立体定位仪,建立AD大鼠病理模型,通过对大鼠进行学习训练、定位航行、行为学、病理形态学观察、以及细胞凋亡、内质网应激(ERS)重要蛋白表达水平的检测,以期阐明本方法建立的阿尔茨海默病(AD)模型大鼠学习记忆功能的改变,以及天泰1号对Aβ25-35诱导的AD大鼠模型的学习记忆能力的影响及其药理药效机理。
     本实验包括两部分:一、动物行为学实验研究;二、海马组织病理观察、细胞凋亡及ERS重要蛋白检测。
     利用Morris水迷宫进行动物筛选,大鼠适应性饲养3天后进行Morris水迷宫实验,Morris水迷宫实验测试过程分学习训练、定位航行试验二部分。将安全平台放置在西南象限(直径150cm的圆形不锈钢水池被软件平均分为四个象限,即NE、SE、SW、NW)的固定位置(离池壁20cm),向Morris不锈钢水池中注入自来水,以水面高过安全平台2cm为宜,水池中水温保持在24-25℃。将摄像装置安装在水池的正上方,按仪器说明书连接好摄像机、计算机,整套实验设备安装在光线良好、实验环境固定的房间。先运行计算机,设定参数后进行实验。实验前将动物不放入水池,软件先确认背景,然后放入大鼠于安全台上,软件自动识别大鼠为目标后开始实验。将定位航行时间超过平均值30%的大鼠剔除,剩余大鼠作为实验用。
     阿尔茨海默病(Alzheimer's Disease,AD)大鼠模型的建立:在质量分数为4%的戊巴比妥钠腹腔注射麻醉下,用脑立体定位仪固定大鼠,取平颅头位,根据大鼠脑立体定位图谱,确定前囟后3.6mm、中线旁2.5mm为颅骨表面标志点,颅骨表面下3.0mm为海马背侧部,用1ul微量注射器5min内缓慢注入凝聚态Aβ25-351ul,予以留针10min。术后给予青霉素钠盐5万单位肌注,每天一次。正常组大鼠颈背部注射0.9%生理盐水0.6ml/kg,AD模型组和假手术组大鼠均皮下注射D-半乳糖150mg/kg。第26天开始Morris水迷宫实验,连续实验5天,将行为学结果进行统计学分析。末次行为学实验结束后断头处死大鼠,取左半脑用4%多聚甲醛固定。根据行为学结果初步评价AD模型的成功与否。
     在制备AD大鼠疾病模型成功的基础上,按以上方法制备大鼠AD疾病模型。将大鼠随机分为5组,即天泰1号方大、小剂量2个组, AD模型组与正常对照组和假手术组,每组8只大鼠(SD大鼠、SPF级、雄性、240-270g,均饲养在屏障环境中,常规给食物和水),天泰1号方大、小剂量组大鼠分别灌胃给予10%、5%的天泰1号方10ml/kg,假手术组和正常对照组则以相同的方式给予同体积的生理盐水,每日1次,连续给药30天。从给药第26天开始进行行为学实验,实验内容包括学习训练和定位航行实验二部分。
     末次行为学实验结束后断头处死大鼠,取全脑。其右脑保存于液氮中,左脑用4%多聚甲醛固定。左脑进行常规尼氏和刚果红染色,观察脑组织结构、细胞的形态和海马CA1、CA3和DG区神经元数量;各组切片中随机选5张进行病理学观察,自动图像分析系统计算出海马DG背侧细胞带的平均神经元数;各组切片中随机选5张观察β-AP和磷酸化tau蛋白;各组切片中随机选5张镜下观察,统一放大倍数(×400)下,每张切片的海马CA1、CA3和DG区分别随机取4个视野,自动图像分析系统计算所要观察部位的平均阳性细胞数;取各组脑组织切片,用TUNEL法检测细胞凋亡,重点观察海马神经元凋亡情况,显微镜下观测,每张切片随机选取5个高倍视野,计算细胞凋亡指数(AI);取各组脑组织切片,免疫组织化学法Leica QWin V3分析软件定量检测各组动物海马组织PERK、GRP78/Bip、CHOP蛋白表达水平。
     统计学方法:先对所有数据进行正态性检验及方差齐性检验。服从正态分布计量资料组间比较采用单向方差分析(One-way ANOVA),组间多重比较采用LSD法(方差齐时)或Dunnett T3法(方差不齐时)。不服从正态分布及方差齐性的计量资料采用非参数检验方法,多组间比较用Kruskal-Wallis H检验,组间多重比较采用Nemenyi法检验;造模前后定位航行成绩比较不满足正态分布及方差齐性,采用Wilcoxon符号秩和检验。所有数据用SPSS13.0统计分析软件处理,显著性水准取a=0.05(双侧),P<0.05为差异有统计学意义。
     1.Morris水迷宫是检测实验动物学习记忆水平的重要工具,学习测试有利于筛选具有正常学习记忆能力的动物,记忆测试可以判断动物记忆储存能力及提取再现能力。经过学习和训练可以把正常对照组和模型组明显区分开来,正常对照组学习记忆能力强,空间定位能力好,模型组学习记忆能力明显下降,逃避潜伏期明显延长,提示Aβ25-35造成大鼠学习记忆能力的损害。
     2.通过Morris水迷宫测试,天泰1号方大、小剂量组与AD模型组比较,在学习训练、定位航行实验时达到安全平台的时间和距离缩短,提示天泰1号能显著改善AD大鼠的学习记忆能力。
     3.常规尼氏染色各组切片中随机选5张进行病理学观察,自动图像分析系统计算出海马DG背侧细胞带的平均神经元数。方差分析结果显示,各组大鼠海马DG背侧细胞带的神经元数量比较差异有统计学意义(F=75.433,P<0.001)。其中,AD模型组较正常组及假手术组神经元数量减少,差异有显著性意义(P<0.001);天泰高剂量组及天泰低剂量组较AD模型组神经元数量增加,差异有显著性意义(P<0.001)。
     4.淀粉样蛋白刚果红染色发现,AD模型组与正常组、假手术组相比较淀粉样蛋白斑块显著增多,与AD模型组相比较,中药组淀粉样斑块减少,提示天泰1号具有抗淀粉样斑块形成的药效作用。
