降血压活性肽的筛选及其前体多肽的设计、克隆表达与活性鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高血压是目前最为常见的心血管疾病之一,在世界范围内呈日趋严重的态势。尽管化学合成类的西药具有很明显的降压效果,但会引起一系列的副反应,危害健康。源于食品蛋白质的降血压肽因其降压温和、安全可靠、易于吸收、且对正常血压无影响等优点而备受关注,成为控制和治疗高血压的研究热点。近四十年来,国内外研究学者已通过酶法水解食源性蛋白制备并鉴定出近千种降血压肽,但由于这些活性肽段在其母体蛋白序列中所占的比例小、酶解制备后期的分离成本高、产率低等极大地限制了降血压肽的工业化制备。本论文主要围绕降血压肽的基因表达研究来展开,宗旨是通过分子生物学手段和微生物发酵技术批量制备降血压肽,以弥补酶法制备降血压肽的不足,奠定降血压肽的产业化基础。本论文针对降血压肽的基因表达效率、表达产物的回收、表达产物中活性肽单体的释放等问题,提出了相应的解决方案和思路。主要研究结果如下:
     1.从自行构建的活性肽数据库中选择了11种活性肽单体(VWIS﹑VW﹑RIY﹑IY﹑LW﹑IKW﹑LKP﹑LKPNM﹑RPLKPW﹑NMAINPSK与IPP),根据胃肠消化酶的水解特性将这些活性肽单体串联设计成降血压肽多聚体AHPM-1。采用大肠杆菌最优密码子,化学合成多聚体相应的基因Ahpm-1并克隆入表达载体pGEX-3X,构建重组菌株E. coli BL21(DE3) / pGEX-3X-Ahpm-1,目标多肽AHPM-1以GST融合蛋白的形式获得成功表达;进一步优化了GST融合蛋白的包涵体表达条件:诱导前OD_(600)值为0.6~0.8,0.4 mmol/L IPTG,30℃,诱导5 h。该条件下,目标蛋白达到了胞内总蛋白的35%。包涵体经洗涤、溶解、IEC纯化、SEC部分复性及梯度透析完全复性后,从1 L发酵液中获得了399 mg纯度95%以上的可溶性GST融合蛋白,回收率为58.6%。体外消化模拟实验显示GST融合蛋白经胃肠酶和ACE消化后的水解液具有很强的ACE抑制活性(IC_(50)=35.2μg/mL),表明AHPM-1在胃肠酶及ACE的作用下成功释放出了活性片段,以此证实降血压肽多聚体设计的合理性及基因工程法制备降血压肽的可行性。
     2.为了解决降血压肽多聚体易形成包涵体的问题及进一步提高多聚体的潜在ACE抑制活性,重新选择了15种活性肽单体(包括VK﹑AVPYPQR﹑IKP﹑YQEPVL﹑IKW﹑FALPQY﹑IVY﹑IFVPAF﹑KVLPVP﹑DGL﹑GVYPHK﹑IMY﹑GPL﹑YPK和IPP),采用一系列的活性肽单体串联策略设计了多聚体AHPM-2,并使用“Synthetic Gene Designer”软件对相应的多肽基因Ahpm-2进行了优化。随后,将优化基因克隆入表达载体pET32a中高亲水酸性标签Trx(pI=5.27)基因的下游,目标多肽AHPM-2以Trx融合蛋白的形式在E.coli Origami (DE3)中成功获得可溶表达。适宜诱导条件为:诱导前OD_(600)值0.6~0.8,0.1 mmol/L IPTG,37℃,诱导5 h。该条件下,表达的Trx融合蛋白占到胞内总蛋白的50%以上,其中90%以上以可溶的形式表达。经镍柱和凝胶柱纯化后,目标蛋白的纯度达到95%以上,并可从1 L发酵液中获得约200 mg高纯Trx-AHPM-2。Trx融合蛋白经胃肠模拟消化后的水解液具有极强的ACE抑制活性(IC_(50)=4.5μg/mL)。UPLC-MALDI-TOF-TOF分析表明AHPM-2中带有Pro残基(处在倒数第三位)且C-末端或N-末端为芳香族氨基酸(Trp、Tyr和Phe)或Leu残基的活性六肽(如IFVPAF和FALPQY)易于胃蛋白酶高效率释放,但是C-末端为脯氨酸(Pro)残基的活性肽段(如IKP)难以从多聚体中释放,并且两条活性肽序列中各自带有的Pro残基之间的距离靠得太近也不利于活性肽序列的完整释放。
     3.针对降血压肽多聚体中C-末端为Pro残基的高活性肽段难以释放的问题,研究根据ACE对其底物C-末端二肽的选择性,以IKP为模式三肽,设计并合成了六条ACE抑制五肽IKPVQ、IKPVA、IKPVK、IKPVR、IKPFR和IKPHL,其IC_(50)值均在1.5μmol/L以下。UPLC-MADIL-TOF-TOF质谱分析证实这些五肽均能在ACE的作用下释放IKP,释放率从23%到84.6%。另外,五肽中的Pro-Val和Pro-Phe肽键相对于Pro-His肽键更易于ACE的切割,且底物肽C-末端的碱性氨基酸残基能显著提高切割效率。通过胃肠消化模拟实验后,质谱分析表明这六条五肽均能抗胃蛋白酶的消化,但除了IKPVA(IC_(50)=0.94μmol/L)对胰酶具有80%的抗性外,其它五肽均被胰酶降解,其ACE抑制活性受到不同程度的影响。其中,IKPFR (IC_(50)=0.33μmol/L)在胰酶的作用下产生62.1%的IKPF(IC_(50)=4.6μmol/L)与37.9%的IKP(IC_(50)=0.68μmol/L),仍然具有很强的ACE抑制活性(IC_(50)=2.01μmol/L)。抑制动力学研究显示IKPVA和IKPFR均为竞争性抑制剂,能与ACE的天然底物竞争结合ACE的活性位点。以上结果表明IKPVA和IKPFR可用于构建降血压肽多聚体,并能在ACE或胃肠酶的作用下释放出高降压活性肽IKP。此外,二肽VA和FR有望作为连接片段用以辅助其它C-末端为Pro残基的活性肽段从其前体多肽中高效率释放。
     4.为了筛选出既本身抗胃肠酶消化,又能被胃肠酶或ACE从其前体多肽中高效率释放的活性肽单体,研究选择了蛋白序列中具有高比例疏水性氨基酸(43.4%)和碱性氨基酸(13.7%)残基的蛋清溶菌酶进行胃肠消化模拟实验,发现其胃肠酶水解液发挥了很强的ACE抑制活性,IC_(50)值达到了15.6μg/mL。通过超滤、制备型RP-HPLC、分析型RP-HPLC及MALDI-TOF-TOF从溶菌酶的胃肠酶水解液中分离鉴定出三种ACE抑制肽MKR、RGY和VAW,其IC_(50)值分别为25.7﹑61.9和2.86μmol/L,均为首次报道。ACE温育实验结果表明VAW和MKR为真实型的ACE抑制肽,而RGY为底物型ACE抑制肽。抑制动力学研究显示VAW、MKR和RGY均为竞争性抑制剂。以上结果表明该研究鉴定的ACE抑制肽有望被作为设计降血压肽多聚体的活性肽单体,同时也揭示了蛋白原料和酶的组合选择对于筛选适宜目标肽段的重要性。
Hypertension is currently one of the most common cardiovascular diseases and growing gradually serious around the world. Chemically synthesized drugs are now broadly used to treat and prevent hypertension. Although having obvious antihypertensive effect, these drugs are reported to have many side effects and thus harm to human health. Food protein-derived antihypertensive peptides (AHPs) have received considerable attention, to their warm antihypertensive effects, safety, reliability, absorbability and no-effect on normal blood pressure, thereby becoming a hot topic for controlling and treating hypertension. For the last four decades, though near one thousand AHPs were produced and identified from enzymatic hydrolysates of food-derived proteins, low content in their parent proteins, high cost and low yield after enzymatic hydrolysis greatly hanger their commercialization. This study focuses on gene expression of AHPs to prepare AHPs on a large scale via molecular biology and microbial fermentation. This work provides a new strategy to produce a large quantity of AHPs, which makes up for the shortage of enzymatic hydrolysis method and paves the way for industrialization of AHPs. Considering gene expression efficiency in E. coli and recovery rate of active peptides and their release efficiencies from their designed precursor polypeptides, the corresponding solutions were put forward and conducted in this study, and the major results are as follows:
     1. 11 kinds of AHP monomers, including VWIS, VW, RIY, IY, LW, IKW, LKP, LKPNM, RPLKPW, NMAINPSK and IPP were tandemly linked up into antihypertensive peptide multimer-1 (AHPM-1) according to the restriction sites of gastrointestinal proteases. Based on the target favored codons of E. coli, the DNA fragment Ahpm-1 encoding the AHPM-1 was chemically synthesized and cloned into expression vector pGEX-3X. The recombinant strain E. coli BL21(DE3)/pGEX-3X-Ahpm-1 was constructed, and the aimed polypeptide AHPM-1 was successfully expressed as GST-AHPM-1 fusion protein. The culture condition for production of GST fusion protein, expressed in the form of inclusion body, was further optimized and the optimum condition was following: when OD_(600) value before induction was 0.6~0.8, the expression of the target protein was induced