聚阴离子型铁系锂离子电池正极材料的合成及改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚阴离子型铁系材料LiFePO4和Li2FeSiO4具有原料丰富、环境友好、循环稳定性好、安全性高等突出优点,成为很有发展潜力的新一代锂离子电池正极材料。但聚阴离子型铁系材料的本身结构决定了其电导率低,电化学活性差,限制了其大规模应用。为此,本文对铁系材料的合成方法和改性工作开展了系列的研究,以改善其电化学性能。
     以LiH2PO4和FeC2O4-2H2O为原料,聚乙烯醇为碳源,通过机械化学活化辅助固相法合成了原位碳包覆的LiFePO4材料。详细考察了合成条件对LiFePO4/C材料晶体结构、物理和电化学性能的影响,并通过拉曼光谱对复合材料中碳的结构进行了分析,焙烧温度对碳的石墨化结构含量影响最大。优化工艺条件下,热解碳在LiFePO4颗粒表面形成了良好的纳米导电层,放电比容量为155.4 mAh/g (0.1C)和137.6 mAh/g (1C),振实密度为0.87 g/cm3。在碳包覆基础上,通过锰离子掺杂制备了较低碳含量的LiFe0.99Mn0.01PO4/C材料,O.1C放电容量达到158.9 mAh/g,在1C和2C倍率下的放电容量分别为140.1和130 mAh/g,循环性能优良,同时具有较高的振实密度(1.02g/cm3)。
     以LiH2PO4和还原铁粉为原料,聚乙烯醇为碳源,通过机械液相活化沉淀法首先合成了分散均匀、反应活性较高的[Fe3(PO4)2-8H2O +Li3PO4]前驱体,分析了前驱体制备的机械活化反应过程。TGA-DSC分析显示合成LiFePO4的晶化过程与有机碳源的碳化过程同步,制备的前驱体经过一步焙烧可生成原位碳包覆LiFePO4材料。优化结果表明,LiFePO4晶粒表面原位形成了5nm左右分布均匀的碳导电层,获得了颗粒细小均匀、结晶良好的LiFePO4/C材料,放电比容量为156.8 mAh/g (0.1C)、140.7 mAh/g (1C)和130.2 mAh/g (2C),振实密度为1.12g/cm3。并通过碳包覆和铁位掺杂复合改性制备了LiFe0.99M0.01P04/C材料(M= Mn2+,V3+,Si4+),显示了良好的倍率充放电能力和循环稳定性。样品LiFe0.99Si0.01P04/C在高倍率3C下放电比容量为137.1 mAh/g,循环40次后保持在136 mAh/g。从缺陷化学角度分析了高价离子铁位掺杂改性的作用,离子掺杂使LiFePO4晶格内产生了锂空位,扩展了锂离子扩散的通道,降低了O对Li的束缚,从而有利于Li+的快速传输。交流阻抗分析和循环伏安测试结果也表明,离子掺杂提高了LiFePO4的导电性能,有利于减少电极过程中的电荷传递电阻和锂离子扩散阻力,降低了充放电过程中的动力学限制,提高了电极的可逆性。
     选择不同原料体系通过机械活化结合多元醇合成法制备了不同形貌的纯相LiFePO4材料,探索了一种常压低温下高效合成LiFePO4的工艺。以棒状形貌的[Fe3(PO4)2·8H2O+Li3PO4]为前驱体,在三甘醇介质中沸腾回流制备了结晶良好的棒状LiFePO4材料。以聚乙烯醇为碳源,对纯相LiFePO4进行了碳包覆改性,以改善纯相材料的电导率。获得的LiFePO4/C复合材料1C、2C下放电容量分别为139.8 mAh/g、129.5 mAh/g。以三甘醇为溶剂和还原剂,Li2CO3和FePO4为原料,采用多元醇还原法直接制备了颗粒细小均匀、结晶良好的纯相LiFePO4,无须后续热处理。通过碳包覆改性处理合成了LiFePO4/C材料,在0.1C下放电容量为157.3 mAh/g,2C倍率下放电比容量保持在136.2 mAh/g,具有良好的倍率性能和循环稳定性。
     将微波加热技术应用于Li2FeSiO4/C正极材料的制备。以Li2CO3、FeC2O4·2H2O和纳米Si02为原料,聚乙烯醇和超导电炭黑为复合碳源,采用微波固相法制备了Li2FeSiO4/C材料。在选用的微波合成体系下,超导碳和聚乙烯醇热分解的无定形碳不仅利于合成反应的顺利进行,而且在Li2FeSiO4/C材料中形成有效的导电通路,提高了Li2FeSiO4的整体导电性能,60℃下0.05C倍率首次放电容量为124.2mAh/g,0.5C倍率首次放电比容量102.3 mAh/g。进一步改善前驱体制备方式,采用低热固相反应获得了分散均匀的β-FeOOH/SiO2前驱体,再通过微波碳热还原法合成了结晶好、晶粒细小均匀、高纯度的Li2FeSi04/C材料。经过优化后的Li2FeSiO4/C材料在60℃下0.05C倍率首次放电容量为129.6 mAh/g,0.5C倍率下有107.5 mAh/g。
Polyanion iron-base cathode materials, LiFePO4 and Li2FeSiO4 are seen as highly promising candidates for large-scale Li-ion battery applications due to the merits of abundant raw materials, environmental friendliness, excellent cyclic stability, and high safety. However, the intrinsic crystal structure of polyanion iron-base cathode materials results in poor conductivity and electrochemical inertness, which seriously hinder their application in large scale. In order to improve the electrochemical performance, the serial research work is focused on synthesis methods and modification technique of iron-base cathode materials.
     In-situ carbon-coated LiFePO4 cathode material was prepared by ball-milling activation and subsequent solid state reaction, with LiH2PO4 and FeC2O4·2H2O as starting materials, and polyvinyl alcohol (PVA) as carbon source. The influences of synthetic conditions on the crystal structure, physical property and electrochemical performance of LiFePO4/C composites were investigated in detail. And the structure of carbon in the composites was studied by Raman spectrum, which indicated the sintering temperature played the significant role on the graphitization degree of carbon pyorlyzed from PVA. Under the optimum conditions, the residual pyorlyzed carbon in situ formed a well conductive nano-film on the surface of LiFePO4 grain, and the obtained LiFePO4/C cathode delivered reversible discharge specific capacity of 155.4 mAh/g at 0.1C rate and 137.6 mAh/g at 1C rate, with tap density of 0.87 g/cm3. On the basis of carbon coating modification, Mn-ion-doping LiFe0.99Mn0.01P04/C composites were prepared with lower carbon content, displaying good cyclic capability and higher reversible discharge specific capacity of 158.9 mAh/g at 0.1C rate and 140.1 mAh/g at 1C rate and 130 mAh/g at 2C rate, as well as higher tap density of 1.02 g/cm3.