     5.β-AP免疫组织化学染色,自动图像分析系统计算所要观察部位的平均阳性细胞数。各组大鼠海马CA1、CA3和DG区平均阳性细胞数比较:方差分析显示,各组大鼠海马CA1、CA3和DG区平均阳性细胞数比较,差异有统计学意义(F=20.065,P<0.001;F=24.007,P<0.001;F=22.987,P<0.001)。AD模型组较正常组、假手术组CA1、CA3和DG区平均阳性细胞数显著增多,差异有显著性意义(P<0.001);天泰高剂量组、天泰低剂量组与AD模型组比较,CA1、CA3和DG区平均阳性细胞数明显减少,差异有统计学意义(P<0.05)。
     6.磷酸化tau蛋白免疫组织化学染色各组大鼠海马CA1、CA3和DG区平均阳性细胞数比较:方差分析显示,各组大鼠海马CA1、CA3和DG区平均阳性细胞数比较,差异有统计学意义(F=16.982,P<0.001;F=21.510,P<0.001;F=15.971,P<0.001)。AD模型组较正常组、假手术组CA1、CA3和DG区平均阳性细胞数显著增多,差异有显著性意义(P<0.001);天泰高剂量组、天泰低剂量组与AD模型组比较,CA1、CA3和DG区平均阳性细胞数明显减少,差异有统计学意义(P<0.05)。
     7.左半脑组织TUNEL法检测细胞凋亡实验发现,方差分析显示各组凋亡率差异有统计学意义(F=123.478,P<0.001)。组间多重比较显示,AD模型组凋亡率较正常组及假手术组明显增高,差异有显著性意义(P<0.001);天泰高、低剂量组较AD模型组神经元细胞凋亡率明显降低,差异有统计学意义(P<0.001:P<0.043)。
     8.免疫组织化学法检测各组动物海马组织ERS重要相关蛋白,各组PERK、GRP78/Bip、CHOP蛋白平均灰度值比较:方差分析显示,各组PERK、GRP78/Bip、CHOP蛋白平均灰度值比较,差异有统计学意义(F=186.104,P<0.001;F=312.133,P<0.001;F=2765.613,P<0.001)。AD模型组与正常组、假手术组比较,PERK、GRP78/Bip、CHOP蛋白平均灰度值显著降低,差异有统计学意义(P<0.001);天泰高剂量组、天泰低剂量组与AD模型组比较,PERK、CHOP蛋白平均灰度值明显增高,差异有统计学意义(P<0.05),天泰高剂量组、天泰低剂量组与AD模型组比较,GRP78/Bip蛋白平均灰度值明显降低,差异有统计学意义(P<0.05),提示天泰1号方在抗AD机理可能与其影响细胞的ERS有关。
     本研究以Aβ25-35联合D-半乳糖建立AD动物模型,并观察天泰1号对该病理模型认知障碍的影响和海马组织病理观察、细胞凋亡及ERS重要蛋白检测。结果显示Aβ25-35联合D-半乳糖建立的AD病理模型学习记忆认知功能显著障碍,天泰1号对该病理模型的认知功能显著障碍具有改善作用,研究表明Aβ25-35联合D-半乳糖可以成功建立复合性AD动物病理模型,该模型既模拟了老年性痴呆的认知行为障碍,又具有整体衰老的体内生理病理环境,为深入开展老年性痴呆的发病机制及药效学靶点研究提供了可行的在体模型;PERK为ERS感应和保护性信号通路调控蛋白、GRP78/Bip为内质网应激早期标志和保护性蛋白、CHOP为凋亡促进因子,天泰1号能够显著减少PERK、CHOP蛋白的表达水平,提高GRP78/Bip的表达水平,提示,天泰1号的抗AD作用机理涉及其抗凋亡、抗内质网应激等多重途径。
First of all, we screened 40 healthy SD rats. Then the rats were randomly divided into five groups as follows (8 in each group):normal control group, sham-operated group, Alzheimer disease (AD) model, AD model and low-dose traditional Chinese medicine group, AD model and high-dose traditional Chinese medicine group. In accordance with Reference and maps, by using of the Aβ25-35 and brain stereotaxic apparatus,According to the three-dimensional map of rat brian,the AD pathological model in rats were established. In order to demonstrate the ability of study and memory significantly decreased in the AD rats that induced by Aβ25-35 united D-galactose, and Tiantai NO.1 improved the ability of study and memory significantly, we studied the training of study, locational navigation, and behavior in rats, and we observed the pathologic change and apoptosis, meanwhile we detected important protein of ERS,the mechanism involved in anti-apoptosis, anti-endoplasmic reticulum stress.
