黄芩高产栽培及质量调控生理生态机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄芩(Scutellaria baicalensis Georgi)为唇形科多年生草本植物,传统上以根入药,为我国常用大宗中药材,随着中药现代化的不断进步,黄芩药材需求量不断加大,野生资源锐减,已不能满足市场需求。黄芩已被我国列为三级保护濒危植物,栽培黄芩已成为我国黄芩药材的主要来源,但是,尚缺乏系统化的科学研究。因此,开展黄芩规范化种植技术和质量控制生理生态机制研究,对实现药材原料的安全供应与质量的稳定可控具有重要意义。
     试验选择吉林省具有代表性的临江、长春和洮南市3个不同生态区域进行人工种植黄芩,综合考虑播种时间、播种密度、施肥、最佳采收期等栽培措施和水分、光照、土壤等生态因子对中药材黄芩产量和品质的影响;明确黄芩生长发育规律,重点研究不同生态区黄芩产量、品质和生理生态特性;探讨不同生态区影响黄芩产量和品质的主要影响因子;确定黄芩最适宜的生态区,为黄芩GAP基地建设和优质药材规范化生产提供科学依据。
     黄芩试验期间定期取样,测定黄芩根茎叶形态指标、生物产量和黄芩苷、总黄酮含量,黄芩苷测定用美国产Agilent 1100高效液相色谱仪,总黄酮测定用UV-1700紫外分光光度计;黄芩光合生理生态指标测定用英国PP Systems公司生产的TPS-1便携式光合作用系统;常规方法测定黄芩保护酶活性和可溶性蛋白、可溶性糖含量。
     主要结果如下:
     1栽培措施对黄芩药材产量和外观品质的影响
     1.1环境条件对黄芩种子发芽率和保护酶活性的影响
     1.1.1环境条件对种子千粒重和发芽率的影响
     生境条件和采种时间影响黄芩种子千粒重,8月采收的洮南黄芩种子千粒重大;不同生境条件下,黄芩种子千粒重不同,但对黄芩种子发芽率没有影响,三地黄芩种子发芽率变化趋势一致,发芽率相差微小;种子贮存时间长,发芽率降低,贮存2年以上的种子不宜做生产用种;黄芩浸种时的适宜水温为40~50℃,浸种时间6h~12h,发芽适宜温度为20~25℃,在无光环境下黄芩发芽率显著提高。
     1.1.2黄芩种子发芽率与保护酶活性的关系
     超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性与黄芩种子发芽率呈显著或极显著正相关。黄芩种子发芽过程中,几种保护酶活性均是当年新种子>1年种子>2年种子,保护酶活性与黄芩种子抗逆性关系密切,黄芩种子随贮存年限增加,种子抗逆性降低。
     1.2播种时间对黄芩产量的影响
     1年生黄芩产量秋播和春播高于夏播,播期对2年生黄芩产量影响不明显。
     1.3播种方式对黄芩的影响
     1、2年生平作和垄作栽培黄芩干物质积累与分配规律基本一致:黄芩平作枝根多,垄作枝根少;土壤板结枝根多,土壤松软枝根少。
     1.4播种密度对黄芩的影响
     密植枝根少,稀植枝根多;适当密植单位面积产量高,外观品质好,但单株产量低;稀植地上部与地下均生长良好,单株干物质积累多,但单位面积产量低。
     2生态因子对黄芩药材产量和外观品质的影响
     2.1水分供给量对黄芩产量的影响
     在黄芩生长期内,150 mm供水量黄芩生物量降低,根茎变细,根长变短,改变了黄芩地上与地下物质分配比例,影响外观品质;450 mm供水量黄芩花、果重量增加,但黄芩根产量和总生物量较低;250 mm和350 mm供水量黄芩根、茎优势明显,外观品质好,根重、地上重、总生物量均高;黄芩具有较强的耐旱性。
     2.2施肥对黄芩产量的影响
     1年生黄芩单独施用氮、磷、钾肥时,氮肥效果明显,主茎变长变粗,产量提高,氮肥过量影响产量;与氮肥相比,磷、钾肥单独施用效果不明显,钾肥增量施用,黄芩干物质增加。
     2.3光对黄芩产量的影响
     相同环境条件下,光照强长势好,根和总生物量大。
     2.4土壤对黄芩产量的影响
     长春黑土黄芩根、茎、叶和总生物量大于临江棕色森林土和洮南沙质暗栗钙土。
     3不同生态区黄芩药材产量及生长规律
     3.1 1、2年生黄芩生长规律
     1年生黄芩根长、主茎长和生物量呈增加趋势,8月前以地上生长为主,8月后以根生物量积累为主;2年生黄芩主茎7月中旬以前生长较快,之后生长缓慢,根长和根生物量一直缓慢增加;地上重和总生物量呈单峰曲线变化,峰值出现在8月末,之后下降。
     3.2不同生态区黄芩产量差异及原因
     不同生态区1年生黄芩根生物产量差异较大,洮南最轻,长春生物产量前期低于临江,后期与临江生物产量持平;2年生黄芩根和地上生物产量长春高于临江和洮南。临江降水多,土壤和空气湿度大,1年生黄芩容易得叶枯病;洮南降水量少,黄芩出苗困难,黄芩生物量低,影响单位面积黄芩产量;长春降水量适宜,土壤肥沃,黄芩生物产量和黄芩有效成分含量都比较高,适合建立黄芩规范化种植基地。
     4黄芩光合生理生态特性
     4.1 1、2年生黄芩光合特性
     1年生黄芩和2年生黄芩上、中部叶片光合速率日变化趋势基本一致,早晨和中午较高;2年生黄芩下部叶片净光合速率早晨高,略有下降后升高,中午达到峰值,“光合午休”现象较轻。