     Homogeneous distribution of [Fe3(PO4)2·8H2O+Li3PO4] precursor with the high reacting activity was prepared by mechano-chemical liquid phase activation technique, with LiH2PO4 and reduction iron powder as starting materials, and PVA as carbon source. The reaction course between LiH2PO4 and reduction iron powder under mechanical activation is analyzed. PVA pyrolyzed during the formation of LiFePO4 synchronously, as a result, carbon-coated LiFePO4 composites were synthesized in situ by one-step solid state reaction of as-prepared precursor. The optimum results showed that, uniform in-situ carbon coating (5nm or so) was formed on the surface of LiFePO4 crystalline. Consequently, well-crystallized LiFePO4/C composites with homogeneous fine particle size were obtained, which had the discharge specific capacity of 156.8 mAh/g at 0.1C rate and 140.7 mAh/g at 1C rate and 130.2 mAh/g at 2C rate, and tap density of 1.12 g/cm3. In order to further enhance the electrochemical performance of LiFePO4/C, LiFe0.99M0.01P04/C (M=Mn2+,V3+,Si4+) composites cathode were prepared by carbon coating combination with Fe-site doping, then the rate performance and cyclic stability of LiFePO4 was improved significantly. It was found that the sample LiFe0.99Si0.01P04/C displayed 137.1 mAh/g at 3C discharge rate and maintained 136 mAh/g after 40th cycles. The modification effect of aliovalent doping on Fe site was discussed from the viewpoint of defect chemistry. The dopant substituting on the Fe sites can create lithium vacancies in olivine LiFePO4 lattice by charge-compensation mechanism. The existences of lithium vacancy may expand Li+diffusion channels in the structure, weaken the bound of oxygen to lithium, and increase lithium mobility. And the analyses of electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) also indicated that aliovalent doping on Fe site improved conduction property of LiFePO4, reduced charge transfer impedance and Li ion diffusion resistance in the electrode process, increased phase transformation kinetics during cycling, and enhanced reversibility of LiFePO4 electrode.
     Pure LiFePO4 materials with different morphology were prepared by mechanochemical-activation-assisted polyol synthesis processing, using different raw materials, and a low temperature approach for efficient preparation of LiFePO4 cathode was explored. LiFePO4 rods with good crystallization were synthesized in boiling tetraethyleneglycol (TEG) medium by re fluxing processing, using rod-shaped [Fe3(PO4)2·8H2O +Li3PO4] as precursor. In order to improve the electrical conductivity, carbon coating modification on the pure LiFePO4 was carried out with PVA as carbon source. The prepared LiFePO4/C composite delivered discharge capacity of 139.8 mAh/g at 0.1 C rate and 129.5 mAh/g at 2C rate. Highly crystalline LiFePO4 ultrafine particles were synthesized by a polyol reduction processing without post annealing, with TEG acting as solvent and reductant, FePO4 and Li2CO3 as the starting material. Carbon-coating LiFePO4 composites were prepared by calcining the mixture of as-prepared pure LiFePO4 and PVA. And the obtained composites delivered discharge capacity of 157.3 mAh/g at 0.1C rate and 136.2 mAh/g at 2C rate, displaying good rate capability and cyclic stability.
     Microwave heating technique was introduced into the synthesis of Li2FeSi04/C cathode materials. Li2FeSiO4/C cathode materials were synthesized by microwave solid-state processing, with Li2CO3 FeC2O4·2H2O、and nano-SiO2 as the starting materials, PVA and super-P carbon as the carbon sources. Under the selective microwave synthesis system, super-P carbon powder and pyrolyzed amorphous carbon not only effectively provided the high temperature to induce the complete reaction but also formed the conductive network to enhance the electronic conductivity. The prepared Li2FeSiO4/C composite had discharge capacity of 124.2 mAh/g at 0.05C rate and 102.3 mAh/g at 0.5C rate at 60℃. To improve preparation route of precursor, the homogeneous distribution of FeOOH/SiO2 was prepared from FeCl24H2O and Na2SiO3"9H2O by low-heating solid-state reaction. Then Li2FeSiO4/C composites were prepared by microwave carbothermal reduction method, with PVA and super-P carbon as reductants. Under optimum conditions, highly pure Li2FeSiO4/C material with uniform and fine particle size is obtained, showing discharge capacity of 129.6 mAh/g at 0.05 C rate and 107.5 mAh/g at 0.5Crate at 60℃.
引文
[1]吴宇平,万春荣,姜长印.锂离子二次电池[M],北京:化学工业出版社,2002,1-10
    [2]B Scrosati. Lithium rocking chair batteries:an old concept [J].J Electrochem Soc, 1992,139(10):2776-2781
    [3]M Winter, R J Brodd. What Are batteries, fuel cells, and supercapacitors? [J]. Chem Rev,2004,104(10):4245-4269
    [4]A Ritchie, W Howard. Recent developments and likely advances in lithium-ion batteries [J]. J Power Sources,2006,162(2):809-812
    [5]P G Bruce. Energy storage beyond the horizon:rechargeable lithium batteries [J]. Solid State Ionics,2008,179(21-26):752-760
    [6]M Armand, J M Tarascon. Building better batteries[J], Nat,2008,451(2):652-657
    [7]陈立泉.锂离子正极材料的研究发展[J].电池.2002,32(6):6-8
    [8]T Ohzuku, R Brodd. An overview of positive-electrode materials for advanced lithium-ion batteries [J]. J Power Sources,2007,174(2):449-456