     This research included two major parts:The first experiment was about the behavior of AD rats, and the second one was Histopathological observation of the hippocampus、apoptosis、and ERS important protein detection.
     (1) Experimental study about the behavior of AD rats. Morris water maze was used for screening rats. First, the rats were rearing in barrier environment and seeding the conventional food and water for three days. Later, the rats entered the experiment of Morris water maze. The experiment of Morris water maze includes two parts:training of study, locational navigation. A circular stainless steel tank with diameter 150cm was divided into four quadrants by software, namely, northeast (NE), southeast (SE), southwest (SW), and northwest (NW). Safe platform was placed in a fixed position (20cm away from the tank wall) in the SW quadrant. The water was injected into the stainless steel tank with the water 2cm higher than the safe platform and the temperature maintained at 24-25℃. The camera device was installed just above the tank, and the camera and computer was connected according to the instructions. All of the experimental equipments were installed in a room with a good light and fixed experimental environment. We started the experiment after running the computer and setting the parameters. First, the software confirmed the background. Second, the rat was place on the safe platform. Third, the software automatically recognized the rat as goals. Lastly, we started the experiment. The rats whose journey time was more than 30% to the average were removed, the remaining rats were used for experiments. The establishment of Alzheimer's Disease model in rats. The rats were anesthetized by intraperitoneal injection with 4% aqueous solution of sodium pentobarbital. Then these rats were pronely fixed in the brain three-dimensional positioning instruments. At first we conventionally opened the skin at the top of the head, the marker points was beside 2.5mm to the center line of the skull and behind 3.6mm to the bregma. We inserted the micro-syringe into the hippocampus 3.0mm depth under the parietal bone.lul of Aβ25-35 was slowly injected into the hippocampus within 5 minutes and the micro-syringe was removed for 10 minutes. After that 50000 units of penicillin was gived intramuscularly once a day. In addition, the normal control group of rats were subcutaneous injected 0.6ml/kg of 0.9% normal saline solution in the back and neck outside each rat, AD model group and sham-operated group of rats were subcutaneous injected 150mg/kg of D-galactose each rat. From the 26 after the operation, Morris water maze experiment was began, and the experiment lasted for 5 days. The behavioral results were analyzed statistically. At the end of the behavior experiment all rats were killed through the decapitation. The left brains were fixed with 4% paraformaldehyde. We evaluate the AD model in accordance with the behavioral results.
     The AD model rats were randomly divided into 3 groups,Tiantai NO.1 high-dose group,Tiantai NO.1 low-dose group, and AD model group, while there was the establishment of normal control group and sham-operated group. Each group had 8 rats, which were SD rats, SPF-class, male, weight 240-270g, were rearing in barrier environment and seeding the conventional food and water. Tiantai NO.1 high-dose group and Tiantai NO.1 low-dose group were given oral 10% and 5% of Tiantai NO.1, respectively. The volume was lOml/kg. The rats of the sham-operated group and the normal control group were given the same volume of normal saline in accordance with the manner above. The administration was once a day for 30 days continuously. The behavioral experiments were started from the 26th day of the administration, including the training of studying, locational navigation.
     (2)Histopathological observation of the hippocampus, apoptosis,and ERS important protein detection. At the end of behavior experiment all rats were killed through the decapitation. The left brain was fixed with 4% paraformaldehyde, and the right brain was stored in liquid nitrogen. The left brain was regularly stained by Nissl and Congo red staining and observed the morphology of organizational structure and neurons in the CA1, CA3 and DG area of hippocampus. Slices in each group were randomly selected five for pathological observation, and the average number of neurons in the dorsal DG area of hippocampus were calculated by automatic image analysis system. Slices in each group were randomly selected five for observation ofβ-AP and phosphorylated tau protein. Slices in each group were randomly selected five for microscopic observation (magnification×400), and per slice of CA1, CA3 and DG areas were randomly taken four visual field, then the average number of positive cells in the areas were calculated by automatic image analysis system. We studied the neuronal apoptosis in brain tissue, especially the tissue of hippocampus by TUNEL method. Per slice was randomly selected 5 high-power visual field for calculation of apoptosis index (AI). And We observed the expression of CHOP、PER、Bip protein in the tissue of hippocampus each group by immunohistochemistry and Analysis software Leica QWin V3.
     First,all the date is dealed with normality test and homogeneity of variance test.the two groups date obey normal distribution is used to compare by the(One-Way ANOVA)multiple comparisons between groups using LSD method(when variance is homogeneity)or Dunnett T3 method(when variance is not homogeneity)obey normal distribution and homogeneity of variance of the measurement date usin non-parametric test methods.multiple comparison use the Kruskal-Wallis H test;to compare the place navigation performance before and after modeling,wich does not meet the normal distribution and homogeneity of variance using the Wilcoxon test.all date use the statistical analysis software SPSS13.0 to deal with,significant level takea=0.05(Bilateral),P<0.05 as statistically significant difference
     1.Morris water maze is an important tool to test the ability of leaning and memory in experimental animals. leaning test is conducive to screening animals with normal ability of leaning and memory, and memory test can determine the memory storage ability and reproduction ability of animal. After investigating the training of study in rats, we can separate the normal control group and the model group obviously with statistical significance (P<0.05):The normal control group had better ability of leaning, memory and spatial orientation. The ability of leaning and memory was significantly decreased, and escaping latency was significantly longer in the model group, suggesting that Aβ25-35 caused damage to the ability of leaning and memory in rats.