     4.2黄芩不同时期光合特性
     2年生黄芩不同时期光合作用日变化均呈双峰或多峰曲线,峰谷出现的时间各不相同;5月份黄芩处于旺长期,6月份黄芩光合速率日变化较平稳,8月和9月黄芩光合速率日变化波动较小。5月、6月、8月和9月黄芩日均净光合速率是20.69μmolCO_2·m~(-2)·s~(-1)、9.81μmolCO_2·m~(-2)·s~(-1)、5.39μmolCO_2·m~(-2)·s~(-1)、4.37μmolCO_2·m~(-2)·s~(-1)。
     4.3黄芩光合生理生态的关系
     1年生黄芩光合速率与光合有效辐射呈极显著正相关;2年生黄芩上、中、下部叶片光合速率与光合有效辐射呈显著正相关,2年生黄芩下部叶片光合速率与水气压、空气相对湿度呈极显著负相关,与大气温度呈显著正相关;不同季节黄芩光合速率生育前期与光合有效辐射呈极显著正相关,与水气压呈极显著正相关,生育后期与光合有效辐射呈显著正相关,与其他环境因子的关系因季节不同差异较大。
     不同生态区黄芩净光合速率中午降低均为气孔限制,低的空气湿度是光合中午降低的重要生态因子;临江生态区高温高湿、长春生态区叶温高及大气CO_2浓度低、洮南生态区高温低湿是影响黄芩净光合速率的主要环境因子。
     5黄芩药材质量与生理生态因子关系
     5.1水分对黄芩药材质量的影响
     适宜供水量可以提高黄芩蛋白质和可溶性糖的含量,提高黄芩的抗逆性;黄芩生长期250 mm~350 mm供水量黄芩净光合速率高,各器官物质分配合理,生物产量、黄芩苷和总黄酮都比较高;1年生供水量处理黄芩苷和总黄酮与黄芩生物量呈正相关。
     5.2不同生态区和黄芩年龄对黄芩药材质量影响
     5.2.1不同生态区黄芩药材质量差异
     1年生黄芩苷含量,洮南略高于长春,长春高于临江,1年生黄芩根黄酮不同生态区差异较小;2年生黄芩苷含量长春>临江>洮南;单位面积黄芩苷平均含量长春高,洮南低。
     5.2.2不同年龄黄芩药材质量差异
     不同生态区1、2年生黄芩苷、黄酮积累动态在不同季节变化趋势基本一致;2年生黄芩的黄芩苷和总黄酮含量高于1年生黄芩。长春2年生黄芩在9月中上旬单位面积黄芩苷产量高。
     5.3黄芩药材质量与黄芩生物产量的关系
     综合分析不同生态区黄芩质量和产量关系表明:1、2年生黄芩苷和总黄酮均与黄芩根部生物量积累呈极显著负相关(p<0.01),单位面积黄芩苷和总黄酮产量与黄芩生物产量尤其是根的产量呈正相关。
     5.4黄芩药材质量与黄芩可溶性蛋白和可溶性糖的关系
     1年生黄芩苷和总黄酮与黄芩叶片中可溶性蛋白和可溶性糖呈正相关;2年生黄芩苷和总黄酮与黄芩叶片中可溶性蛋白相关性较低,2年生黄芩苷和总黄酮与黄芩叶片中可溶性糖呈负相关。
     6黄芩最佳采收期
     2年生黄芩苷和总黄酮含量高于1年生黄芩;3年生黄芩苷和总黄酮含量高于2年生黄芩;2年生黄芩在9月中旬和第3年春季单位面积黄芩苷产量高,适宜采收,收获后有充足时间晾晒;综合产量和黄芩苷含量,栽培黄芩最佳采收时期为第二年的9月中旬或第3年春季。
Scutellaria baicalensis Georgi is a kind of perennial herbaceous plant in the labiatae family, and itsroot was used as Chinese Traditional Medicine (CTM) traditionally. Now, the wildlife resource of S.baicalensis can not meet the actual market demand with the developing modernization of CTM, thedemand was unceasingly increased while the wild resource was sharply reduced. Meanwhile the wild S.baicalensis was set to the protective endangered plant of third class by the authority. Today, the cultivatedS. baicalensis become the main source of medicine material. On the other hand, there was no systemicscientific research, on the cultivated of S. baicalensis. So, it is of key value to carry out the study ofstandardized cultivation techniques and eco-physiological mechanism on S. baicalensis to realize thesafety supply of raw medicinal materials and the stability quality controlling.