by the addition of IPTG at a final concentration of 0.4 mmol/L. After incubation for 5 h at 30oC under this condition, GST fusion protein accounted for 35% of total intracellular protein. The inclusion body was washed, dissolved, and purified by IEC chromatography, followed by refolding together with SEC and gradual dialysis. The resulting yield of the soluble GST fusion protein with a purity of 95% reached 399 mg/L culture, and the recovery rate was 58.3%. Under simulated physiological condition, in vitro digestion of GST fusion protein was conducted using gastrointestinal enzymes and ACE, and the obtained final hydrolysate possessed potent ACE inhibitory activity with an IC_(50) value of 35.2μg/mL. The results suggested that the high active fragments were successfully released from the AHPM-1 using gastrointestinal enzymes and ACE. From this respect, both the rationality of design of AHPM and the feasibility of production of AHPs by means of genetic engineering are confirmed in this study.
     2. To solve the problem that AHPM is easy to form inclusion body and further improve the potential ACE inhibitory activity of the designed multimer, 15 AHP monomers, including VK, AVPYPQR, IKP, YQEPVL, IKW, FALPQY, IVY, IFVPAF, KVLPVP, DGL, GVYPHK, IMY, GPL YPK and IPP, were rechosen and tandemly multimerized to AHPM-2 using a series of tandem strategies of active peptide monomers. The corresponding polypeptide gene Ahpm-2 was optimized using gene optimization software“Synthetic Gene Designer”. Afterwards, the optimized gene was cloned into downstream of the Trx (high hydrophilic tag, pI=5.27) gene in the expression vector pET32a, and then the AHPM-2 was successfully expressed in the form of soluble Trx-AHPM-2 fusion protein in E. coli Origami (DE3). The optimum fermentation condition is following: when OD_(600) value before induction was 0.6~0.8, the expression of the target protein was induced by the addition of IPTG at a final concentration of 0.1 mmol/L. After incubation for 5 h at 37 oC under this condition, the expression level of Trx fusion protein accounted for above 50% of total intracellular protein. The fusion protein was expressed above 90% in a soluble form. After Ni~(2+) affinity chromatographic (AC) purification followed by a size exclusion chromatography (IEC), about 200 mg of Trx-AHPM-2 was obtained from 1 L culture of induced cells with 95% purity in the pooled fractions. The protein was subjected to a simulated gastrointestinal digestion, and the resulting hydrolysate exhibited potent ACE inhibitory activity with an IC_(50) value of 4.5μg/mL. The results from UPLC-MALDI-TOF-TOF analysis suggest that the active hexapeptides with Pro in C-antepenultimate position and aromatic amino acids (Phe, Tyr or Trp) or Leu in C-terminus or N-terminus, are easy to be released from the precursor by action of pepsin, such as FALPQY and IFVPAF in our research. However, the active fragments with a C-terminal Pro, such as IKP, is not easy to be released from AHPM-2. In addition, when the distance of two Pro respectively lying in two adjacent sequences is too close, these two sequences are hard to be released from their precursor.
     3. Based on the selectivity of ACE on C-terminal dipeptides in its substrate, six pentapeptides, with the same tripeptide IKP (as a model) at N-terminus including IKPVQ, IKPVA, IKPVK, IKPVR, IKPFR, and IKPHL, were designed and chemically synthesized to solve the problem that the peptides with a Pro at C-terminus were hard to release from their precursors. The IC_(50) values of these pentapeptides were all below 1.5μmol/L. Through UPLC-MADIL-TOF-TOF analysis, the ACE incubation experiment showed that IKP could be released from these pentapeptides by ACE, and the release rates were 23%~84.6%. The results demonstrated that the Pro-Val and Pro-Phe peptide bonds were possibly easily cleaved by ACE as compared with Pro-His bond. Meanwhile, the C-terminal basic amino acid residue can significantly improve the cleavage efficiency of ACE. Through UPLC-MADIL -TOF-TOF analysis, the in vitro digestion experiment revealed that all of the pentapeptides were resistant to peptic hydrolysis but except IKPVA with a retention rate of 80.5% not to pancreatic hydrolysis. Notably, the peptide IKPFR was hydrolyzed into IKPF (IC_(50)=4.6μmol/L) and IKP (IC_(50)=0.68μmol/L) by pancreatic digestion, and the corresponding hydrolysate still maintained a potent ACE inhibitory activity (IC_(50)=2.01μmol/L). IKP accounted for 37.9% of total peptides in the hydrolysate, and 62.1% for IKPF. Kinetics studies suggested that both IKPVA and IKPFR were all competitive inhibitors, which can competitively interact with the active sites of ACE instead of natural substrates. The results imply that IKPVA and IKPFR can be used to construct AHPM and then hydrolyzed to release IKP by ACE or gastrointestinal enzymes. Furthermore, the dipeptides VA and FR described here may be widely used as linkers to help the release of the active peptides with Pro at C-terminus from their polypeptide precursors by ACE or gastrointestinal enzymes in human body.