    [9]徐化云.锂离子电池正极材料的制备改性及表征[D].合肥:中国科学技术大学,2007
    [10]M Yoshio, H Tanaka, K Tominaya. Synthesis of LiCoO2 from cobalt-organic acid complex and its electrode behavior in a lithium secondary battery [J]. J Power Sources,1992,40(1):347-353
    [11]C Delmas. On the behavior of the LiNixO2 system:an electrochemical and structural overview[J]. J Power Sources,1997,68 (1):120-125
    [12]彭忠东.锂离子电池正极材料的合成及中试生产技术研究[D].长沙:中南大学,2003
    [13]J Akimoto, Y Gotoh, Y Oosawa. Synthesis and structure refinement of LiCoO2 single crystals[J]. J Solid State Chem,1998,141(1):298-302
    [14]N Kosova, E Devyatkina, A Slobodyuk, et al. Surface chemistry study of LiCoO2 coated with alumina[J]. Solid State Ionics,2008,179(27-32):1745-1749
    [15]Zhanxu Yang, Wensheng Yang, D G Evans, et al. Enhanced overcharge behavior and thermal stability of commercial LiCoO2 by coating with a novel material[J].. Electrochem Commun,2008,10(8):1136-1139
    [16]M M Thackeray. Structural considerations of layered and spinel lithiated oxides for lithium ion batteries [J]. J Electrochem Soc,1995,142(8):2558-2563
    [17]Y Gao, M Yakovleva, W Ebner, et al. Synthesis and charge-discharge properties of LiNi1-xTix/2Mgx/2O2 compounds[J].Solid state Letters,1998,(1):117-120
    [18]J Kim, B H Kim, Y H Baik, et al. Effect of (Al, Mg) substitution in LiNiO2 electrode for lithium batteries. [J]. J Power Sources,2006,158(1):641-645
    [19]吴宇平,李阳兴,万春荣,等.锂离子二次电池正极材料氧化锰锂的研究进展[J].功能材料,2000,31(1):18-22
    [20]S Komaba, T Sasaki, Y Miki, et al. Electrochemical characteristics and managanese dissolution of spinel Li1.05M0.2Mn1.75O4 (M=A1, Co, and Cr) cathode for rechargeable lithium ion batteries [J]. Electrochemistry,2003,71(12):1236-1239
    [21]唐致远,阮艳莉.锂离子电池容量衰减机理的研究进展[J].化学进展,2005,17(1):1-8
    [22]K S Nanjundaswamy, A K Padhi, J B Goodenough, et al. Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds [J]. Solid State Ionics,1996,92 (1-2):1-10
    [23]A K Padhi, K S Naanjundaswamy, C Masquelier. Mapping of transition-metal redox energies in phosphates with NASICON structure by lithium intercalation [J], J Electrochem Soc,1997,144(8):2581-2586
    [24]F Zhou, M Cococcioni, K Kang, et al.The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M=Fe, Mn, Co, Ni[J], Electrochem Commun,2004, 6(11):1144-1148
    [25]M Y Saidi, J Barker, H Huang, et al. Performance characteristics of lithium vanadium phosphate as a cathode materials for lithium-ion batteries[J]. J Power Sources,2003,119-121:266-272
    [26]施志聪,杨勇.聚阴离子型锂离子电池正极材料研究进展[J].化学进展,2005,17(4):604-613
    [27]A K Padhi, K S Nanjundaswamy, J B Goodenough. Phospho-livinesas positive electrode materials for rechargeable lithium batteries[J]. J Electrochem Soc,1997, 144(4):1188-1194
    [28]A K Padhi, K S Nanjundaswamy, C Masquelier, et al. Effect of structure on the Fe3+/Fe2+redox couple in iron phosphates[J]. J Electrochem Soc,1997,144(5): 1609-1613
    [29]M Armand, C Michot, N Ravet,et al.Lithium insertion electrode material based on orthosilicate derives:US,6085015[P].2000,07,04
    [30]A Nyten, A Abouimrane, M Armand, et al. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material [J]. Electrochem Commun, 2005,7(2):156-160
    [31]M Thackeray. Lithium-ion batteries:An unexpected conductor [J]. Nat Mater, 2002, 1(2):81-82
    [32]王德宇.锂离子电池磷酸盐正极材料的制备与改性研究[D].北京:中国科学院物理研究所,2005
    [33]刘善科,董全峰,孙世刚.锂离子电池正极材料LiFePO4研究进展[J]..电源技术,2006,130(5):424-428
    [34]M S Whittingham. Materials challenges facing electrical energy storage[J]. MRS Bull.2008,33 (4):411-419
    [35]颜剑,苏玉长,苏继桃,等.锂离子电池负极材料的研究进展[J].电池工业,2006,11(4):277-281
    [36]H Yamada, Y Watanabe, I Moriguchi, et al. Rate capability of lithium intercalation into nano-porous graphitized carbons [J]. Solid State Ionics,2008, 179(27-32):1706-1709
    [37]MS Whittingham. Lithium batteries and cathode materials [J]. Chem Rev,2004, 104(10):4271-4301
    [38]L Kosidowski, A V Powell, J Mayers. The kinetic energy of lithium in LiTiS2 as determined by neutron compton scattering [J]. Physica B:Condensed Matter, 1997,241-243(1-4):335-337
    [39]N Yabuuchi, T Ohzuku. Novel lithium insertion material of LiNi1/3Co1/3Mn1/3O2 for advanced lithium-ion batteries[J]. J Power Sources,2003,119-121:171-174.
    [40]唐爱东,王海燕,黄可龙等.锂离子电池正极材料层状Li-Ni-Co-Mn-O的研究[J].化学进展,2007,19(9):1313-1321
    [41]Jolanta Swiatowska-Mrowiecka, F Martin, V Maurice, et al. The distribution of lithium intercalated in V2O5 thin films studied by XPS and ToF-SIMS [J]. Electrochim Acta,2008,53(12):4257-4266
    [42]J Lee, J M Lee, S Yoon, et al. Electrochemical characteristics of manganese oxide/carbon composite as a cathode material for Li/MnO2 secondary batteries[J]. J Power Sources,2008,183(1):325-329
    [43]P G Balakrishnan, R Ramrsh, P T Kumar. Safety mechanisms in lithium-ion batteries [J]. J Power Sources,2006,155(2):401-414
    [44]A S Andersson, J O Thomas, B Kalska, et al. Thermal stability of LiFePO4-based cathodes [J]. Electrochem Solid-State Lett,2000,3(2):66-68
    [45]H T Chung, S K Jang, H W Ryu, et al. Effects of nano-carbon webs on the electrochemical properties in LiFePO4/C composite[J]. Solid State Commun, 2004,131(8):549-554
    [46]K Striebel, J Shiml, A Sierra, et al. The development of low cost LiFePO4-based high power lithium-ion batteries[J]. J Power Sources,2005,146(1-2):33-38