     Three different ecotopes were selected as the representative test plots including Linjiang, Changchunand Taonan in Jilin province. The factors affecting the quality of S. baicalensis were syntheticallyconsidered such as growing factors of seeding time, frequency, fertilization and best harvesting season andthe ecological factors of the moisture, illumination and soil. The yield, quality and eco-physiologicalcharacteristics were the key part of the study of growth and development law. The main effect factors thateffected the yield and quality were discussed among the different ecotopes, and the best feasible ecotopewas selected out. These results can provide scientific basis for construction of GAP cultivation bases andstandardized production of good quality for Chinese medicinal materials of S. baicalensis.
     The samples were periodical taken during the experiment for the morphological indices of root, stem,leaf, biomass, the content of baicalin and total anthoxanthin. The baicalin content was determined by 1100Agilent high performance liquid chromatography (HPLC) made in USA and total anthoxanthin contentwas determined by UV1700 ultraviolet spectrophotometer made in Japan. The photosynthetic ecophysiological indexes of S. baicalensis were determined by TPS-1 portable photosynthesis systemproduced by PP systems in England. The protective enzyme activity, contents of soluble protein and sugarwere determined by conventional methods.
     The main results were as follows:
     1 Effect of cultivated measures on yield and appearance quality of S. baicalensis
     1.1 Effect of environmental conditions on germination rate of seed and protective enzyme activity of S.baicalensis
     1.1.1 Effect of environmental conditions on 1000-grain weight and germination rate of seed
     The 1000-grain weight was changed in the different habitats, but the germination rate was not affected.Among the three plots, the different of germination rate was tiny and the change tendency of germinationrate was same. The germination rate decreased with the store years prolonged, and that stored over 2 yearswere not suitable to production. The feasible temperature of seed soaking was 40~50℃, and the last timewas 6h~12h, the feasible temperature of germination was 20~25℃, and the germination rate wassignificant improved with the dark..
     1.1.2 The relationship between germination and protective enzyme activity
     The positive correlation between superoxide dismutase (SOD), peroxidase isozymes (POD), Catalase(CAT) activity and the germination rate of S. baicalensis seeds was significant or very significant. Theactivities of protective enzymes was in order of the new seeds > annual seeds > biennial seeds, theresistance decreased with the seed storing years prolonged.
     1.2 Effect of seeding time on root
     The yield of annual S. baicalensis that was planted in autumn or spring was higher than in summer,and the effect of seeding time on biennial was not remarkable.
     1.3 Effect of seeding pattern on root
     The accumulation and distribution law of dry matter was basically same between flat cultivation andridge cultivation of annual and biennial S. baicalensis. The flat cultivation had more branch roots thanthe ridge cultivation. And the condensed planting and hardened soil has more branch roots than the sparseplanting and soft soil.
     1.4 Effect of seeding density on root
     The branch roots were fewer in dense-planting and more in rare-planting. The suitably dense sowingwas good for the appearance quality and the higher yield per unit area, but the individual plant yield waslow. The sparse planting was good for the growth of the overground and underground and theaccumulation of dry matter, but the yield per unit area was low.
     2 Effect of ecological factors on yield and appearance quality of S. baicalensis
     2.1 Effect of water supply on yield of S. baicalensis
     The biomass with 150mm water supply was decreased, the rhizome was thinner and the rhizomelength was shorten in the growing period, the distribution percentage between overground and undergroundwas changed, and the appearance quality was affected by this treatment. The flower and fruit biomass with450mm treatment was increased, but the yield of root and total biomass was smaller. The good influence of 250mm and 350mm treatments on root and stem were evident, the appearance quality was better, therhizome, overground biomass were highest. Otherwise S. baicalensis has better drought tolerance.
     2.2 Effect of fertilization on S. baicalensis yield
     The effect was evident that the application of nitrogenous fertilizer while the nitrogen, phosphorus andpotassium fertilizer was separately used on annual S. baicalensis, with which the main stem was longer andthicker But the yield would be affected by excessive application of it. Comparing with nitrogen, thephosphorus and potassium fertilizer had little affection on yield, but the dry matter was increased with theapplication of potassium.
     2.3 Effect of illumination on S. baicalensis yield
     It had good growth in the strong illumination under the same environmental condition, the root andtotal biomasses were increased.
     2.4 Effect of soil on S. baicalensis yield
     The root, stem, leaf and total biomasses of plant growed in the black soil of Changchun were more thanthose in the brown forest soil of Linjiang and sandy dark chestnut soil of Taonan.
     3 Growth rule and yield of S. baicalensis in different ecotopes
     3.1 Growth rule of annual and biennial S. baicalensis
     The tendency of root and main stem length and biomass of annual S. baicalensis was increased, theoverground growth was dominant before August and then changed into the root after that. The biennial S.baicalensis had bigger growth rate of main stem before the middle of July, then decreased, and it hadslower growth rate of root length and biomass. The overground and total biomass fluctuated as single-peakcurves, and the peaks appeared at the end of August and after that it became slow.