     4. The objective of the study was to screen the active peptide monomers, which possessed advantages of resisting physiological digestion and easily releasing from their precursor polypeptides by gastrointestinal enzymes or ACE. In this respect, the egg white lysozyme, whose sequence contains high proportion of hydrophobic (43.4%) and basic (13.7%) amino acid residues, was chose and subjected to a simulated physiological digestion. The resulting hydrolysate exhibited a potent ACE inhibitory activity with an IC_(50) value of 15.6μg/mL Three novel ACE inhibitory peptides, MKR, RGY and VAW respectively with IC_(50) values of 25.7, 61.9 and 2.86μmol/L, were purified from the gastrointestinal digests of egg white lysozyme by ultrafiltration, preparative RP-HPLC, analytical RP-HPLC and identified by MALDI-TOF-TOF. All of these active peptides identified in this study were first reported. Kinetics studies suggested that the purified peptides were all competitive inhibitors. ACE preincubation experiments implied that the peptide RGY was a true substrate and that the other two peptides were true ACE inhibitor. The results demonstrate that the peptides identified in this study are expected to be referred as active peptide monomers to design AHPM. Also, this work announces the importance of combination choose of protein staff and enzyme to produce the target peptides.
引文
1. Whitworth JA. 2003 World Health Organization (WHO)/International Society ofHypertension (ISH) statement on management of hypertension [J]. J Hypertens, 2003, 21 (11): 1983-1992.
    2.高玉慧.我国高血压的流行病学研究进展[J].中国现代医生, 2008, 46 (14): 35-38.
    3.胡容,周志明,翟登月.社区缺血性卒中幸存者高血压知晓情况的调查分析[J].医学研究生学报, 2010, 23 (2): 167-170.
    4.陈锐华.顽固性高血压的诊断与治疗策略[J].医学研究生学报, 2008, 21 (12): 1233-1235.
    5.金泽,方显明.高血压病中医治法的研究近况[J].中西医结合心脑血管病杂志, 2010, 8 (5): 595-597.
    6. Meisel H. Biochemical properties of regulatory peptides derived from milk proteins [J]. Biopolymers, 1997, 43 (2): 119-128.
    7. Meisel H, Bockelmann W. Bioactive peptides encrypted in milk proteins: proteolytic activation and thropho-functional properties [J]. Antonie Van Leeuwenhoek, 1999, 76 (1-4): 207-215.
    8. FitzGerald RJ, Meisel H. Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme [J]. Br J Nutr, 2000, 84 Suppl 1: S33-37.
    9. Cushman DW, Cheung HS. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung [J]. Biochem Pharmacol, 1971, 20 (7): 1637-1648.
    10.刘佳.大豆蛋白ACE抑制肽的研究[D]: [硕士学位论文].无锡:江南大学食品学院, 2008.
    11. Dorer FE, Kahn JR, Lentz KE, et al. Kinetic properties of pulmonary angiotensin-converting enzyme. Hydrolysis of hippurylglycylglycine [J]. Biochim Biophys Acta, 1976, 429 (1): 220-228.
    12. Dorer FE, Kahn JR, Lentz KE, et al. Purification and properties of angiotensin-converting enzyme from hog lung [J]. Circ Res, 1972, 31 (3): 356-366.
    11. Johnston CI. Franz Volhard Lecture. Renin-angiotensin system: a dual tissue and hormonal system for cardiovascular control [J]. J Hypertens Suppl, 1992, 10 (7): S13-26.
    12. Yamamoto N, Akino A, Takano T. antihypertensive effects of different kinds of fermented milk in spontaneously hypertensive rats [J]. Biosci Biotech and Biochem, 1994, 58 (4): 776-778.
    13.史小四,郭喆,强烈应.常用抗高血压药物的应用进展[J].武警医学, 2009, 20 (1): 83-85.
    14.韩学杰,丁毅,王丽颖.上市后降血压药物的不良反应研究概况[J].世界中西医结合杂志, 2010, 5 (2): 171-174.
    15. Israili ZH, Hall WD. Cough and angioneurotic edema associated with angiotensin-converting enzyme inhibitor therapy. A review of the literature and pathophysiology [J]. Ann Intern Med, 1992, 117 (3): 234-242.
    16. Li GH, Le GW, Shi YH, et al. Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects [J]. Nutr Res, 2004, 24 (7): 469-486.
    17. Nakamura Y, Masuda O, Takano T. Decrease of tissue angiotensin I-converting enzyme activity upon feeding sour milk in spontaneous hypertensive rats [J]. Biosci Biotech Biochem, 1996, 60 (3): 488-489.
    18. Spyroulias GA, Galanis AS, Pairas G, et al. Structural features of angiotensin-I converting enzyme catalytic sites: Conformational studies in solution, homology models and comparison with other zinc metallopeptidases [J]. Curr Top Med Chem, 2004, 4 (4): 403-429.
    19. Ondetti MA, Rubin B, Cushman DW. Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents [J]. Science, 1977, 196 (4288): 441-444.
    20. Cushman DW, Cheung HS, Sabo EF, et al. Development and design of specific inhibitors of angiotensin-converting enzyme [J]. Am J Cardiol, 1982, 49 (6): 1390-1394.
    21. Ondetti MA, Cushman DW. enzymes of the renin-angiotensin system and their inhibitors [J]. Annu Rev Biochem, 1982, 51: 283-308.
    22. Ianzer D, Konno K, Marques-Porto R, et al. Identification of five new bradykinin potentiating peptides (BPPs) from Bothrops jararaca crude venom by using electrospray ionization tandem mass spectrometry after a two-step liquid chromatography [J]. Peptides, 2004, 25 (7): 1085-1092.
    23. Cheung HS, Wang FL, Ondetti MA, et al. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence [J]. J Biol Chem, 1980, 255 (2): 401-407.
    24. Meisel H. Biochemical properties of bioactive peptides derived from milk proteins: Potential nutraceuticals for food and pharmaceutical applications [J]. Livest Prod Sci, 1997, 50 (1-2): 125-138.
    25. Oshima G, Nagasawa K. Stereospecificity of peptidyl dipeptide hydrolase (angiotensin I-converting enzyme) [J]. J Biochem, 1979, 86 (6): 1719-1724.
    26. Yang YJ, Marczak ED, Yokoo M, et al. Isolation and antihypertensive effect of angiotensin I-converting enzyme (ACE) inhibitory peptides from spinach Rubisco [J]. J Agr Food Chem, 2003, 51 (17): 4897-4902.
    27. Saito Y, Wanezaki K, Kawato A, et al. Structure and activity of angiotensin I converting enzyme inhibitory peptides from sake and sake lees [J]. Biosci Biotechnol Biochem, 1994, 58 (10): 1767-1771.
    28. Maeno M, Yamamoto N, Takano T. Identification of an antihypertensive peptide from casein hydrolysate produced by a proteinase from Lactobacillus helveticus CP790 [J]. J Dairy Sci, 1996, 79 (8): 1316-1321.
    29. Kim YK, Chung BH. A novel angiotensin-I-converting enzyme inhibitory peptide from humanαs1-casein [J]. Biotechnol Lett, 1999, 21 (7): 575-578.