    [47]陈学军,赵新兵,曹高劭.一步固相法合成Nb掺杂LiFePO4/C及其电化学性能[J].中国有色金属学报,2006,16(10):1665-1671
    [48]Z L Gong, Y X Li, Yang Y. Synthesis and characterization of Li2MnxFe1-xSi04 as a cathode material for lithium-ion batteries [J], Electrochem Solid-State Lett, 2006,9(12):A542-A544
    [49]刘继强,林红旗,潘洪革.正极材料LiFePO4电化学性能的改善及机制[J],电源技术,2007,31(3):249-252
    [50]张新龙,胡国荣,童汇,等.正极材料锂铁(锰)硅氧化物的研究进展[J],电源技术,2008,32(2):128-131
    [51]C Delacourt, L Laffont, R Bouchet, et al. Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M= Fe, Mn) electrode materials[J]. J Electrochem Soc,2005,152 (5):A913-A921
    [52]W F Howard, R M Spomnitz. Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries [J]. J Power Sources,2007, 165(2):887-891
    [53]左朋建,王振波,尹鸽平,等.锂离子电池聚阴离子型硅酸盐正极材料的研究进展[J].材料导报,2009,23(6):28-31
    [54]A S Andersson, B Kalska, L Haggstrom, et al. Lithium extraction/insertion in LiFePO4:an X-ray diffraction and Mossbauer spectroscopy study [J]. Solid State Ionics,2000,130:41-52
    [55]G H Li, H Azuma, M Tohda. Optimized LiMnyFe1-yPO4 as the cathode for lithium batteries [J]. J Electrochem Soc,2002,149(6):A743-A747
    [56]M E Arroyo-de Dompablo, M Armand, J M Tarascon, et al. On-demand design of polyoxianionic cathode materials based on electronegativity correlations:An exploration of the Li2MSiO4 system (M= Fe, Mn, Co, Ni) [J]. Electrochem Commun,2006,8(8):1292-1298
    [57]M E Arroyo-de Dompablo, M Morcrette, J M Tarascon. A computational investigation on fluorinated-polyanionic compound as positive electrode for lithium batteries [J].J Power Sources,2007,174(2):1251-1256
    [58]J M Tarascon, M Armand. Issues and challenges facing rechargeable lithium batteries [J]. Nature,2001,414(15):359-367
    [59]G H Li, H Azuma, M Tohda. LiMnPO4 as the cathode for lithium batteries [J]. Electrochem Solid-State Lett,2002,5(6):A135-A137
    [60]K Rissouli, K Benkhouja, J R Ramos-Barrado et al. Electrical conductivity in lithium orthophosphates [J]. Mater Sci Eng B,2003,98(3):185-189
    [61]王连亮,马培华,李法强,等.锂离子电池正极材料LiFePO4的结构和电化学反应机理[J].化学通报2008,71(1):17-23
    [62]夏熙.锂离子电池磷酸金属锂盐正极材料的发展[J].电池,2009,39(1):20-25
    [63]S Yang, Y Song, P Y Zavalij, et al. Reactivity, stability and electrochemical behavior of lithium iron phosphates [J], Electrochem Commun,2002,4(3): 239-244
    [64]N Ravet, Y Chouinard, J F Magnan, et al. Electroactivity of natural and synthetic triphylite [J]. J Power Sources,2001,97-98(1-2):503-507
    [65]M Takahashi, S Tobishima, K Takei, et al. Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries[J]. Solid State Ionics,2002, 148(3-4):283-289
    [66]J Kwon, C W Kim, W T Jeong, et al. Synthesis and electrochemical properties of olivine LiFePO4 as a cathode material prepared by mechanical alloying[J]. J Power Sources,2004,137(1):93-99
    [67]S Y Chung, J T Bloking, Y M Chiang. Electronically conductive phospho-olivines as lithium storage eletrodes [J]. Nat Mater,2002,1(2):123-128
    [68]A Yamada, M Hosoya, S C Chung, et al. Olivine-type cathodes achievements and problems [J]. J Power Source,2003,119-121(1-2):232-238
    [69]F Zhou, K Kang, T Maxisch, et al. The electronic structure and band gap of LiFePO4 and LiMnPO4 [J]. Solid State Commun,2004,132(3-4):181-186
    [70]Y N Xu, S Y Chung, J T Bloking, et al. Electronic structure and electrical conductivity of undoped LiFePO4[J]. Electrochem Solid-State Lett,2004, 7(6):A131-A134
    [71]C Delacourt, P Poizot, J M Tarascon, et al. The existence of a temperature-driven solid solution in LixFePO4 for 0≤x≤1 [J]. Nat Mater.2005,4(3):254-260
    [72]A Yamada, H Koizumi, S Nishimura, et al. Room-temperature miscibility gap in LixFePO4 [J]. Nat Mater,2006,5(4):357-360
    [73]D Morgan, A Van der Ven, G Ceder. Li conductivity in LixFePO4 (M=Mn, Fe, Co, Ni) olivine materials [J]. Electrochem Solid-State Lett,2004,7(2):A30-A32
    [74]C Y Ouyang, S Q Shi, Z X Wang, et al. First-principles study of Li ion diffusion in LiFePO4[J].Phys Rev B 2004,69(10):104303-104307
    [75]M S Islam, D J Driscoll, A J Crag, et al. Atomin-scale investigation of defects, dopants, and lithium transport in the LiFePO4 Olivine-type battery material [J]. Chem Mater,2005,17(20):5085-092
    [76]S Nishimura, G Kobayashi, K Ohoyama, et al. Experimental visualization of lithium diffusion in LixFePO4 [J]. Nat Mater,2008,7(9):707-711
    [77]M Takahashi, S Tobishima, K Takei, et al. Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries[J], J Power Sources,2001, 97-98:508-511
    [78]A S Andersson, J O Thomas. The source of first-cycle capacity loss in LiFePO4 [J], J Power Sources,2001,97-98(1):498-502
    [79]N Meetong, H Huang, W C Carter,et al. Size-dependent lithium miscibility gap in nanoscale Li1-xFePO4[J].Electrochem Solid-State Lett,2007,10(5):A134-A138
    [80]P Gibot, M C Cabanas, L Laffont,et al. Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4 [J].Nat Mater,2008,7(9):741-747
    [81]N Ravet, et al. Electrode material having improved surface conductivity[P]. CA Patent No. EP1049182,2000,05,02
    [82]B Kang, G Ceder. Battery materials for ultrafast charging and discharging [J]. Nature,2009,145(3):190-193
    [83]N Ravet, J B Goodenough, S Besner, et al. Abstract 127, the electrochemical society and the electrochemical society of Japan meeting abstracts, Vol.99-2, Honolulu, HI, Oct 17-22,1999