     3.2 The qualitative difference in different ecotopes and explanation
     The root biomass of annual S. baicalensis had significant difference in different ecotopes. The rootfrom Taonan was the rightest, and the root from Changchun was lighter than those from Linjiang in theprevious period, and then became the same in the later period. The annual S. baicalensis was easy infectedleaf blight because of much precipitation, heavy soil and air humidity in Linjiang. The seedling emergencewas hard because of Iittle precipitation in Taonan, so the biomass was small, and the yield per unit areawas also affected. The biomasS and the content of effective components were both higher in Changchunbecause of right precipitation and rich soil, which suitable for construction of standardized cultivationbases of S. baicalensis.
     4 Research on photosynthetic physiological ecology characteristic of S. baicalensis
     4.1 Research on photosynthetic physiological ecology characteristic of annual and biennial S. baicalensis
     The diurnal changes of net photosynthetic rate at top and middle leaves position of annual andbiennial S. baicalensis was basically same, and the photosynthetic rate in the morning and noon was high;the net photosynthetic rate at bottom leaves of biennial S. baicalensis was high in the morning, anddecreased a little, and than increased, The maximum appeared in the noon, the midday depression ofphotosynthesis was light.
     4.2 Photosynthetic characteristic in different period
     The diurnal changes of net photosynthetic rate of biennial S. baicalensis in different period were alldouble peak or many peaks curves, the time of valley-peak was different. The May was the vigorousgrowing period of S. baicalensis, the changes in the June was stationary, and the change of netphotosynthetic rate was very small in the August and September. The diurnal net photosynthetic rate inMay, June, August and September were 20.69μmolCO_2·m~(-2)·s~(-1), 9.81μmol CO_2·m~(-2)·s~(-1), 5.39μmolCO_2·m~(-2)·s~(-1),4.37μmolCO_2·m~(-2)·s~(-1), respectively.
     4.3 Relationships between photosynthetic physiological ecology and environmental factors
     The photosynthetic rate of annual S. baicalensis had very significant positive correlation with thephotosynthetic active radiation. The photosynthetic rate at bottom leaves position of biennial hadsignificant negative correlation with water vapor pressure, air relative humidity, but a positive correlationwith air temperature; The photosynthetic rate of S. baicalensis had significant positive correlation with thephotosynthetic active radiation and water vapor pressure in early growing stage and positive correlationwith photosynthetic active radiation in later growing stage, the relationship between photosynthetic rateand other environmental factors was marked different in different season.
     The reduction of the photosynthetic rate in different ecotopes was all because of the stomatallimitation, the important ecological factor influencing the reduction of the photosynthetic rate was the lowair humidity. The high temperature and humidity in Linjiang ecotope, the high leaf temperature and low airCO_2 concentration in Changchun ecotope, and the high temperature and low humidity in Taonan ecotopewere the main environmental factors influencing the net photosynthetic rate.
     5 Relationship between quality of S. baicalensis herb and physiological ecology factors
     5.1 Effect of water on quality of S. baicalensis herb
     The content of protein and soluble sugar was increased with right water supply, with which theresistance increased. The net photosynthetic rate of S. baicalensis was high with 250mm~350mm watersupply in the growth period, the distribution of dry material in every organ was reasonable. The yield, thecontent of baicalin and total anthoxanthin were increased as the result. The baicalin and total anthoxanthin contents had positive correlation with the biomass yield of annual S. baicalensis by all the water supplytreatment.
     5.2 Effect of age and ecotopes on quality of S. baicalensis herb
     5.2.1 The difference of herb in different ecotopes
     The baicalin content of annual S. baicalensis in Taonan was little higher than that in Changchun, andthe content in Linjiang was evident lower than others. The difference of anthoxanthin content in the annualroot among these plots was small. The mean baicalin content per unit area in Changchun was highest andthe Taonan was the last one. The baicalin content of biennial was in the order ofChangchun>Linjiang>Taonan.
     5.2.2 Quality difference of S. baicalensis herb in different age
     The change tendency of dynamic accumulation of anthoxanthin and baicalin in different seasons wasalmost the same, and its content in biennial was higher than that in annual. The baicalin content per unitarea of biennial was higher in middle ten days of September of Changchun.
     5.3 Relationships between quality and biomass of S. baicalensis herb
     The relationships between quality and yield of S. baicalensis in different ecotopes werecomprehensive analyzed, the results showed: the content of baicalin and total anthoxanthin in annual andbiennial had very significant negative correlation with biomass accumulation of the root (p<0.01), thebaicalin and total anthoxanthin yield per unit area had positive correlation with the biomass yield of plantespecially the yield of root.
     5.4 Relationship between quality of S. baicalensis herb and soluble protein and sugar
     The baicalin and total anthoxanthin contents of annual S. baicalensis had positive correlation with thesoluble protein and sugar in the leaf, and these contents of biennial had very little correlation with thesoluble protein and negative correlation with the soluble sugar.