    30. Mullally MM, Meisel H, FitzGerald RJ. Identification of a novel angiotensin-I-converting enzyme inhibitory peptide corresponding to a tryptic fragment of bovine beta-lactoglobulin [J]. Febs Letters, 1997, 402 (2-3): 99-101.
    31. Yoshii H, Tachi N, Ohba R, et al. Antihypertensive effect of ACE inhibitory oligopeptides from chicken egg yolks [J]. Comp Biochem Physiol C Toxicol Pharmacol, 2001, 128 (1): 27-33.
    32. Saito Y, Wanezaki K, Kawato A, et al. Antihypertensive effects of peptide in sake and its by-products on spontaneously hypertensive rats [J]. Biosci Biotechnol Biochem, 1994, 58 (5): 812-816.
    33. G O, H S, K N. Peptide inhibitors of angiotensin-converting enzyme in digests of gelation by bacterial collagenas [J]. Biochim Biophys Acta, 1979, 566: 128-137.
    34. Lee KJ, Kim SB, Ryu JS, et al. Separation and purification of angiotensin converting enzyme inhibitory peptides derived from goat's milk casein hydrolysates [J]. Asian Austral J Anim, 2005, 18 (5): 741-746.
    35. Geerlings A, Villar IC, Zarco FH, et al. Identification and characterization of novelangiotensin-converting enzyme inhibitors obtained from goat milk [J]. J Dairy Sci, 2006, 89 (9): 3326-3335.
    36. Ferreira I, Pinho O, Mota MV, et al. Preparation of ingredients containing an ACE-inhibitory peptide by tryptic hydrolysis of whey protein concentrates [J]. Int Dairy J, 2007, 17 (5): 481-487.
    37. Tonouchi H, Suzuki M, Uchida M, et al. Antihypertensive effect of an angiotensin converting enzyme inhibitory peptide from enzyme modified cheese [J]. J Dairy Res, 2008, 75 (3): 284-290.
    38. Gouda KGM, Gowda LR, Rao AGA, et al. Angiotensin I-converting enzyme inhibitory peptide derived from glycinin, the 11S globulin of soybean (Glycine max) [J]. J Agric Food Chem, 2006, 54 (13): 4568-4573.
    39. Yang Y, Tao G, Liu P, et al. Peptide with angiotensin I-converting enzyme inhibitory activity from hydrolyzed corn gluten meal [J]. J Agric Food Chem, 2007, 55 (19): 7891-7895.
    40. Marczak ED, Usui H, Fujita H, et al. New antihypertensive peptides isolated from rapeseed [J]. Peptides, 2003, 24 (6): 791-798.
    43. Enari H, Takahashi Y, Kawarasaki M, et al. Identification of angiotensin I-converting enzyme inhibitory peptides derived from salmon muscle and their antihypertensive effect [J]. Fisheries Sci, 2008, 74 (4): 911-920.
    44. Nu Y, Fukuta K, Yoshimoto R, et al. Determination of antihypertensive peptides from an izumi shrimp hydrolysate [J]. Biosci Biotech Bioch, 2008, 72 (3): 861-864.
    45. Balti R, Nedjar-Arroume N, Adje EY, et al. Analysis of novel angiotensin I-converting enzyme inhibitory peptides from enzymatic hydrolysates of cuttlefish (Sepia officinalis) muscle proteins [J]. J Agric Food Chem, 2010, 58 (6): 3840-3846.
    44. Katayama K, Mori T, Kawahara S, et al. Angiotensin-I converting enzyme inhibitory peptide derived from porcine skeletal muscle myosin and its antihypertensive activity in spontaneously hypertensive rats [J]. J Food Sci, 2007, 72 (9): 702-706.
    45. Liu JB, Yu ZP, Zhao WZ, et al. Isolation and identification of angiotensin-converting enzyme inhibitory peptides from egg white protein hydrolysates [J]. Food Chem, 2010, 122 (4): 1159-1163.
    46. Guan X, Liu J, Wang L, et al. Preparation, purification and structure identification ofangiotensin I converting enzyme inhibitory peptide with high activity from oat protein [J]. Chem J Chinese U, 2009, 30 (10): 1992-1997.
    47. Li GH, Qu MR, Wan JZ, et al. Antihypertensive effect of rice protein hydrolysate with in vitro angiotensin I-converting enzyme inhibitory activity in spontaneously hypertensive rats [J]. Asia Pac J Clin Nutr, 2007, 16 Suppl 1: 275-280.
    48. Qian ZJ, Je JY, Kim SK. Antihypertensive effect of angiotensin I converting enzyme-inhibitory peptide from hydrolysates of bigeye tuna dark muscle, Thunnus obesus [J]. J Agric Food Chem, 2007, 55 (21): 8398-8403.
    49. Fujita H, Yoshikawa M. LKPNM: a prodrug-type ACE-inhibitory peptide derived from fish protein [J]. Immunopharmacology, 1999, 44 (1-2): 123-127.
    50. Miguel M, Aleixandre A. Antihypertensive peptides derived from egg proteins [J]. J Nutr, 2006, 136 (6): 1457-1460.
    51. Zhou FJ, Xue ZH, Wang JH. Antihypertensive effects of silk fibroin hydrolysate by alcalase and purification of an ACE Inhibitory dipeptide [J]. J Agr Food Chem, 2010, 58 (11): 6735-6740.
    52. Lu J, Ren DF, Xue YL, et al. Isolation of an antihypertensive peptide from alcalase digest of Spirulina platensis [J]. J Agr Food Chem, 2010, 58 (12): 7166-7171.
    53. Miguel M, Alonso MJ, Salaices M, et al. Antihypertensive, ACE-inhibitory and vasodilator properties of an egg white hydrolysate: Effect of a simulated intestinal digestion [J]. Food Chem, 2007, 104 (1): 163-168.
    54. Hernandez-Ledesma B, Miguel M, Amigo L, et al. Effect of simulated gastrointestinal digestion on the anti hypertensive properties of synthetic beta-lactoglobulin peptide sequences [J]. J Dairy Res, 2007, 74 (3): 336-339.
    55. Kim YK, Yoon S, Yu DY, et al. Novel angiotensin-I-converting enzyme inhibitory peptides derived from recombinant human alpha(s1)-casein expressed in Escherichia coli [J]. J Dairy Res, 1999, 66 (3): 431-439.
    56. Hernandez-Ledesma B, Amigo L, Ramos M, et al. Release of angiotensin converting enzyme-inhibitory peptides by simulated gastrointestinal digestion of infant formulas [J]. Int Dairy J, 2004, 14 (10): 889-898.
    57. Hernandez-Ledesma B, Quiros A, Amigo L, et al. Identification of bioactive peptides after digestion of human milk and infant formula with pepsin and pancreatin [J]. IntDairy J, 2007, 17 (1): 42-49.
    58. Hasan F, Kitagawa M, Kumada Y, et al. Production kinetics of angiotensin-I converting enzyme inhibitory peptides from bonito meat in artificial gastric juice [J]. Process Biochem, 2006, 41 (3): 505-511.