    [84]P P Prosini, D Zane, M Pasquali. Improved electrochemical performance of a LiFePO4-based composite cathode [J].Electrochim Acta,2001,46(23): 3517-3523
    [85]H Huang, S C Yin, L F Nazar. Approaching theoretical capacity of LiFePO4 at room temperature at high rates [J]. Electrochem Solid-State Lett,2001, 4(1):A170-A172
    [86]Z H Chen, J R Dahn. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J]. J Electrochem Soc,2002,149(9):A1184-1189
    [87]R Dominko, M Gaberscek, J Drofenik, et al. The role of carbon black distribution in cathodes for Li ion batteries [J]. J Power Sources,2003,119-121:770-773
    [88]R Dominko, M Bele, M Gaberscek, et al. Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites[J].J Electrochem Soc,2005,152(3):A607-A610
    [89]M M Doeff, Y Hu, F Mclarnon, et al. Effect of surface carbon structure on the electrochemical performance of LiFePO4 [J]. Electrochem Solid-State Lett 2003, 6(10):A207-A209
    [90]F Croce, A D'Epifanio, J Hassiun. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode [J]. Electrochem Solid-State Lett, 2002,5(3):A47-A50
    [91]K S Park, J T Son, H T Chung, et al. Surface modification by silver coating for improving electrochemical properties of LiFePO4[J]. Solid State Commun,2004, 129(5):311-314
    [92]卢俊彪.锂离子电池正极材料LiFePO4的合成、结构与性能研究[D].北京:清华大学,2003
    [93]Y S Hu, Y G Guo, R Dominko, et al. Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect [J].Adv Mater,2007,19(15):1963-1966
    [94]P S Herle, B Ellis, N Coombs, et al. Nano-network electronic conduction in iron and nickel olivine phosphates [J]. Nat Mater,2004,3 (3):147-152
    [95]C W Kim, J S Park, K S Lee. Effect of Fe2P on the electron conductivity and electrochemical performance of LiFePO4 synthesized by mechanical alloying using Fe3+raw material [J]. J Power Sources 2006,163(1):144-150
    [96]Y Xu, Y J Lu, L Yan, et al. Synthesis and effect of forming Fe2P phase on the physicals and electrochemical properties of LiFePO4/C materials [J]. J Power Sources,2006,160(2):570-577
    [97]C S Li, S Y Zhang, F Y Cheng, et al. Porous LiFePO4/NiP composite nanospheres as the cathode materials in rechargeable lithium ion batteries [J]. Nano Res,2008,1(3):242-248
    [98]Y H Huang, K S Park, J B Goodenough. Improving lithium batteries by tethering carbon-coated LiFePO4 to polypyrrole [J]. J Electrochem Soc,2006,153 (12): A2282-A2286
    [99]陈晗.新型锂离子电池正极材料LiFePO4的合成及改性研究[D].长沙:湖南大学,2007
    [100]H M Xie, R S Wang, J R Ying, et al. Optimized LiFePO4/polyacene cathode material for lithium-ion batteries [J]. Adv Mater,2006,18 (19):2609-2613
    [101]张凌云,王荣顺,王淑英.锂离子电池LiFePO4/聚并苯复合正极材料的合成与改性研究[J].东北师大学报(自然科学版),2008,40(1):81-84
    [102]G L Yang, A F Jalbout, Y Xu, et al. Effect of polyacenic semiconductors on the performance of olivine LiFePO4 [J]. Electrochem Solid-State Lett,2008,11 (8):A125-A128
    [103]L Q Sun, R H Cui, A F Jalbout, et al. LiFePO4 as an optimum power cell material[J]. J Power Sources,2009,189(1):522-526
    [104]J Liu, F K Liu, G L Yang, et al. The preparation of conductive nano LiFePO4/PAS and its electrochemical performance [J]. Electrochim Acta, 2010,55(3):1067-1071
    [105]G L Yang, X F Zhang, J Liu, et al. Synthesis of LiFePO4/polyacenes using iron oxyhydroxide as an iron source[J]. J Power Sources,2010,195(4):1211-1215
    [106]K Zaghib, J B Goodenough, A Mauger, et al. Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries [J].J Power Sources,2009, 194(2):1021-1023
    [107]G Ceder, B Kang. Response to "Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries" [J]. J Power Sources,2009,194(2):1024-1028
    [108]J Barker, M Y Saidi, J L Swoyer. Lithium iron (II) phospho-olivines prepared by a novel carbothermal reduction method [J]. Electrochem Solid-State Lett,2003, 6(3):A53-A55
    [109]G X Wang, S Bewlay, K Konstantinov,et al. Physical and electrochemical properties of doped lithium iron phosphate electrodes[J].Electrochim Acta,2004,50(2-3):443-447
    [110]G X Wang, S Bewlay, J Yao,et al. Characterization of LiMxFe1-xPO4 (M =Mg, Zr, Ti) cathode materials prepared by the sol-gel method[J]. Electrochem Solid-State Lett,2004,7(12):A503-A506
    [111]D Y Wang, H Li, S Q Shi,et al. Improving the rate performance of LiFePO4 by Fe-site doping[J].Electrochim Acta,2005,50(14):2955-2958
    [112]M. Abbate, S.M. Lala, L A Montoro, et al. Ti-, Al-, Cu-doping induced gap states in LiFePO4, [J]. Electrochem Solid-State Lett,2005,8(6):A288-A290
    [113]N Ravet, A Abouimrane, M Armand. On the electronic conductivity of phospho-olivines as lithium storage electrodes [J].Nat Mater,2003,2(11): 702-706
    [114]C Delacourt, P Poizot, S Levasseur, et al. Size effects on carbon-free LiFePO4 powders [J]. Electrochem Solid-State Lett,2006,9 (7):A352-A355
    [115]C Delacourt, C Wurm, L Laffont, et al. Electrochemical and electrical properties of Nb-and/or C-containing LiFePO4 composites[J]. Solid State Ionics,2006,177: 333-341
    [116]C A J Fisher, V M Hart Prieto, M S Islam. Lithium battery materials LiMPO4 (M= Mn, Fe, Co, and Ni):Insights into defect association, transport mechanisms, and doping [J]. Chem Mater,2008,20(18):5907-5915
    [117]M Wagemaker, B L Ellis, D Lu"tzenkirchen-Hecht, et al. Proof of supervalent doping in olivine LiFePO4[J].Chem Mater,2008,20(20):6313-6315