     6 The optimal harvest time of S. baicalensis
     The content of baicalin and total anthoxanthin in triennial was the highest, the biennial was the secondone, and the annual was the last. The mid-September or in the third spring is the optimal harvest time forthe biennial because of the highest yield of baicalin in unit area. And there would have enough time for theopen-air drying. So the best harvest time of S. baicalensis was the mid-September of the second year or thethird spring.
引文
[1]杨利民,韩 梅,张连学.药用植物资源的可持续利用及其种群生态学研究与展望[J].吉林农业大学学报,2006,28(4):383-388.
    [2]都晓伟,李丹,衣红,等.栽培与野生黄芩质量的比较研究[J].中医药信息,1995,2:43-44.
    [3]陈君,杨世林,程惠珍,等.不同种源黄芩生长发育特性初步观察[J].中药材,2002,25(11):777-778.
    [4]张 燕,刘 勇,王继永,等.药用植物专用肥研究现状与展望[J].中国中药杂志,2004,29(8):719-722.
    [5]杨立新,刘岱,冯学峰,等.高效液相色谱法测定不同产地黄芩中黄酮化合物的含量[J].中国中药杂志,2002,27(3):166-169.
    [6]刘岱,毛宏德,杨立新,等.黄芩的化学分析与质量研究进展[J].时珍国医国药,2001,12(10):934.
    [7]国家药典委员会.中华人民共和国药典[S].2005,一部.北京:化学工业出版社.
    [8]王增理,梁云爱,景志坚.二阶导数差示脉冲极谱法用于黄芩中黄芩苷的定量研究[J].中国中药杂志,1994,19(9):554.
    [9]Ying-Mei Liu, Shuenn-Jyi Sheu. Capillary Electrophoresis Determination of Baicalein, Baicalin, Wogonin and Wogonin-7 -O-Glucuronide in Traditional Chinese Medicinal Preparations [J]. J High Resol Chromatog, 1994, 17, 559-560.
    [10]Yoshio Tskino,Taketsune Miyahara, Eiko Arichi, et al. Determination of some flavonoids in Scutellariae Radix by High-performance Liquid Chromatography[J]. Chem Pharm Bull, 1987, 35(8): 3494-3497.
    [11]刘美兰,杨立新,万元浩,等.RP-HPLC法测定7种药用黄芩中黄芩苷和汉黄芩苷德含量[J].药物分析杂志,2002,22(2):99-102.
    [12]符 洪,肖新月,张南平,等.药用黄芩中主要化学成分分析[J].药物分析杂志,2003(23):33-39.
    [13]宋万志.中草药现代研究[M].北京:北京医科大学中国协和医科大学联合出版社,1996,248.
    [14]张文,周延生.黄芩中多糖的提取及含量分析[J].微量元素与健康研究,2004,21(2):21-22.
    [15]马翠英,戴宝成,林瑞超,等.黄芩中4种黄酮的HPLC定量分析及其黄酮类成分指纹图谱研究[J].药物分析杂志,2003,23(2):83-86.
    [16]叶定江.中药炮制学[M].上海:上海科学技术出版社,1996,236.
    [17]段天璇,马长华,伦丽辉,等.半夏泻心汤不同配伍情况下黄芩苷煎出量的RP-HPLC测定[J].中国中药杂志,2000,25(2):99.
    [18]赵越平,雷其云,苏永芝.黄芩中黄芩苷不同提取方法的比较[J],第四军医大学学报,1996,17(6):475-476.
    [19]徐志宏,钱广生,刘三康,等.黄芩中黄芩苷的亚临界水提取及高效液相色谱分析[J].色 谱,2004,1:44-47.
    [20]程国强,冯年平,唐琦文,等.黄芩苷对眼科常见病原菌的体外抗菌作用[J].中国医院药学杂志,2001,21(6):347-348.
    [21]刘长山,马丽丽,李萍,等.黄芩苷对糖尿病患者红细胞醛糖还原酶活性及肾小球滤过率的影响[J].中国中药杂志,2001,26(9):632-633.
    [22]刘桦,吴晓冬,闫倩,等.黄芩苷对缺氧缺糖性心肌细胞的保护作用[J].中国药科大学学报,2003,34(1):55-57.
    [23]付守廷,付宇.黄芩苷的耐缺氧作用[J].沈阳药科大学学报,2001,18(3):207-210.
    [24]尹琰,吴晓冬,寿伟章,等.黄芩苷对心肌梗死后大鼠免疫功能的调节作用[J].南京铁道医学院学报,2000,19(3):162-164.
    [25]Kitamura K, Honda M, Yoshizaki H, et al. Baicalin, aninhibitor of HIV-1 production in vitro[J]. Antiviral Res, 1998, 37(2): 131-140.
    [26]赵晶,张致平,陈鸿珊,等.黄芩苷衍生物的合成及抗人免疫缺陷病毒活性研究[J].药学学报,1998,33(1):22.
    [27]赵晶.两种抗人免疫缺陷病毒天然产物结构修饰的研究[D].北京:中国协和医科大学,1998.
    [28]于波涛,张志荣,刘文胜,等.黄芩苷稳定性研究[J].中草药,2002,33(3):218-220.