     2.Through the Morris water maze experiment, we found the distance to reach safe platform and the positioning time were shorter in the AD model group compared with others. It suggested that Tiantai NO.1 could improve significantly the ability of learning and memory in AD rats.
     3.Conventional Nissl's staining sections in each group was randomly selected five for pathological observation, and the average number of neurons in the dorsal DG area of hippocampus was calculated by automatic image analysis system. Analysis of variance show that the number of neurons in each group of DG dorsal hippocampus of rats,the difference is statistically significant(F=75.433,P<0.001).the number of cells in ADmodel group are significantly decreased than the normal group and sham operation group,the difference is statistically significant (P<0.001); compared with the AD model group Tiantai NO.1 high-does group and Tiantai NO.1 low-dose group are significantly decreased,the difference is statistically significant (P<0.001)
     4.Through amyloid Congo red staining, we found the amyloid plaques was significantly increased in the AD model group than the normal group and sham-operated group. Compared with the AD model group, the amyloid plaques was decreased in traditional Chinese medicine groups, suggesting that Tiantai NO.1 could prevent the formation of amyloid plaques.
     5.Stainingβ-AP by immunohistochemistry, and calculated the average number of positive cells in certain area by automatic image analysis system.comparing The average number of positive cells In each group rats of the hppocampal CA1, CA3 and DG areas, the difference was statistically significant (F=20.065, P<0.001; F=24.007, P<0.001; F=22.987, P<0.001).The positive cells of the AD model group CA1、CA3 and DG areas were significantly increased Than normal group and sham-operated group, the difference was statistically significant (P<0.001); comparing to the AD model group, the Tiantai NO.1 high-dose group and Tiantai NO.1 low-dose group, the positive cells in CA1, CA3 and DG areas were statistically significant (P<0.05); Tiantai NO.1 low-dose group compared to the Tiantai NO.1 high-dose group, the difference was statistically significant(P<0.001).
     6.Staining the Phosphorylated tau protein by immunohistochemistry, and calculating the average number of positive cells in certain area by automatic image analysis system.comparing The average number of positive cells In each group rats of the hppocampal CA1, CA3 and DG areas, the difference was statistically significant (F=16.982,P<0.001; F=21.510, P<0.001; F=15.971, P<0.001) The positive cells of the AD model group CA1、CA3 and DG areas were significantly increased Than normal group and sham-operated group,the difference was statistically significant (P<0.001); comparing to the AD model group, the Tiantai NO.1 high-dose group and Tiantai NO.1 low-dose group, the positive cells in CA1, CA3 and DG areas was statistically significant (P<0.05).
     7.From the experiment by TUNEL method on the tissue of left brain we found the neurons apoptosis were Statistically significant by the ONE-WAY ANOVA (F=123.478,P<0.001);multiple comparison between the two groups showed that the rate of apotosis of AD model group was higher than normal group and sham-operated group,the difference was significant(P<0.001);the rate of apoptosis of Tiantai NO.1 high-dose group and Tiantai NO.1 low-dose group was lower than in AD model group,the difference was significant(P<0.001;P<0.043).
     8.through detecting important associated proteins of ERS by immunehisto-chemistry quantification, comparison the average gray value of each group PERK、GRP78/Bip、CHOP protein:variance analysis showed that comparison the average gray value of each group PERK、GRP78/Bip、CHOP protein, the difference was statistically significant (F=186.104, P<0.001; F=312.133, P<0.001; F=2765.613, P<0.001). AD model group compared to the normal group and sham-operated group the average gray value of the PERK, GRP78/Bip, CHOP protein was decreased,the difference was statistically significantl(P<0.001); Tiantai NO.1 high-dose group and Tiantai NO.1 low-dose group compared to the AD model group, the average gray value of the PERK、CHOP protein was increased, Tiantai NO.1 high-dose group and Tiantai NO.1 low-dose group compared to the AD model group, the average gray value of the GRP78/Bip was decreased the difference was statistically significant (P<0.05), suggesting that Tiantai NO.1 affected ERS of cells when it resisted AD.
     in this study, Aβ25-35 United D-galactose to establish animal models of AD and to observe the effects of Tiantai NO.1 on the pathological model of cognitive impairment,and hippocampal pathology observed, apoptosis, and ERS important protein detection The results showed that Aβ25-35 United D-galactose established AD pathological model of cognitive learning and memory in a significant obstacle, Tiantai NO.1 on the pathological model of cognitive disorders have a significant improvement. Studies have shown that Aβ25-35 United D-galactose compound can be successfully establish the AD pathological animal model, the AD pathological animal model not only simulated senile dementia cognitive behavioral disorder, but also had the overall physiological and pathological environment, the AD pathological animal model for the depth of Alzheimer's disease pathogenesis and pharmacodynamics study provided a Feasible in vivo models; PERK as ERS sensors and protective signaling pathway regulatory protein, GRP78/Bip for endoplasmic reticulum stress Early signs and protective proteins, CHOP for the apoptosis-promoting factor, and Tiantai NO.1 can significantly reduce the PERK, CHOP protein expression level and improve the expression of GRP78/Bip, its role in the mechanism involved in anti-apoptosis, anti-endoplasmic reticulum stress, etc.