    [118]N Meethong, Y H Kao, S A Speakman,et al. Aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties [J]. Adv Funct Mater 2009,19(7):1060-1070
    [119]B L Ellis, M Wagemaker, F M Mulder, et al. Comment on "Aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties" [J]. Adv Funct Mater 2010,20(1):186-188
    [120]Y M Chiang, N Meethong, Y H Kao. Reply to comment on "aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties" [J]. Adv Funct Mater 2010,20(1):189-191
    [121]A Yamada, S C Chung, K Kinokuma. Optimized LiFePO4 for lithium battery cathodes [J]. J Electrochem Soc,2001,148(3):A224-A229
    [122]申泮文.无机化学[M],北京:化学工业出版社,2002:501-502
    [123]H S Kim, B W Cho, W I Cho. Cycling performance of LiFePO4 cathode material for lithium secondary batteries [J]. J Power Sources,2004,132(1-2): 235-239
    [124]李运姣,李洪桂,孙培梅,等LiMn2O4的机械活化湿化学合成机理[J].功能材料,2004,35(2):183-185
    [125]陈刚,陈鼎,严红革等.固液反应球磨工艺[J].材料导报,2005,19(5):222-224
    [126]S Franger, F L Cras, C Bourbon, et al. Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties [J]. J Power Sources 2003, (119-121):252-257
    [127]X Z Liao, Z F Ma, L Wang, et al. A novel synthesis route for LiFePO4/C cathode materials for lithium-ion batteries [J]. Electrochem Solid-State Lett 2004,7(12):A522-A525
    [128]李言荣.氧化物电子陶瓷材料的微波处理研究[D]四川成都:四川大学,2002
    [129]M Higuchi, K Katayama, Y Azuma, etc. Synthesis of LiFePO4 cathode material by microwave processing [J]. J Power Sources,2003,119-121:258-261
    [130]K S Park. Synthesis LiFePO4 by coprecipitation and microwave heating [J]. Electrochem Commun,2003,5(10):839-842
    [131]L Wang, Y D Huang, R R Jiang, et al. Nano-LiFePO4/MWCNT cathode materials prepared by room-temperature solid-state reaction and microwave heating [J]. J Electrochem Soc,2007,154(11):A1015-A1019
    [132]K Uematsu, A Ochiai, K Toda, et al. Solid chemical reaction by microwave heating for the synthesis of LiFePO4 cathode material[J]. J Ceram Soc Jap, 2007,115(1343):450-454
    [133]R Dominko, J M Goupil, M Bele, et al. Impact of LiFePO4/C composites porosity on their electrochemical performance [J]. J Electrochem Soc,2005, 152(5):A858-A863
    [134]R Dominko, M Bele, J M Goupil,et al.Wired porous cathode materials:A novel concept for synthesis of LiFePO4[J].Chem Mater,2007,19(12):2960-2969
    [135]Y Sundarayya, K C Kumara Swamy, C S Sunandana. Oxalate based non-aqueous sol-gel synthesis of phase pure sub-micron LiFePO4 [J]. Mater Res Bull, 2007,42(11):1942-1948
    [136]Shoufeng Yang, P Y Zavalij, M S Whittingham. Hydrothermal synthesis of lithium iron phosphate cathodes [J].Electrochem Commun,2001,3(9):505-508
    [137]J J Chen, S J Wang, M S Whittingham. Hydrothermal synthesis of cathode materials [J]. J Power Sources,2007,174(2):442-448
    [138]S Tajimi, Y Ikeda, K Uematsu, et al. Enhanced electrochemical performance of LiFePO4 prepared by hydrothermal reaction [J]. Solid State Ionics,2004,175 (1-4)287-290
    [139]K Shiraishi, K Dokko, K Kanamura. Formation of impurities on phospho-olivine LiFePO4 during hydrothermal synthesis[J]. J Power Sources,2005,146(1-2): 555-558
    [140]N Recham, L Laffont, M Armand, et al. Eco-efficient synthesis of LiFePO4 with different morphologies for Li-ion batteries [J].Electrochem Solid-State Lett 2009, 12(2):A39-A44
    [141]N Recham, L Dupont, M Courty,et al. Ionothermal synthesis of tailor-made LiFePO4 powders for Li-ion battery applications [J]. Chem Mater,2009, 21(6):1096-1107
    [142]K Saravanan, M V Reddy, P Balaya, et al. Storage performance of LiFePO4 nanoplates [J]. J Mater Chem.,2009,19(5):605-610
    [143]H Yang, XL Wu, M H Cao, et al. Solvothermal synthesis of LiFePO4 hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in lithium-ion batteries [J]. J Phys Chem C, 2009,113(8),3345-3351
    [144]A V Murugan, T Muraliganth, A Manthiram. Comparison of microwave assisted solvothermal and hydrothermal syntheses of LiFePO4/C nanocomposite cathodes for lithium ion batteries [J].J Phys Chem C,2008,112(37):14665-14671
    [145]A V Murugan, T Muraliganth, A Manthiram. Rapid microwave-solvothermal synthesis of phospho-olivine nanorods and their coating with a mixed conducting polymer for lithium ion batteries [J].Electrochem Commun,2008 (10):903-906
    [146]A V Murugan, T Muraliganth, P J Ferreira, et al. Dimensionally modulated, single-crystalline LiMPO4 (M=Mn, Fe, Co, and Ni) with nano-thumblike shapes for high-power energy storage [J].Inorg Chem,2009,48(3):946-952
    [147]G Arnold, J Garche, R Hemmer, et al. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique [J]. J Power Sources,2003,119-121:247-251
    [148]M R Yang, W H Ke, S H Wu. Preparation of LiFePO4 powders by co-precipitation [J]. J Power Sources,2005,146(1-2):539-543
    [149]S W Oh, H J Bang, S T Myung, et al. The effect of morphological properties on the electrochemical behavior of high tap density C-LiFePO4 prepared via co-precipitation [J]. J Electrochem Soc,2008,155(6):A414-A420
    [150]龚正良.聚阴离子型硅酸盐锂离子电池正极材料研究[D]厦门:厦门大学,2007
    [151]P Larsson, R Ahuja, A Nyten, et al. An ab initio study of the Li-ion battery cathode material Li2FeSi04 [J]. Electrochem Commun,2006,8(5):797-800
    [152]A Kokalj, R Dominko, G Mali, et al. Beyond one-electronreaction in Li cathode materials:designing Li2MnxFe1-xSiO4[J]. Chem Mater,2007,19(15):3633-3640