    [29]车庆明,黄心立,李艳梅,等.黄芩苷的药物代谢产物研究[J].中国中药杂志,2001,26(11):768-769.
    [30]Y J Zhou, Q M Che, S X Xul. Metabolites of Baicalein in Human Urine[J]. Pharmazie, 2000, 55(8): 626-627.
    [31]中国医学科学院药用植物资源开发研究所等.中药志,第四册[M].北京:人民卫生出版社,1993:302.
    [32]国家医药管理局中草药情报中心站.植物药有效成分手册[M].北京:人民卫生出版社,1986:946.
    [33]孟艳彬,赵春颖,高晓燕.不同生长期黄芩茎叶中总黄酮及野生黄芩苷的含量测定[J].承德医学院学报,2003,20(3):258-259.
    [34]刘金霞,邓淑华,杨贺松,等.黄芩茎叶总黄酮的抗炎作用机制的研究[J].中国药理学通报,2002,18(6):713-714.
    [35]佟继铭,刘玉玲,周丛坦,等.黄芩茎叶总黄酮抗心率失常作用研究[J].中草药,2002,33(8):731-732.
    [36]佟继铭,刘玉玲,符景春.黄芩茎叶总黄酮长期毒性研究[J].承德医学院学报,1999,16(1):11-13.
    [37]赵铁华,杨鹤松,邓淑华,等.黄芩茎叶总黄酮镇痛作用的实验研究[J].中国中医药科技,2001,8(3):175-177.
    [38]孙鑫,程万里.黄芩对真丝织物染色的研究[J].丝绸,2002,2:11-13,22.
    [39]龚盛昭,揭育科,袁水明.黄芩苷在功能性化妆品中的应用研究[J].日用化学工业,2003,33(3):200-203.
    [40]袁昌齐.天然药物资源开发利用[M].江苏:江苏科学出版社,2000,360-364.
    [41]杜广平,张巨,郭才,等.野生黄芩资源的开发及利用[J].中国林副特产,1997,4:48.
    [42]谢利娟,韩蕾,李永红,等.矮壮素对盆栽黄岑的矮化效果[J].东北林业大学学报,2004,32(4):92-93.
    [43]李永红,曾大兴.黄芩的组织培养与快速繁殖研究[J].深圳职业技术学院学报,2003,2(2):16-18.
    [44]徐昭玺,魏建和.黄芩生殖生物学特性研究及其群体分离类型的比较[J].中草药,1997,28(10):623-626.
    [45]苏淑欣,李 世,尚文艳,等.黄芩生长发育规律的研究[J].中国中药杂志,2003,28(11):1018-1021.
    [46]陈 震,张丽萍,高微微.黄芩扦插繁殖的初步研究[J].中国中药杂志,1999,24(7):400-402.
    [47]于百功,李统育,李训东.黄芩无性繁殖技术的研究[J].中药材,1994,17(7):5-7.
    [48]丁如贤,张汉明,付翔.黄芩茎段直接诱导丛生芽[J].中草药,1998,29(3):194-195.
    [49]高山林,陈柏君.黄芩组织培养快速繁殖技术的优化[J].中草药,2004,35(3):312-315.
    [50]于百功,李统育,李训东.黄芩无性繁殖的大田管理及有效成分[J].中药材,1995,18(4):107-108.
    [51]陈万翔,李世,何福林,等.不同栽培方式对黄芩产量及黄芩苷含量的影响[J].承德民族职业技术学院学报,2003,2:79-80.
    [52]王增理,杨守军,王增淑.黄芩栽培方法与质量的研究[J].中药材,1996,19(6):271-272.
    [53]陈万翔,李世,何福林,等.盖草种类和厚度对黄芩产量及黄芩苷含量的影响[J].承德民族职业技术学院学报,2003,4:92-94.
    [54]苏淑欣,李世,黄荣利,等.施肥对黄芩根部黄芩苷含量的影响[J].中国中药杂志,1996,21(6):343.
    [55]苏薇薇.黄芩中氮磷钾含量与其质量关系的灰色关联度分析[J].中药材,1996,19(9):464-465.
    [56]何福林,李世,陈万祥,等.有机肥对黄芩总黄酮和黄芩苷含量影响研究报告[J].承德民族职业技术学院学报,2002,4:58-60.
    [57]丁少纯,姜发科.栽培黄芩与野生黄芩的对比研究[J].山东中医杂志,1998,17(11):510-511.
    [58]冯卫生,冀春茹,杜天信,等.河南栽培黄芩与野生黄芩成分的对比分析[J].河南中医药学刊,1994,9(4):5-8.
    [59]王兰霞,宋平顺,黄晓萍.等.野生和栽培黄芩质量比较[J].中药材,1998,21(6):277-278.
    [60]宋平顺,朱俊儒,丁永辉,等.甘肃栽培黄芩的质量评价[J].甘肃中医学院学报,2003,20(4):44-46.
    [61]刘菊福,卢长安,廖福龙,等.不同产地黄芩提取物主要药效作用的比较[J].中国中医药信息杂志,2001,8(3):28-30.