    59. Cheung IWY, Nakayama S, Hsu MNK, et al. Angiotensin-I converting enzyme inhibitory activity of hydrolysates from oat (Avena sativa) proteins by in silico and in vitro analyses [J]. J Agr Food Chem, 2009, 57 (19): 9234-9242.
    60.王宇.乳酸菌发酵乳抑制血管紧张素转化酶活性的研究[D]: [硕士学位论文].无锡:江南大学食品学院, 2008.
    61. Miguel M, Muguerza B, Sanchez E, et al. Changes in arterial blood pressure in hypertensive rats caused by long-term intake of milk fermented by Enterococcus faecalis CECT 5728 [J]. Brit J Nutr, 2005, 94 (1): 36-43.
    62. Aleixandre A, Miguel M, Recio I, et al. Effect of ACE-inhibitory peptides obtained from enterococcus fermented milk in hypertensive rats [J]. J Hypertens, 2006, 24: 391-391.
    63 Muguerza B, Ramos M, Sanchez E, et al. Antihypertensive activity of milk fermented by Enterococcus faecalis strains isolated from raw milk [J]. Int Dairy J, 2006, 16 (1): 61-69.
    64. Quiros A, Ramos M, Muguerza B, et al. Identification of novel antihypertensive peptides in milk fermented with Enterococcus faecalis [J]. Int Dairy J, 2007, 17 (1): 33-41.
    65. Kilpi EER, Kahala MM, Steele JL, et al. Angiotensin I-converting enzyme inhibitory activity in milk fermented by wild-type and peptidase-deletion derivatives of Lactobacillus helveticus CNRZ32 [J]. Int Dairy J, 2007, 17 (8): 976-984.
    66. Ibe S, Yoshida K, Kumada K. Angiotensin I-converting enzyme inhibitory activity of natto, a traditional Japanese fermented food [J]. J Jpn Soc Food Sci, 2006, 53 (3): 189-192.
    67. Zhang JH, Tatsumi E, Ding CH, et al. Angiotensin I-converting enzyme inhibitory peptides in douchi, a chinese traditional fermented soybean product [J]. Food Chem, 2006, 98 (3): 551-557.
    68. Itou K, Akahane Y. Antihypertensive effect of heshiko, a fermented mackerel product, on spontaneously hypertensive rats [J]. Fisheries Sci, 2004, 70 (6): 1121-1129.
    69. Shan J, Ogawa Y, Watanabe T, et al. Angiotensin I-converting enzyme inhibitory activity of fermented surimi by lactic acid bacteria [J]. J Jpn Soc Food Sci, 2007, 54 (4):160-166.
    70. Jeong DW, Shin DS, Ahn CW, et al. Expression of antiblypertensive peptide, his-his-leu, as tandem repeats in Escherichia coli [J]. J Microbiol Biotechnol, 2007, 17 (6): 952-959.
    71. Chen GW, Tsai JS, Pan BS. Purification of angiotensin I-converting enzyme inhibitory peptides and antihypertensive effect of milk produced by protease-facilitated lactic fermentation [J]. In Dairy J, 2007, 17 (6): 641-647.
    72. Park CJ, Lee JH, Hong SS, et al. High-level expression of the angiotensin–congverting -enzyme-inhibiting peptide,YG-1,as tandem multimers in Escherichia coli [J]. Appl Microbiol Biot, 1998, 50: 71-76.
    73. Oh KS, Park YS, Sung HC. Expression and purification of an ACE-inhibitory peptide multimer from synthetic DNA in Escherichia coli [J]. J Microbiol Biotechnol, 2002, 12 (1): 59-64.
    74. Lv GS, Huo GC, Fu XY. Expression of milk-derived antihypertensive peptide in Escherichia coli [J]. J Dairy Sc, 2003, 86 (6): 1927-1931.
    75. Liu D, Sun HY, Zhang LJ, et al. High-level expression of milk-derived antihypertensive peptide in Escherichia coli and its bioactivity [J]. J Agr Food Chem, 2007, 55 (13): 5109-5112.
    76. Fida HM, Kumada Y, Terashima M, et al. Tandem multimer expression of angiotensin I-converting enzyme inhibitory peptide in Escherichia coli [J]. Biotechnol J, 2009, 4 (9): 1345-1356.
    77. Luna-Suarez S, Medina-Godoy S, Cruz-Hernandez A, et al. Modification of the amaranth 11S globulin storage protein to produce an inhibitory peptide of the angiotensin I converting enzyme, and its expression in Escherichia coli [J]. J Biotechnol, 2010, 148 (4): 240-247.
    78. Prak K, Maruyama Y, Maruyama N, et al. Design of genetically modified soybean proglycinin A1aB1b with multiple copies of bioactive peptide sequences [J]. Peptides, 2006, 27 (6): 1179-1186.
    79. Rao SQ, Su YJ, Li JH, et al. Design and expression of recombinant antihypertensive peptide multimer gene in Escherichia coli BL21 [J]. J Microbiol Biotechnol, 2009, 19 (12): 1620-1621
    1. Ahhmed AM, Muguruma M. A review of meat protein hydrolysates and hypertension [J]. Meat Sci, 2010, 86 (1): 110-118.
    2. Wijesekara I, Kim SK. Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: prospects in the pharmaceutical industry [J]. Mar Drugs, 2010, 8 (4): 1080-1093.
    3. Guang C, Phillips RD. Plant food-derived Angiotensin I converting enzyme inhibitory peptides [J]. J Agr Food Chem, 2009, 57 (12): 5113-5120.4. Donkor ON, Henriksson A, Vasiljevic T, et al. Probiotic strains as starter cultures improve angiotensin-converting enzyme inhibitory activity in soy yogurt [J]. J Food Sci, 2005, 70 (8): M375-M381.
    5. Donkor ON, Henriksson A, Vasiljevic T, et al. Proteolytic activity of dairy lactic acid bacteria and probiotics as determinant of growth and in vitro angiotensin-converting enzyme inhibitory activity in fermented milk [J]. Lait, 2007, 87 (1): 21-38.
    6. Korhonen H, Pihlanto A. Bioactive peptides: Production and functionality [J]. Int Dairy J, 2006, 16 (9): 945-960.
    7. FitzGerald RJ, Murray BA. Angiotensin converting enzyme inhibitory peptides derivedfrom food proteins: Biochemistry, bioactivity and production [J]. Curr Pharm Design, 2007, 13 (8): 773-791.
    8. Jeong DW, Shin DS, Ahn CW, et al. Expression of antiblypertensive peptide, his-his-leu, as tandem repeats in Escherichia coli [J]. J Microbiol Biotechnol, 2007, 17 (6): 952-959.
    9. Liu D, Sun HY, Zhang LJ, et al. High-level expression of milk-derived antihypertensive peptide in Escherichia coli and its bioactivity [J]. J Agr Food Chem, 2007, 55 (13): 5109-5112.
    10. Lv GS, Huo GC, Fu XY. Expression of milk-derived antihypertensive peptide in Escherichia coli [J]. J Dairy Sci, 2003, 86 (6): 1927-1931.