引文
[1]吴海琴,姚丽,杜赞,等.Ref-1在阿尔茨海默病大鼠海马CA2区表达的研究.浙江大学学报(医学版),2008,(6):629-633
    [2]Luo X, Weber DA,Zheng J,et al.Clq-calreticulin induced oxidative neurotoxicity:relevance for the neuropathogenesis of Alzheimer's disease[J].J Neurommunol,2003Feb,135(1-2):62
    [3]Hardy JA,Higgins DA. Alzheimer's disease:the amyloid cascade Hypothesis.Science,1992,256:184-185
    [4]盛树力.老年性痴呆:从分子生物学到临床诊断.科学技术文献出版社.北京1999,77-89
    [5]Li YM, Xu M,Lai MT,et al.Photoactivated g-secretase inhibitors directed to the active site covalently label presenilinl.Nature,2000,405 (6787):689-94
    [6]Esler WP, Kimberiy WT, Ostaszewski BL, et al.Transition-state analogue inhibitors of g-secretase binds directly to presenilin-1.Nature Cell Biol,2000,2(7):428-34
    [7]Mathis C A,Wang Y,Klunk W E.Cur.Pharm.Des.2004,10:1469-1492
    [8]Masliah E. Neuropathology:Alzheimer's in real time. Nature 2008; 451(7179): 638-9
    [9]Dineley KT,Westerman M,Bui D,et al Beta-amyloid activates the mitogen-activated protein Kinase cascADe via hippocampal alphanicotinic acetycholine receptors:In vitro and vivo mechanisms relateated to Alzheimmer's disease[J].Jneurosci,2001,21(12):4125.
    [10]吴正治,张梅奎主编.《老年神经病学》[M].北京:学苑出版社,2004:137-146
    [11]江三多,冯国鄞,吴晓东.Alzheimer病与载脂蛋白E ε 4等位基因的关联分 析[J].中华精神科杂志,1996,29(1):15.
    [12]崔天盆,周新,徐红,等.载脂蛋白E基因多态性与散发性老年性痴呆病的关系[J].中国病理生理杂志,2000,16(8):741
    [13]毕胜,王德生,张昱,等.低密度脂蛋白受体相关蛋白基因3号外显子多态性与阿尔茨海默病的相关性研究[J].中国神经精神疾病杂志.2000,26(3):167
    [14]李求兵,梅荣.老年痴呆症的中西医诊断与治疗[M].北京:中国医药科技出版社,1999
    [15]Edelberg.HK,et al,The biology of Alzheimer's disease[J]Mechanisms of Ageing and Development,1996,91
    [16]杜泽英,李晓玉.阿尔采末病与免疫炎症反应的相关性[J].生理科学进展,1998,29(3):253
    [17]McGeerPL,神经退行性变的免疫学机制[J].国外医学.药学分册,1997,24(2):94-97
    [18]李明,李爱媛.Alzheimer病与神经元钙稳态[J].生命的化学,1997,17(3):46-49
    [19]秦斌,王新德.β淀粉样蛋白及Tau蛋白和Alzheimei病关系的研究[J].国外医学.老年医学分册,1995,16(6):267
    [20]骆静,吴镭NSFC资助下的阿尔茨海默病的药物作用靶点的研究[J].中国药理学通报,2005,21(12):1423-8
    [21]仲崇波,徐向华,王晓良.阿尔茨海默病胆碱能学说研究进展[J].中国药理学通报,2003,19(7):727-31
    [22]Dekoskys.Early intervenetion is key to successful management of Alzheimer disease[J]. Alzheimer Dis Assoc Disord,2003,17[4]:99-104
    [23]Zimei B, Yuan S, Callaway DJ E,et al. Molecular alignment wit hin beta 2sheet s in A beta 14-23 fibril s:solid2state NMR experiment sand t heoretical predictions. [J]. Biophysical Journal 2007; 92 (2):594-602.
    [24]Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer's disease. [J]. Neurobiol Aging.2000; 21 (3):383-421.
    [25]Atamna H. Heme binding to amyloid2beta peptide mechanistic role in Alzheimer's disease. [J]. Journal of Alzheimers Disease.2006;10(2-3):255-266.
    [26]Forloni G,Chiesa R. Apoptosis mediated neurotoxicity induced by chronic application of beta amyloid fragment 25-35. [J]. Neuroreport.1993; 4 523-526.
    [27]Robinson SR,Dobson C,Lysons J.Challenges and directions for the pathogen hypothesis of Alzheimer disease [J].Neurobiol Aging,2004,25(5):629-37
    [28]Townsend KP,Obregon D,Quadros A, et al. Proinflammatory and vasoactive effects of Abeta in the cerebrovasculature [J]. Ann N Y AcadSci,2002 Nov,977:65。
    [29]Thomas T,Mclendon C,Sutton ET, et al. Cerebrovascular endothelial dysfunction mediated byβ-amyloid [J]. NeuroReport,1997,8:1387
    [30]Van WE,Davis SJ,Saporito SM. Amyloidβ-protein induces the cerebrovascular cellular pathology of Alzheimer's disease and related disorders[J]. Ann NY Acad Sci,1996,777:297
    [31]Khalil Z,Chen H,Helme RD.Mechanisms underlying the vascular activity ofβ-amyloid proteinfragment at the level of skin microvasculature[J]. Brain Res,1996,736: 206
    [32]Ferreiro E, Resende R, Costa R,et al. An endoplasmic-reticulum-specific apoptotic pathway is involved in prion and amyloid-beta peptides neurotoxicity [J]. Neurobiol Dis,2006,23(3):669-678
    [33]Ito D. Ischemic brain and endoplasmic reticulum stress[J].Nippon Rinsho, 2006,64(Suppl7):127-131.