    [62]肖丽和,王红燕,李发美,等.不同来源黄芩药材HPLC指纹图谱比较[J].沈阳药科大学学报,2004,21(1):28-31.
    [63]李滨,都晓伟,孙慧峰,等.黄芩栽培质量的动态研究[J].中医药学报,1999,1:45.
    [64]崔玉菊,班福志,张洪朋,等.黄芩生长期对黄芩甙含量及黄芩产量的影响[J].山东医药工业,1996,15(3):53.
    [65]谢黎雯,关昕,吕青玲,等.栽培黄芩与野生黄芩毒性比较研究[J].中国药理学会通讯,2001,18(4):33-34.
    [66]王秀敏,邓英杰,钟海军.等.河北怀柔栽培黄芩最佳采收期研究[J],中药材,2005,28(1):5-7.
    [67]山仑.植物水分利用效率和半干旱地区农业用水[J].植物生理学通讯,1994,30(1):61-66.
    [68]邹琦.作物抗旱生理生态研究.济南[M].济南:山东科学技术出版社,1994:155-242.
    [69]郑光华.种子生理学[M].北京:科学出版社,2004,2-596.
    [70]苏佩,山 伦.种子成苗各阶段土壤水分适宜度的确定[J].植物生理学通讯.1997,33(1),47-49.
    [71]孙爱清,高荣岐,尹燕枰,等.超干贮藏对棉花种子活力及生理特征的影响[J].棉花学报,2004,16(1):25-30.
    [72]陈玉玲,李建华.黄腐酸和赤霉素对冬小麦种子萌发的影响[J].河北师范大学学报(自然科学版),2001,25(1),114-118.
    [73]赵剑,王俭荣,杨文杰等.聚乙二醇和聚乙烯醇渗透处理对苜蓿幼苗抗冷害的影响[J].东北师大学报自然科学版,1998,2:50-54.
    [74]杨利民,韩梅,张连学.药用植物资源的可持续利用及其种群生态学研究与展望[J].吉林农业大学学报,2006,28(4):383-388.
    [75]李隆云,肖小河,贺承山.论中药材生产质量管理规范化[J].中国中药杂志,1999,24(12):707-710.
    [76]阎隆飞主编.基础生物化学[M].北京:农业出版社,1985.
    [77]张明生,谢波,谈锋等.甘薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究[J].中国农业科学,2003,36(1):13-16.
    [78]王晓琦,沙 伟,徐忠文.亚麻幼苗对干旱胁迫的生理响应[J].作物杂志,2005(2):13-16.
    [79]林植芳,李双顺,林桂株等.水稻叶片的衰老与超氧化物歧化酶活性及膜质过氧化作用的关系[J].植物学报,1984,26(6):605-615.
    [80]段咏新,李松泉,傅家瑞等.钙对延缓杂交水稻叶片衰老的作用机理[J].杂交水稻,1997,12(6):23-25.
    [81]郭兰平,黄璐琦.中药资源的生态研究[J].中国中药杂志,2004,29(7):615-618.
    [82]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis [J]. Annual Review of Plant Physiology, 1982, 33:317-345.
    [83]张明农,江力.水稻光合特性的初探[J].安徽大学学报(自然科学版),1996,20(1):88-94.
    [84]Pearcy RW. Sunflecks and photosynthesis in plant canopies [J]. Annual Review of Plant Physiology, 1990, 41:421-453.
    [85]何文兴,易 津,李洪梅.根茎禾草乳熟期净光合速率日变化的比较研究[J].应用生态学报,2004,15(2):205-209.
    [86]阎秀峰,孙国荣,李敬兰,等.羊草和星星草光合蒸腾日变化的比较研究[J].植物研究,1994,14(3):287-291.
    [87]田晶会,贺康宁,王百田,等.不同士壤水分下黄土高原侧柏生理生态特点分析[J].水土保持学报,2005,19(2):175-178,183.
    [88]Cregg B M, Zhang J W. Physiology and morphology of Pinus sylvestris seeding from diverse sources under cyclic drought stress [J]. Forest Ecology and Management, 2001, 154(1-2): 131-139.
    [89]王美云,李少昆,赵 明.关于玉米光合作用与叶片水分利用效率关系的研究[J].作物学报,1997,23(3):345-352.
    [90]山 仑,孙纪斌,刘忠明.宁南山区主要粮食作物生产力和水分利用的研究[J].中国农业科学,1988,21(2):9.
    [91]刘长利,王文全,李帅英,等.干旱胁迫对甘草生长的影响[J].中国中药杂志,2004,29(10):931-934.
    [92]M(u|¨)ller P, Li X P, Niyogi KK. Non-photochemical quenching. A response to excess light energy [J]. Plant Physiol, 2001,125(4): 1558-1566.
    [93]张吉祥.黑琥珀李光合特性的研究[J].果树学报,2005,22(1):84-86.
    [94]李春鸣,蒲小朋,马姝雯,等.高寒地区地膜覆盖栽培饲用甜菜光合日变化初探[J].西北民族大学学报(自然科学版),2005,26(1):46-48.