    [153]A Nyten, S Kamali, L Haggstrom, et al. The lithium extraction/insertion mechanism in Li2FeSi04 [J]. J Mater Chem,2006,16(3):2266-2272
    [154]R Dominko. Li2MSiO4 (M=Fe and/or Mn) cathode materials [J]. J Power Sources,2008,184(2):462-468
    [155]A Nyten, M Stjerndahl, H Rensmo, et al.Surface characterization and stability phenomena in Li2FeSi04 studied by PES/XPS[J]. J Mater Chem,2006,16(3): 3483-3488
    [156]D Ensling, Mn Stjerndahl, ANyten,et al. A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI-and LiPF6-based electrolytes [J]. J Mater Chem,2009,19(2):82-88
    [157]K Zaghib, A A Salah, N Ravet, et al. Structural, magnetic and electrochemical properties of lithium iron orthosilicate [J].J Power Sources,2006, 160(2):1381-1386
    [158]R Dominko, M Bele, M Gaberscek, et al. Structure and electrochemical performance of Li2MnSi04 and Li2FeSiO4 as potential Li-battery cathode materials [J]. Electrochem Commun,2006,8(2):217-222
    [159]R Dominko, D E Conte, D Hanzel, et al. Impact of synthesis conditions on the structure and performance of Li2FeSi04 [J]. J Power Sources,2008,178(2): 842-847
    [160]Z L Gong, Y X Li, G N He, et al. Nanostructured Li2FeSi04 electrode material synthesized through hydrothermal-assisted sol-gel process[J].Electrochem Solid-State Lett,2008,11 (5):A60-A63
    [161]康晓丽,仇卫华,刘兴江,等.锂离子电池LiBOB基电解质研究进展[J]电源技术,2008,132(11):804-807
    [162]L J Ning, Y P Wu, S B Fang, et al. Materials prepared for lithium ion batteries by mechanochemical methods [J]. J Power Sources,2004,133(2):229-242
    [163]日本化学会编,董万堂,董绍俊译.无机固态反应[M].北京:科学出版社,1985
    [164]张记甫,桑商斌,伍秋美PVA-KOH-TiO2-H2O复合碱性固态聚合物电解质[J].电源技术,2008,32,(5):316-319
    [165]N I Maksimova, O P Krivoruchko. Study of thermocatalytic decomposition of polyethylene and polyvinyl alcohol in the presence of an unsteady-state Fe-containing catalyst [J]. Chem Eng Sci,1999,54(20):4531-4537
    [166]J L Shie, Y H Chen, C Y Chang,et al. Thermal pyrolysis of Poly(vinyl alcohol) and its major products[J]. Energy Fuels,2002,16(1):109-118
    [167]Z Peng, L X Kong. A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites [J]. Polymer Degradation and Stability,2007, 92(6):1061-1071
    [168]B Ozkal, W Jiang, O Yamamoto, et al. Preparation and characterization of carbon-coated ZnO and CaO powders by pyrolysis of PVA[J]. J. Mater. Sci.,2007,(42):983-988
    [169]C H Mi, X B Zhao, G S Cao, et al. In situ synthesis and properties of carbon-coated LiFePO4 as Li-ion battery cathodes [J]. J Electrochem Soc 2005,152 (3):A483-A487
    [170]C W Ong, Y K Lin, J S Chen. Effect of various organic precursors on the performance of LiFePO4/C composite cathode by coprecipitation method [J]. J Electrochem Soc 2007,154 (6):A527-A533
    [171]J D Wilcox, M M. Doeff, M Marcinek, et al. Factors influencing the quality of carbon coatings on LiFePO4 [J]. J Electrochem Soc 2007,154 (5):A389-A395.
    [172]Rita Baddour-Hadjean, Jean-Pierre Pereira-Ramos. Raman microspectrometry applied to the study of electrode materials for lithium batteries [J].Chem Rev, 2010,110 (3):1278-1319
    [173]R Kostecki, B Schnyder, D Alliata, et al. Surface studies of carbon of carbon films from pyrolyzed photoresist [J]. Thin Solid Films,2001,396(1-2):36-43
    [174]G T K Fey, Y C Kao. Synthesis and characterization of pyrolyzed sugar carbons under nitrogen or argon atmosphere as anode materials for lithium-ion batteries [J]. Mater Chem Phys,2002,73(1):37-46
    [175]Z Sun, X Shi, X Wang, et al. Structure and properties of hard carbon films depending on heat treatment temperatures via polymer precursor [J]. Diamond Relat Mater,1999,8(6):1107-1113
    [176]T Nakamura, Y Miwa, M Tabuchi, et al. Structural and surface modifications of LiFePO4 olivine particles and their electrochemical properties [J].J Electrochem Soc,2006,153(6):A1108-A1114
    [177]T Nakamura, K Sakumoto, S Seki,et al. Apparent diffusion constant and electrochemical reaction in LiFe1-xMnxPO4 olivine cathodes [J].J Electrochem Soc,2007,154(12):A1118-A1123
    [178]A J Bard, L R Faulkner. Electrochemical Methods [M]. Wiley, New York,1980
    [179]D Y Wang, X D Wu, Z X Wang, et al.Cracking causing cyclicInstability of LiFePO4 cathode material [J].J Power Sources,2005,140(1):125-128
    [180]D Y W Yu, Christopher Fietzek, Wolfgang Weydanz, et al. Study of LiFePO4 by cyclic voltammetry[J]. J Electrochem Soc,2007,154(4):A253-A257
    [181]张克立.固体无机化学[M]武汉:武汉大学出版社,2005,101-108
    [182]赵中伟,刘旭恒Li-Fe-P-H2O系热力学分析[J].中国有色金属学报,2006,16(7):1257-126
    [183]张承忠.金属的腐蚀与保护[M].北京:冶金工业出版社,1985,175-176
    [184]陈振华,李英芝,倪颂,等.水磨法制备金属氧化物粉末研究[J].矿冶工程,2008,28(2):76-78
    [185]韩翀,沈湘黔,周建新LiFePO4/Ni复合微球的制备[J].硅酸盐学报,2008,36(4):559-564
    [186]X Z Liao, Z F Ma, Y S He, et al. Electrochemical behavior of LiFePO4/C cathode material for rechargeable lithium batteries [J].J Electrochem Soc, 2005,152(10):A1969-A1973
    [187]吴其胜.无机材料机械力化学[M],北京:化学工业出版社,2008,77-79
    [188]陈鼎,陈振华.机械力化学[M],北京:化学工业出版社,2008,120-127
    [189]彭秧锡,陈启元,刘士军等.机械化学与机械活化量热学的研究进展[J].材料研究与应用,2007,1(31):61-164
    [190]严红,周建新,沈湘黔.反应沉淀-焙烧法制备球形LiFePO4颗粒及其微结构表征[J].过程工程学报,2008,8(5):983-987
    [191]S H Wu, K M Hsiao, W R Liu. The preparation and characterization of olivine LiFePO4 by a solution method [J].J Power Sources,2005,146(1/2):550-554.