    11. Park.C.J., Lee.J.H., Hong.S.S., et al. High-level expression of the angiotensin -congverting-enzyme-inhibiting peptide, YG-1, as tandem multimers in Escherichia coli [J]. Appl Microbiol Biotech, 1998, 50: 71-76.
    12. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature, 1970, 227 (5259): 680-685.
    13. Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem, 1976, 72: 248-254.
    14. Vermeirssen V, Van Camp J, Devos L, et al. Release of angiotensin I converting enzyme (ACE) inhibitory activity during in vitro gastrointestinal digestion: from batch experiment to semicontinuous model [J]. J Agr Food Chem, 2003, 51 (19): 5680-5687.
    15. Cushman DW, Cheung HS. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung [J]. Biochem Pharmacol, 1971, 20 (7): 1637-1648.
    16.刘佳.大豆蛋白ACE抑制肽的研究[D]: [博士学位论文].无锡:江南大学食品学院, 2008.
    17. Church FC, Swaisgood HE, Porter HD, et al. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins [J]. J. Dairy. Sci . 1983, 66: 1219-1227.
    18. Tsai JS, Lin YS, Pan BS, et al. Antihypertensive peptides and gamma-aminobutyric acid from prozyme 6 facilitated lactic acid bacteria fermentation of soymilk [J]. Process Biochem, 2006, 41 (6): 1282-1288.
    19. Matoba N, Usui H, Fujita H, et al. A novel anti-hypertensive peptide derived from ovalbumin induces nitric oxide-mediated vasorelaxation in an isolated SHR mesenteric artery [J]. Febs Letters, 1999, 452 (3): 181-184.
    20. Yamada Y, Matoba N, Usui H, et al. Design of a highly potent anti-hypertensive peptide based on ovokinin(2-7) [J]. Biosci Biotechnol Biochem, 2002, 66 (6): 1213-1217.
    21. Onishi K, Matoba N, Yamada Y, et al. Optimal designing of beta-conglycinin to genetically incorporate RPLKPW, a potent anti-hypertensive peptide [J]. Peptides, 2004, 25 (1): 37-43.
    22. Marczak ED, Usui H, Fujita H, et al. New antihypertensive peptides isolated from rapeseed [J]. Peptides, 2003, 24 (6): 791-798.
    23. Sato M, Hosokawa T, Yamaguchi T, et al. Angiotensin I-converting enzyme inhibitory peptides derived from wakame (Undaria pinnatifida) and their antihypertensive effect in spontaneously hypertensive rats [J]. J Agr Food Chem, 2002, 50 (21): 6245-6252.
    24. Fujita H, Yokoyama K, Yoshikawa M. Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins [J]. J Food Sci, 2000, 65 (4): 564-569.
    25. Fujita H, Yoshikawa M. LKPNM: a prodrug-type ACE-inhibitory peptide derived from fish protein [J]. Immunopharmacology, 1999, 44 (1-2): 123-127.
    26. Tauzin J, Miclo L, Gaillard JL. Angiotensin-I-converting enzyme inhibitory peptides from tryptic hydrolysate of bovine alpha(S2)-casein [J]. Febs Letters, 2002, 531 (2): 369-374.
    27. Nakamura Y, Yamamoto N, Sakai K, et al. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme [J]. J Dairy Sci, 1995, 78 (6): 1253-1257.
    28. Nakamura Y, Yamamoto N, Sakai K, et al. Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk [J]. J Dairy Sci, 1995, 78 (4): 777-783.
    29. Gray GM, Cooper HL. Protein digestion and absorption [J]. Gastroenterology, 1971, 61 (4): 535-544.
    30. Folk JE, Schirmer EW. Chymotrypsin C. I. Isolation of the zymogen and the active enzyme: preliminary structure and specificity studies [J]. J Biol Chem, 1965, 240:181-192.
    31. Kageyama T. Pepsinogens, progastricsins, and prochymosins: structure, function, evolution, and development [J]. Cell Mol Life Sci, 2002, 59 (2): 288-306.
    32.王增,马会勤,张文等.包涵体蛋白的分离和色谱法体外复性纯化研究进展[J].中国生物工程杂志, 2009, 29 (7): 102-107.
    33. Clark ED. Protein refolding for industrial processes [J]. Curr Opin Biotechnol, 2001, 12 (2): 202-207.
    34. Hlodan R, Craig S, Pain RH. Protein folding and its implications for the production of recombinant proteins [J]. Biotechnol Genet Eng Rev, 1991, 9: 47-88.
    35. Swietnicki W. Folding aggregated proteins into functionally active forms [J]. Curr Opin Biotechnol, 2006, 17 (4): 367-372.
    36.李树刚.重组人白细胞介素-1受体拮抗剂的表达、复性、纯化及中试生产工艺研究[D]: [博士学位论文].重庆:重庆大学, 2007.
    37. Maeda Y, Yamada H, Ueda T, et al. Effect of additives on the renaturation of reduced lysozyme in the presence of 4 M urea [J]. Protein Eng, 1996, 9 (5): 461-465.
    38. Lin GZ, Lian YJ, Ryu JH, et al. Expression and purification of His-tagged flavonol synthase of Camellia sinensis from Escherichia coli [J]. Protein Expr Purif, 2007, 55 (2): 287-292.
    39. Singh SM, Panda AK. Solubilization and refolding of bacterial inclusion body proteins [J]. J Biosci Bioeng, 2005, 99 (4): 303-310.
    40. Kohno T, Carmichael DF, Sommer A, et al. Refolding of recombinant proteins [J]. Methods Enzymol, 1990, 185: 187-195.
    41.大肠杆菌表达的vMIP-II包涵体的纯化与复性研究[J].中国生物制品学杂志, 2005, 18 (3): 247-251.
    42.于文国,陶秀娥.包涵体蛋白复性及其影响因素[J].河北工业科技, 2007, 24 (5): 314-317.
    1. Rao S, Su Y, Li J, et al. Design and expression of recombinant antihypertensive peptide multimer gene in Escherichia coli BL21 [J]. J Microbiol Biotechnol, 2009, 19 (12): 1620-1627.
    2. Wu G, Bashir-Bello N, Freeland SJ. The Synthetic Gene Designer: a flexible web platform to explore sequence manipulation for heterologous expression [J]. Protein Expr Purif, 2006, 47 (2): 441-445.
    3. Matsui T, Li CH, Matsumoto K, et al. Latent production of angiotensin I-converting enzyme inhibitors from buckwheat protein [J]. J Pept Sci, 2002, 8 (6): 267-274.
    4. Maruyama S, Mitachi H, Tanaka H, et al. Studies on the active site and antihypertensive activity of angiotensin I-converting enzyme inhibitors derived from casein [J]. Agr Biol Chem, 1987, 51 (6): 1581-1586.
    5. Nakamura Y, Yamamoto N, Sakai K, et al. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme [J]. J Dairy Sci, 1995, 78 (6): 1253-1257.
    6. Robert MC, Razaname A, Mutter M, et al. Identification of angiotensin-I-converting enzyme inhibitory peptides derived from sodium caseinate hydrolysates produced by Lactobacillus helveticus NCC 2765 [J]. J Agr Food Chem, 2004, 52 (23): 6923-6931.