    [95]Salvucci M E, Portis A R, Ogren W L. Light and CO_2 response of ribulose-1,5-bisphosphate carboxylase/oxygenase activation in arabidopsis leaves[J]. Plant Physiol,1986,80(3):655-659.
    [96]蒋高明.植物的温度及测定[J].植物杂志,1998,(1):30-31.
    [97]杨 持,杨 理.羊草无性系构件在不同环境下的可塑性变化[J].应用生态学报,1998,9(3):265-268.
    [98]翁晓燕,蒋德安.生态因子对水稻Rubisco和光合日变化的调节[J].浙江大学学报(农业与生命科学版),2002,28(4):387-391.
    [99]Raschke K, Resemann A. The midday depression of CO_2 assimilation in leaves of Arbutus unedo L.: diurnal changes in photosynthetic capacity related to changes in temperature and humidity [J]. Planta, 1986, 168(4):546-558.
    [100]Pritchard S G, Ju Z L, Santen E V, et al.The influence of elevated CO_2 on the activities ofantioxidative enzymes in two soybean genotypes [J]. Australian Journal of Plant Physiology.2000,27(11): 1061-1068.
    [101]Lan Y, Woodrow I E, Mort K A. Light-dependent changes in ribulose bisphosphate carboxylase activase activity in leaves [J], Plant Physiol, 1992, 99(1):304-309.
    [102]Xu D Q, Shen Y G. Diurnal variations in the photosynthetic efficiency in plants[J]. 植物生理学报,1997, 23(4):410-416.
    [103]林金科,赖志明.影响茶树叶片净光合速率的生态生理因子的初步分析[J].作物学报,2000,26(1):45-50.
    [104]温达志,周国逸,张德强,等.黄得光,罗仲良,李德明.四种禾本科牧草植物蒸腾速率与水分利用效率的比较[J].热带亚热带植物学报,2000,增刊:67-76.
    [105]山仑,徐萌.节水农业及其生理生态基础[J].应用生态学报,1991,2(1):70-76.
    [106]王云龙,许振柱,周广胜.水分胁迫对羊草光合产物分配及其气体交换特征的影响[J].植物生态 学报,2004,28(6):803-809.
    [107]范杰英,郭军战,彭少兵.10个树种光合和蒸腾性能对水分胁迫的响应[J].西北林学院学报,2005,20(2):36-38.
    [108]肖春旺 周广胜.毛乌素沙地中间锦鸡儿幼苗生长、气体交换和叶绿素荧光对模拟降水量变化的响应[J].应用生态学报,2001,12(5):692-696.
    [109]Wallin G, Karlsson P E, Sellden G. Impact of four years exposure to different levels of ozone,phosphourus and drought on chlorophyll, mineral nutrients, and stem volume of Noway spruce,Picea abies[J]. Physiol Plant, 2002, 114(2): 192-206.
    [110]Chen Q, Zhang H Y, Tang L L, et al. Effects of water and nitrogen supply on spinach (spinaciaoleracea L.) growth and soil mineral N residues [J]. Pedosphere,2002,12(2): 171-178.
    [111]关义新,戴俊英,林 艳.水分胁迫下植物叶片光合的气孔和非气孔限制[J].植物生理学通讯,1995,31(4):293-297.
    [112]许大全.光合作用“午睡”现象的生态、生理与生化[J].植物生理学通讯,1990,(6):5-10.
    [113]Horton P, Ruban A V, Walters R G. Regulation of light harvesting in green plants (Indication bynonphotochemical quenching of chlorophyll fluorescence) [J]. Annual Review of Plant Physiologyand Plant Molecular Biology, 1994,106(2):415-420.
    [114]Sharkey T D. Transpiration-induced changes in the photosynthetic capacity of leaves [J]. Planta,1984,160:143-150.
    [115]卢从明,张其德,匡廷云,等.水分胁迫抑制水稻光合作用的机理[J].作物学报,1994,20(5):601-606.
    [116]徐呈祥,马艳萍.苹果对水分胁迫的反应特点及节水灌溉研究综述[J].南京农专学报,2000,16(2):15-22.
    [117]张建国,李吉跃,沈国舫.树木耐旱特性及其机理研究[M].北京:中国林业出版社,2002,129.
    [118]马忠明.有限灌溉条件下作物-水分关系的研究[J].干旱地区农业研究,1998,16(2):75-79.
    [119]Craufurd P Q, Wheeler T R, Ellis R H, et al. Effect of temperature and water deficit on water-useefficiency, carbon isotope discrimination, and specific leaf area in peant[J].Crop Science, 1999,39(1): 136-142.
    [120]杨 燕,刘 庆,林波,等.不同施水量对云杉幼苗生长和生理生态特性的影响[J].生态学报,2005,25(9):2153-2158.
    [121]王会肖,刘昌明.作物光合、蒸腾与水分高效利用的试验研究[J].应用生态学报,2003,14(10):1632-1636.
    [122]王韶唐.植物水分利用效率与旱地农业生产[J].干旱地区农业研究,1987,(2):67-80.
    [123]黄占斌,山 仑.水分利用效率及其生理生态机理研究进展[J].生态农业研究,1998,6(4):19-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700