    [34]Oida Y,Shimazawa M,Imaizumi K,et al. Involvement of en-doplasmic reticulum stress in the neuronal death induced bytransient forebrain ischemia in gerbil[J].Neurocience,2008,151(1):111-119.
    [35]Malhotra JD,Kaufman RJ. Endoplasmic reticulum stressand oxidative stress:a vicious cycle or a double-edged sword[J]. Antioxid Redox Signal,2007,9(12): 2277-2293
    [36]Oyadomari S, Mori M. Roles of CHOP/GADD153 in endo-plasmic reticulum stress[J]. Cell Death Differ,2004,11(4):381-389.
    [37]方欢,申宗候.内质网应激[J].医学分子生物学杂志,2004,1:36-39.
    [38]李载权,周爱儒,唐朝枢.内质网应激反应分子机理研究进展[J].中国生物化学和分子生物学报,2004,20:283-288
    [39]Oyadomari S,Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress [J].Cell Death and Differentiation,2004,11:381-389
    [40]李载权,周爱儒,唐朝枢.内质网应激反应分子机理研究进展[J].中国生物化学和分子生物学报,2004,20:283-288.
    [41]邢长伟,张学峰,王景洪.从肾论治老年性痴呆研究进展.陕西中医学院学报,2004;27(1):71-73
    [42]郑明荣,郝百鸣.中医药治疗老年性痴呆研究进展.浙江中西医结合杂志,2008,18(1):65-66.
    [43]郭海英.从心脾论治老年性痴呆.中华中医药杂志,2007:22(5):193.
    [44]李鹏英.心、肝、肾在老年性痴呆中的作用[J].长春中医学院学报,2000,16(1):7-8
    [45]杨柏灿,叶善龙Alzheimer痴呆的中医病因病机探讨[J].中国中医基础医学杂志,1991,5(1):51-54
    [46]任林.从脑主神经元谈老年性痴呆的病因病机[J].福建中医药.2001,32(3):3-5
    [47]杨文明.老年性痴呆病机探讨[J].中国中医药杂志,2001,8(4):11-13
    [48]李求兵,梅荣.老年痴呆症的中西医诊断与治疗[M].北京:中国医药科技出版社,1999
    [49]黄诚.Alzheimer病脑内发现第三种病理损害[J].生理科学进展,1998,29(1):34
    [50]李卫平,姚志彬,陈以慈等.老年期痴呆患者海马区胆碱能纤维分布与临床病理研究[J].中华神经精神科杂志,1995,28(2):76
    [51]Masliah E.Neuropathology:Alzheimer's in real time.Nature 2008; 451 (7179):638-9.
    [52]Kim I,Xu W,Reed JC.Cell death and endoplasmic reticulum stress:disease relevanc and therapeutic opportunities.Nat Rev Drug Discov.2008;7(12): 1013-30.
    [53]Apelt J,Bigl M,Wunderlich P,et al.Aging-related increase in oxidative stress correlates with developmental pattern of beta-secretase activity and beta-amyloid plaque formation in transgenic Tg2576 mice with Alzheimer-like pathology.Int J Dev Neurosci,2004,22:475-484.
    [54]Knopman DS.Dementia and cerebrovascular disease.Mayo Clin Proc.2006, 81(2):223-230.
    [55]Griffin WS.Inflammation and neurodegenerative disease.Am J Clin Nutr.2006, 83(2):470S-474S
    [56]Turner PR.Roles of amyloid precursor protein and its fragments in regulating neural activity,plasticity and memory.Prog Nenrobiol,2003,70:1.
    [57][Richard M.Mapping the new frontier:complex genetic disorders.J Clin Invest,2005,115(6):1404-1407
    [58]彭小松,陈晓春,黄俊山,等.人参皂苷Rgl对Aβ25-35诱导大鼠海马神经元tau蛋白异常磷酸化的影响.中国药理学通报,2005;21(3):299-305.
    [59]包新民,舒斯云.大鼠脑立体定位图谱,北京:人民卫生出版社,1991,第 一版:122-123
    [60]吴海琴,姚丽,杜赞,等.Ref-1在阿尔茨海默病大鼠海马CA2区表达的研究.浙江大学学报(医学版),2008,(6):629-633
    [61]Holscher C.Neurobiol,Dis,1998,5:129-141
    [62]Ringhem GE,Szczepanik AM,Brain inflammation,cholesterol,and glutamate as interconnected participants in the pathology of Alzheimer's disease[J].Curr Pharm Des,2006,12(6):719-38等。
    [63]Thal DR,Capetillo-Zarate E,Del Tredici K,et al.The development of amyloid beta protein deposits in the aged brain[J].Sci Aging Knowledge Environ,2006 Mar8,2006(6):rel
    [64]Czarna JM,Walde mar G,Heegaard NH.Biochemical markers for Alzheimer disease[J].Ugeskr Laeger,2006 Mar6,168(10):1010-4
    [65]Ringheim GE,Szczepanik AM,Brain inflammation,cholesterol,and gluta-mate,as interconnected participants in the pathology of Alzheimer's disease [J]. Curr Pharm Des,2006,12(6):719-38
    [66]Kumar-VB,Farr-SA,Flood-JF,et al.Site-Directed Antisense Oligonucleotide Decreases the Expression of Amyloid Precursor Protein and Reverses Deficits in Learning and memory in aged Samp8 Mice [J].peptides,2000,21(12): 1769-1775
    [67]Nelson PT,Saper CB,Injection of Okadaic acid,but not beta-amyloid peptide,induce Alz-50 Immunoreactive dystrophic neuritis in the cerebal cortexof sheep[J].Neurosci Lett,1996,208(2):77-80
    [68]Giovannelli L,Casamenti F,Scali C,et al.differential effects of amyloid peptide beat-(1-40) and beat-(25-35) injections into the rat nucleus basalis[J]. Neurosci, 1995,66:781-792
    [69]曾芳,赵纪岚,周奇志.电针对老年性痴呆模型大鼠海马线粒体酶活性 的影响[J].中国老年医学杂志,2006,26(1):68-69
    [70]王建枝.一种早老性痴呆大鼠动物模型的构建方法[P].中华人民共和国国家知识产权局,公开号:CN1636601A.