    7. Fujita H, Yokoyama K, Yoshikawa M. Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins [J]. JFood Sci, 2000, 65 (4): 564-569.
    8. Tauzin J, Miclo L, Gaillard JL. Angiotensin-I-converting enzyme inhibitory peptides from tryptic hydrolysate of bovine alphaS2-casein [J]. Febs Letters, 2002, 531 (2): 369-374.
    9. Karaki H, Kuwahara M, Sugano S, et al. Oral administration of peptides derived from bonito bowels decreases blood pressure in spontaneously hypertensive rats by inhibiting angiotensin converting enzyme [J]. Comp Biochem Physiol C, 1993, 104 (2): 351-353.
    10. Hai-Lun H, Xiu-Lan C, Cai-Yun S, et al. Analysis of novel angiotensin-I-converting enzyme inhibitory peptides from protease-hydrolyzed marine shrimp Acetes chinensis [J]. J Pept Sci, 2006, 12 (11): 726-733.
    11. Liu D, Sun H, Zhang L, et al. High-level expression of milk-derived antihypertensive peptide in Escherichia coli and its bioactivity [J]. J Agr Food Chem, 2007, 55 (13): 5109-5112.
    12. Matsui T, Yukiyoshi A, Doi S, et al. Gastrointestinal enzyme production of bioactive peptides from royal jelly protein and their antihypertensive ability in SHR [J]. J Nutr Biochem, 2002, 13 (2): 80-86.
    13. Mishima S, Tokunaga KH, Yoshida C, et al. Antihypertensive effect of peptides from Royal Jelly in spontaneously hypertensive rats [J]. Biol Pharm Bull, 2004, 27 (2): 189-192.
    14. Byun HG, Kim SK. Structure and activity of angiotensin I converting enzyme inhibitory peptides derived from Alaskan pollack skin [J]. J Biochem Mol Biol, 2002, 35 (2): 239-243.
    15. Lee HG, Lee JE, Bae IY, et al. Tyr-Pro-Lys, an angiotensin I-converting enzyme inhibitory peptide derived from broccoli (Brassica oleracea Italica) [J]. Food Chem, 2006, 99 (1): 143-148.
    16. Nakamura Y, Yamamoto N, Sakai K, et al. Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk [J]. J Dairy Sci, 1995, 78 (4): 777-783.
    17. Schagger H, von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa [J]. Anal Biochem, 1987, 166 (2): 368-379.
    18. Alting AC, Meijer RJ, van Beresteijn EC. Incomplete elimination of the ABBOS epitope of bovine serum albumin under simulated gastrointestinal conditions of infants [J]. Diabetes Care, 1997, 20 (5): 875-880.
    19. Zhang Z, Yang J, Xu L, et al. Cloning, codon optimization and expression of mature lipase gene Penicillium expansum [J]. Wei Sheng Wu Xue Bao, 2010, 50 (2): 228-235.
    20. Rocha EP. Codon usage bias from tRNA's point of view: redundancy, specialization, and efficient decoding for translation optimization [J]. Genome Res, 2004, 14 (11): 2279-2286.
    21. Semon M, Mouchiroud D, Duret L. Relationship between gene expression and GC-content in mammals: statistical significance and biological relevance [J]. Hum Mol Genet, 2005, 14 (3): 421-427.
    22. Tokuoka M, Tanaka M, Ono K, et al. Codon optimization increases steady-state mRNA levels in Aspergillus oryzae heterologous gene expression [J]. Appl Environ Microbiol, 2008, 74 (21): 6538-6546.
    23. Mitarai N, Sneppen K, Pedersen S. Ribosome collisions and translation efficiency: optimization by codon usage and mRNA destabilization [J]. J Mol Biol, 2008, 382 (1): 236-245.
    24. Wang X, Li X, Zhang Z, et al. Codon optimization enhances secretory expression of Pseudomonas aeruginosa exotoxin A in E. coli [J]. Protein Expr Purif, 2010, 72 (1): 101-106.
    25. Han JH, Choi YS, Kim WJ, et al. Codon optimization enhances protein expression of human peptide deformylase in E. coli [J]. Protein Expr Purif, 2010, 70 (2): 224-230.
    26. Byun HG, Kim SK. Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin [J]. Process Biochem, 2001, 36 (12): 1155-1162.
    27. Ukeda H, Matsuda H, Osajima K, et al. Peptides from peptic hydrolysate of heated sardine meat that inhibit angiotensin I-converting enzyme [J]. Nippon Nogeikagaku Kaishii, 1992, 66: 25-29.
    28. Lee JK, Hong S, Jeon JK, et al. Purification and characterization of angiotensin I converting enzyme inhibitory peptides from the rotifer, Brachionus rotundiformis [J]. Bioresource Technol, 2009, 100 (21): 5255-5259.
    29. Papayannopoulos IA. The interpretation of collision-induced dissociation tandem mass spectra of peptides [J]. Mass Spectrom Rev, 1995, 14 (1): 49-73.
    30. Kageyama T. Pepsinogens, progastricsins, and prochymosins: structure, function, evolution, and development [J]. Cell Mol Life Sci, 2002, 59 (2): 288-306.
    31. Keil B. Specificity of proteolysis [J]. Springer: NewYork, 1992: pp. 335.
    32. Gray GM, Cooper HL. Protein digestion and absorption [J]. Gastroenterology, 1971, 61 (4): 535-544.
    33. Folk JE, Schirmer EW. Chymotrypsin C. I. Isolation of the Zymogen and the Active Enzyme: Preliminary Structure and Specificity Studies [J]. J Biol Chem, 1965, 240: 181-192.
    1. Cao WH, Zhang CH, Hong PZ, et al. Purification and identification of an ACE inhibitory peptide from the peptic hydrolysate of Acetes chinensis and its antihypertensive effects in spontaneously hypertensive rats [J]. Int Food Sci Tech, 2010, 45 (5): 959-965.
    2. Lu J, Ren DF, Xue YL, et al. Isolation of an Antihypertensive Peptide from Alcalase Digest of Spirulina platensis [J]. J Agr Food Chem, 2010, 58 (12): 7166-7171.
    3. Nakamura Y, Sakai K, Okubo A, et al. Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk [J]. J Dairy Sci, 1995, 78 (4): 777-783.
    4. Miyoshi S, Ishikawa H, Kaneko T, et al. Structures and activity of angiotensin-converting enzyme inhibitors in an alpha-zein hydrolysate [J]. Agric Biol Chem, 1991, 55 (5): 1313-1318.
    5. Matsumura N, Fujii M, Takeda Y, et al. Angiotensin I-converting enzyme inhibitorypeptides derived from bonito bowels autolysate [J]. Biosci Biotechnol Biochem, 1993, 57 (5): 695-697.
    6. Lee DH, Kim JH, Park JS, et al. Isolation and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from the edible mushroom Tricholoma giganteum [J]. Peptides, 2004, 25 (4): 621-627.
    7. Hiroyuki Fujita MY. LKPNM: a prodrug-type ACE-inhibitory peptide derived from fish protein [J]. Immunopharmacology 1999, 44: 123-127.
    8. Fujita H, Yamamoto K, Yoshikawa M. Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins [J]. J Food Sci, 2000, 65 (4): 564-569.