    [192]沈湘黔,占云,周建新,等.共沉淀-焙烧法制备LiFePO4[J]功能材料,2006,37(8):1198-1203
    [193]J S Yang, J J Xu. Nonaqueous Sol-gel synthesis of high-performance LiFePO4 [J]. Electrochem Solid-State Lett,2004,7 (12):A515-A518
    [194]G X Wang, S Needhama, J Yao, et al. A study on LiFePO4 and its doped derivatives as cathode materials for lithium-ion batteries [J]. J Power Sources, 2006,159(1):282-286
    [195]G X Wang, S Bewlay, S Needham, et al. Synthesis and characterization of LiFePO4 and LiTi0.01Fe0.99PO4 cathode materials[J]. J Electrochem Soc, 2006,153(1):A25-A31
    [196]倪江锋,周恒辉,陈继涛,等.金属氧化物掺杂改善LiFePO4电化学性能[J].无机化学学报,2005,24(4):472-476
    [197]陈宇,王忠丽,于春洋,等.掺杂Mo的LiFePO4正极材料的电化学性能[J].物理化学学报,2008,24(8):1498-1502
    [198]R Amin,C T Lin, J Maier. Aluminium-doped LiFePO4 single crystals [J]. Phys Chem Chem Phys,2008,10(24):3519-3529
    [199]J Maier, R Amin. Defect chemistry of LiFePO4 [J], J Electrochem Soc, 2008,155(4):A339-A344
    [200]R Amin, C T Lin, J B Peng, et al, Silicon-doped LiFePO4 single crystals:growth, conductivity behavior, and diffusivity [J]. Adv Funct Mater 2009,19(11): 1697-1704
    [201]J X Ma, C S Wang, S Wroblewski. Kinetic characteristics of mixed conductive electrodes for lithium ion batteries [J].J Power Sources,2007,164(2):849-856
    [202]徐峙晖.锂离子电池正极材料LiFePO4的合成与电化学性能研究[D]成都:四川大学,2006
    [203]M R Yang, W H Ke. The doping effect on the electrochemical properties of LiFe0.95M0.05PO4 (M=Mg2+, Ni2+, Al3+, or V3+) as cathode materials for lithium-ion cells[J]. J Electrochem Soc 2008,155 (10):A729-A732
    [204]D Arumugam, G P Kalaignan, P Manisankar. Synthesis and electrochemical characterizations of nano-crystalline LiFePO4 and Mg-doped LiFePO4 cathode materials for rechargeable lithium-ion batteries [J]. J Solid State Electrochem 2009,13 (2):301-307
    [205]C S Sun, Z Zhou, Z G Xu, et al. Improved high-rate charge/discharge performances of LiFePO4/C via V-doping [J]. J Power Sources,2009,193(2): 841-845
    [206]吴锋.绿色二次电池电池及其新体系研究进展[M]北京:科学出版社,2007,496-497
    [207]肖政伟.以不同原料制备锂离子电池复合正极材料LiFePO4/C的研究[D]长沙:中南大学,2008
    [208]伍凌,王志兴,李新海,等.前驱体掺杂-常温球磨还原制备Ti4+掺杂LiFePO4[J].中南大学学报(自然科学版),2009,40(2):288-293
    [209]D H Kim, J Kim. Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties [J]. Electrochem Solid-State Lett,2006,9 (9): A439-A442
    [210]D H Kim, J Kim. Synthesis of LiFePO4 nanoparticles and their electrochemical properties [J]. J Phys Chem Solids,2007,68 (5-6):734-737
    [211]D H Kim, J Sim, J W Kang, et al. A new synthesis route to nanocrystalline olivine phosphates and their electrochemical properties [J].J Nanosci Nanotechnol,2007,7(11):3949-3953
    [212]李启厚,毕丹丹,刘志宏,等.多元醇法制备超微粉体材料的特点及应用[J].粉末冶金材料科学与工程,2008,13(2):79-83
    [213]张淑萍,倪江锋,周恒辉.溶剂热法控制合成规则的LiFePO4颗粒[J].物理化学学报,2008,23(6):830-834
    [214]康晓雪,田彦文,袁万颂LiFePO4的水热合成及电化学性能[J].东北大学学报(自然科学版),2009,30(9):1298-1301
    [215]P P Prosini, M Carewska, S Scaccia, et al. A new synthetic route for preparing LiFePO4 with enhanced electrochemical performance [J].J Electrochem Soc, 2002,149(7):886-890
    [216]邱亚丽,王保峰,杨立LiFePO4纳米粉体的还原插锂合成及其电化学性能研究[J].无机材料学报,2007,22(1):79-83
    [217]郑俊超,李新海,王志兴,等.常温还原-低温热处理制备LiFePO4及性能研究[J].功能材料,2008,39(11):1843-1846
    [218]G R Hu, G Liao, Z D Peng, et al. Structure and electrochemical properties of LiCoO2 synthesized by microwave heating[J]. J Cent South Univ Technol, 2004,11(3):261-264
    [219]H X Liu, C Hu, X J Zhu, et al. Solid chemical reaction in microwave and millimeter-wave fields for the syntheses of LiMn2O4 compound [J].Mat Chem Phys,2004,88(2-3):290-294
    [220]李发喜,仇卫华,胡环宇,等.微波合成锂离子电池正极复合材料LiFePO4/C电化学性能[J].北京科技大学学报,2005,27(1):86-89
    [221]刘韩星,欧阳世翕.无机材料微波固相合成方法与原理[M]北京:化学工业出版社,2006,1-10
    [222]傅戈妍,崔得良,庞广生,等.微波固相法合成钠快离子导体Na5YSi4O12[J]高等学校化学学报,1996,17(5):672-675
    [223]刘韩星.周振平.赵世玺,等Li-Mn-O系电极材料的微波合成[J].物理化学学报,2001,17(8):702-707
    [224]X F Guo, H Zhan, Y H Zhou. Rapid synthesis of LiFePO4/C composite by microwave method[J]. Solid State Ionics,2009,180 (4-5):386-391
    [225]P P Prosini, M Lisi, D Zane, et al. Determination of the chemical diffusion coefficent of lithium in LiFePO4 [J]. Solid State Ionics,2002,148(1-2):45-51
    [226]蒲永平.功能材料的缺陷化学[M],北京:化学工业出版社,2008,129-130
    [227]周益明,忻新泉.低热固相合成化学[J]无机化学学报,1999,15(3):273-292
    [228]唐新村,黄伯云,贺跃辉,等.低热固相反应的反应机理研究[J].无机化学学报,2004,20(7):795-800
    [229]刘桂霞.稀土纳/微米颗粒的包覆技术与性能研究[D].天津:天津大学,2004
    [230]G Tammann, Q A Mansuri. Recrystallization of Metals and Salts [J]. Z Anorg Chem,1923,126:119
    [231]N Recham, M Casas-Cabanas, J Cabana, et al. Formation of a complete solid solution between the triphylite and fayalite olivine structures [J] Chem Mater 2008,20(21):6798-6809
    [232]B Weckler, H D Lutz. Lattice vibration spectra. Part XCV. Infrared spectroscopic studies on the iron oxide hydroxides goethite(a), akaganeite(β), lepidocrocite(y) and feroxyhite(8)[J]. Eur J Solid State Inorg Chem, 1998,(35):531-544
    [233]A Duran, C Serna, V Fornes, et al. Structural considerations about SiO2 glasses prepared by sol-gel[J]. Non-Cryst Solids,1986,82 (1):69-771
    [234]向楷雄,郭华军,李新海,等.合成温度对Li2FeSi04/C电化学性能的影响[J].功能材料,2008,39(9):1455-1457
    [235]唐昌平,应皆荣,雷敏,等.控制结晶-微波碳热还原法制备高密度LiFePO4/C[J]电化学,2006,12(2):188-190
    [236]国家自然科学基金委员会工程与材料科学学部.冶金与材料制备工程学[M].北京:科学出版社,2006.185-190

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700