    [71]Games D,Buttini M,Kobayashi D,et al.mice as models:transgenic approaches and Alzhemer's disease[J].J Alzheimers Dis,2006,9:133-149
    [72]盛树力.老年性痴呆:从分子生物学到临床诊断.科学技术文献出版社.北京,1999,77-89
    [73]Masliah E. Neuropathology:Alzheimer's in real time. Nature 2008; 451(7179): 638-9.
    [74]Games D,Buttini M,Kobayashi D,et al.mice as models:transgenic approaches and Alzhemer's disease[J].J Alzheimers Dis,2006,9:133-149
    [75]丛伟红,刘建勋.老年性痴呆动物模型研究进展.中国药理学通报,2003,19(5):497-501
    [76]王颖彦,黄韧,王晖.老年性痴呆动物模型及其评价.中国临床药理学与治疗学,2004,9(3):249-25
    [77]李亚明,朱粹青,椿水淼,赵伟康.老年性痴呆大鼠模型建立的研究.老年医学与保健,2001,7(4):214-217
    [78]Moris RGM.Developments of a water-maze Procedure for studing spatial learing in the rats.J Neurosci methods,1984,11(1):47.
    [79]Squrie LR,Zola-morgan S.Memory,brian system and behavior.Trends in Neuroscience,1988,11:170
    [80]林丽,唐朝枢,袁文俊.内质网应激[J].生理科学进展,2003,34:333-335
    [81]方欢,申宗候.内质网应激[J].医学分子生物学杂志,2004,1:36-39
    [82]Randal J.Kaufman Stress signaling from the lumen of the endoplasmic reticulum:coordination of gene transcriptional and transtational controls [J]. Gene Dev,1999.13(2):1211-1233
    [83]Toshiyuki N,hong Z,Nobuhiro M,et al.Caspase-12 mediate endoplasmic reticulum-specific apoptosis and cytotoxicity by amyloid-β [J]. nature, 2000,403(5):98-103
    [84]Tang QQ, Lane MD.Role of C/EBP homologous protein(Chop-10)In the programmed activation of CCAAT/enhancer-binding protein-b during adipogenesis[J]. Proc Natl Acad Sci USA,2000,97(7):12446-12450.
    [85]Houweling M, van Golde LM, VaandragerAB,et al. Inhibitionof phosphatidy lchOline synthesis induces expression of the endoplasmic reticulum stressand apoptosis-related protein CCAAT/enhancer-binding protein-homologous protein(CHOP/GADD153)[J]. Bio Chem,2003,369(Pt 3):643-650
    [86]Tomomi G.Seiichi O.Kazutoshi M.et al.Nitric Oxide-indueed.Apptosis RAW7 Macrophages is Mediated by Endoplasmic Reticulum Stress Pathway Involving ATF6 and CHOP[J].Biol Chem,2002,277(7):12343-12350
    [87]Wu ZZ, Li M, Li YF. et al, Effects of tiantai NO. I on relative neuropiptides of spontaneous aged dementia mice.zhongguo shenjing kexue zazhi(中国神经科学杂志)2004,20(2):167-170
    [88]WU Zheng-zhi, Andrew C. J. Huang, and Jean de Vellis. Effect of Tiantai No.1 on Neurotoxicity of β-Amyloid and NFκB and cAMP/CREB Pathways.Chin J Integr Med 2008 Dec;14(4):1-6
    [89]Wu Zhengzhi, Li Ming, Andrew C.J. Huang, et al.Effects of serum containing natural Cerebrolysin on glucose-regulated protein 78 and CCAAT enhancer-binding protein homologous protein expression in neuronal PC 12 cells following tunicamycin-induced endoplasmic reticulum stress.Neural Regen Res,2009,4(2):92-97 物歧化酶(SOD)活性,降低脑内丙二醛(MDA)含量,清除自由基,抑制神经元凋亡,从而改善AD模型鼠的学习记忆功能。脑还丹(骨碎补、熟地、石菖蒲等)可升高模型鼠血清中SOD、谷胱甘肽过氧化物酶(GSHPX)含量,降低MDA含量,改善学习记忆功能。参乌胶囊(制首乌、人参、葛根等)能抑制脑组织自由基增多及脂质过氧化物形成。脑尔康具有清除自由基的作用。
    综上所述,AD的发病机制仍不清楚,尚无一假说可较完整的解释AD的发病机制。但随着科学的发展,一些新的诊断工具和治疗药物的不断出现,将会给AD的确诊和治疗效果带来极大的希望。
    [1]Wyss-Coray T.Inflamation in Alzheimer disease:driving force,bystander or beneficial response?[J].Nat Med,2006,12(9):1005-15.
    [2]Blennow K,Deleon MJ,Zetterberg H,Alzheimers disease[J].Lancet,2006, 368(9533):387-403
    [3]骆静,吴镭。NSFC资助下的阿尔采末病药物作用靶点的研究[J].中国药理学通报,2005,21(12):1423-8
    [4]Hardy J,Dennis J.The amyloid hypothesis of Alzheimers disease:progress and problems on the road to therapeutics[J].Science,2002,297(5508):353-6
    [5]Robinson S R,Dobson C,Lysons J.Chanllenges and directions for the pathogen hypothesis of Alzheimers disease [J].Neurobiol Aging,2004,25(5):629-37
    [6]Balin B J,Gerard H C,Arking E J,et al.Identification and localization of Chlamydia pneumoniae in the Alzheimers brian[J]. Med Microbiol Immunol (Berl),1998,187(1):23-42.
    [7]Taylor G S, Vipond I B,Paul I D,et al.Failure to correlate C.pneumonise with late onset Alzheimers disease[J].Neurology,2002,59(1):142-3.
    [8]Hardy J,Dennis J.The amyloid hypothesis of Alzheimers disease:progress and problems on the road to therapeutics[J].Science,2002,297(5508):353-6.
    [9]Walker DG, Link J, Lue L F, et al. Gene expression changes by amyloid beta peptide-stimulated human postmortem brain microglia identify activation of multiple inflammatory processes. [J]. Journal of Leukocyte Biology. 2006;79(3):596-610
    [10]Forloni G,Chiesa R. Apoptosis mediated neurotoxicity induced by chronic application of beta amyloid fragment 25-35.[J].Neuroreport.1993;4:523-526.
    [11]Nagata K,Maruya H,Yuya H,et al.Can PET date Differentiate Alzheimers disease from vascular dementia?[J].ann N Y Acad Sci,2000,903(4):252-61.
    [12]Modrego P J,Fayed N,Pina M A.Conversion from mild cognitive impairment to probable Alzheimers disease predicted by brain magnetic resonance spectroscopy[J]. Am J Psychiatry,2005,162(4):667-75.
    [13]Thompson P M,Hayashi K M,de Znbicaray G,et al.Dynamics of gray matter loss in Alzheimers disease [J].J Neurosci,2003,23(3):994-1005.
    [14]Machulda M M,Ward H A,Borowsli B,et al.Comparison of memory Fmri response among normal,MCI and Alzheimers patients[J]. Neurology, 2003,61(4):500-6.
    [15]刘学源,赵伟康,徐品初,等.调心方对杏仁核注射Aβ25-35诱导的阿尔茨海默病模型大鼠的影响.中草药,2004,35(1):50-53
    [16]丁向东,冯月英,张健新,等.升黄益智方对氯化铝所致痴呆模型小鼠行为学及脑组织神经递质的影响.中国老年学杂志,2004,24(12):1183-1185
    [17]李玺,张英泽,张智燕,等.脑尔康对Alzheimer病小鼠脑细胞凋亡相关基因表达的影响.中国老年学杂志,2004,24(5):433-434
    [18]吴正治,李明,李耀芳,等.天泰1号对自发老年性痴呆模型相关神经肽的影响.中国神经科学杂志,2004,20(2):167-171
    [19]Wang R,Tang XC.Neuroprotective effects of huperzine a.A natural cholinesterase inhibitor for the treatment of Alzheimer's disease. Neurosignals, 2005,14(1-2):71-82.
    [20]Hongxiao Jia,Yong Jiang,Yan Ruana,et al.Tenuigenin treatment decreases.
    [21]secretion of the Alzheimer's disease amyloid-protein in cultured cells. Neuroscience Letters,2004,367:123-128.
    [22]吴永强,姚文兵,高向东,等.红景天提取物对小鼠记忆获得性障碍的改善作用.中国药科大学学报,2004,35(1):69-72.
    [23]张慧灵,顾振纶,曹奕,等。夏天无总生物碱对痴呆大鼠学习记忆障碍及中枢胆碱能神经系统功能的影响。 中国药理学通报,2004,20(10):1158-1160.
    [24]蔡大勇,黄启福,陈金星,等。丹栀逍遥散防治D-半乳糖拟阿尔茨海默病的抗自由基损伤机制。中国药师,2004,7(1):3-7.
    [25]Junping Kou,Danni Zhu,Yongqing Yan.Neuroprotective effects of the aqueous extract of the Chinese medicine Danggui-Shaoyao-san on aged mice. Journal of Ethnopharmacology,2005,97:313-318.
    [26]魏昌秀,聂红,黄启辉,等.脑还丹对快速老化鼠学习记忆及SOD、MDA、GSH-Px的影响。新中医,2004,36(6):77-78.
    [27]王辉,李林,张兰,等,参乌胶囊对p-淀粉样肽大鼠模型脑内炎症反应的影响。中国新药杂志,2004,13(1):38-43.
    [28]李玺,张英泽,张智燕,等.脑尔康对Alzheiner病小鼠脑细胞凋亡相关基因表达的影响。中国老年学杂志,2004,24(5):433-434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700