    9. Nakamura Y, Yamamoto N, Sakai K, et al. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme [J]. J Dairy Sci, 1995, 78 (6): 1253-1257.
    10. Rao SQ, Xu ZZ, Su YJ, et al. Cloning, soluble expression, and production of recombinant antihypertensive peptide multimer (AHPM-2) in Escherichia coli for bioactivity identification [J]. Protein peptide lett, 2011, 18: 699-706.
    11. Igic R, Behnia R. Properties and distribution of angiotensin I converting enzyme [J]. Curr Pharm Design, 2003, 9 (9): 697-706.
    12. Rohrbach MS, Williams EB, Jr., Rolstad RA. Purification and substrate specificity of bovine angiotensin-converting enzyme [J]. J Bio Chem, 1981, 256 (1): 225-230.
    13. Cheung HS, Wang FL, Ondetti MA, et al. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence [J]. J Biol Chem, 1980, 255 (2): 401-407.
    14. Hausch F, Shan L, Santiago NA, et al. Intestinal digestive resistance of immunodominant gliadin peptides [J]. Am J Physiol Gastrointest Liver Physiol, 2002, 283 (4): G996-G1003.
    15. Kaspari A, Diefenthal T, Grosche G, et al. Substrates containing phosphorylated residues adjacent to proline decrease the cleavage by proline-specific peptidases [J]. Biochim Biophys Acta, 1996, 1293 (1): 147-153.
    16. Matsumura N, Fujii M, Takeda Y, et al. Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides derived from bonito bowels [J]. BiosciBiotechnol Biochem, 1993, 57 (10): 1743-1744.
    17. Yang YJ, Marczak ED, Yokoo M, et al. Isolation and antihypertensive effect of angiotensin I-converting enzyme (ACE) inhibitory peptides from spinach Rubisco [J]. J Agr Food Chem, 2003, 51 (17): 4897-4902.
    18. Ondetti MA, Cushman DW. Enzymes of the renin-angiotensin system and their inhibitors [J]. Annu Rev Biochem, 1982, 51: 283-308.
    19. FitzGerald RJ, Meisel H. Milk protein-derived peptide inhibitors of angiotensin -I-converting enzyme [J]. Br J Nutr, 2000, 84 Suppl 1: S33-37.
    20. Fujita H, Yokoyama K, Yoshikawa M. Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins [J]. Food Chem Toxicol, 2000, 65 (4): 564-569.
    21. Marczak ED, Usui H, Fujita H, et al. New antihypertensive peptides isolated from rapeseed [J]. Peptides, 2003, 24 (6): 791-798.
    22. Suetsuna K, Maekawa K, Chen JR. Antihypertensive effects of Undaria pinnatifida (wakame) peptide on blood pressure in spontaneously hypertensive rats [J]. J Nutr Biochem, 2004, 15 (5): 267-272.
    23. Matsui T, Yukiyoshi A, Doi S, et al. Gastrointestinal enzyme production of bioactive peptides from royal jelly protein and their antihypertensive ability in SHR [J]. J Nutr Biochem, 2002, 13 (2): 80-86.
    24. Yamamoto N, Maeno M, Takano T. Purification and characterization of an antihypertensive peptide from a yogurt-like product fermented by Lactobacillus helveticus CPN4 [J]. J Dairy Sci, 1999, 82 (7): 1388-1393.
    25. Fujita H, Yoshikawa M. LKPNM: a prodrug-type ACE-inhibitory peptide derived from fish protein [J]. Immunopharmacology, 1999, 44 (1-2): 123-127.
    26. Meisel H. Overview on milk protein-derived peptides [J]. Int Dairy J, 1998, 8: 363-373.
    27. Quiros A, del Mar Contreras M, Ramos M, et al. Stability to gastrointestinal enzymes and structure-activity relationship of beta-casein-peptides with antihypertensive properties [J]. Peptides, 2009, 30 (10): 1848-1853.
    28. Keil B. Sepcificity of proteolysis. Springer: NewYork, 1992; pp. 335.
    29. Lee JK, Lee MS, Park HG, et al. Angiotensin I Converting Enzyme Inhibitory Peptide Extracted from Freshwater Zooplankton [J]. J Med Food, 2010, 13 (2): 357-363.
    30. Fan JF, Hu XZ, Tan S, et al. Isolation and characterisation of a novel angiotensin I-converting enzyme-inhibitory peptide derived from douchi, a traditional Chinese fermented soybean food [J]. J Sci Food Agr, 2009, 89 (4): 603-608.
    31. Sato M, Hosokawa T, Yamaguchi T, et al. Angiotensin I-converting enzyme inhibitory peptides derived from wakame (Undaria pinnatifida) and their antihypertensive effect in spontaneously hypertensive rats [J]. J Agr Food Chem, 2002, 50 (21): 6245-6252.
    32. Katayama K, Jamhari, Mori T, et al. Angiotensin-I converting enzyme inhibitory peptide derived from porcine skeletal muscle myosin and its antihypertensive activity in spontaneously hypertensive rats [J]. J Food Sci, 2007, 72 (9): 702-706.
    1. Ferreira SH, Rocha e Silva M. Potentiation of bradykinin and eledoisin by BPF (bradykinin potentiating factor) from Bothrops jararaca venom [J]. Experientia, 1965, 21 (6): 347-349.
    2. Yamamoto N, Takano T. Antihypertensive peptides derived from milk proteins [J]. Nahrung, 1999, 43 (3): 159-164.
    3. Vercruysse L, Van Camp J, Smagghe G. ACE inhibitory peptides derived from enzymatic hydrolysates of animal muscle protein: a review [J]. J Agr Food Chem, 2005, 53 (21): 8106-8115.
    4. Guang C, Phillips RD. Plant food-derived Angiotensin I converting enzyme inhibitory peptides [J]. J Agr Food Chem, 2009, 57 (12): 5113-5120.
    5.辛志宏,马海乐,吴守一.食品蛋白质中降血压肽的功能与应用[J].食品与发酵工业, 2003, 29 (8): 84-87.
    6. Kim YK, Chung BH. A novel angiotensin-I-converting enzyme inhibitory peptide from humanαs1-casein [J]. Biotechnol Lett, 1999, 21 (7): 575-578.
    7. Mullally MM, Meisel H, FitzGerald RJ. Identification of a novel angiotensin-I-converting enzyme inhibitory peptide corresponding to a tryptic fragment of bovine beta-lactoglobulin [J]. Febs Letters, 1997, 402 (2-3): 99-101.
    8. Yoshii H, Tachi N, Ohba R, et al. Antihypertensive effect of ACE inhibitory oligopeptides from chicken egg yolks [J]. Comp Biochem Physiol C Toxicol Pharmacol, 2001, 128 (1): 27-33.
    9. Saito Y, Wanezaki K, Kawato A, et al. Antihypertensive effects of peptide in sake and itsby-products on spontaneously hypertensive rats [J]. Biosci Biotechnol Biochem, 1994, 58 (5): 812-816.
    10. Matsui T, Yukiyoshi A, Doi S, et al. Gastrointestinal enzyme production of bioactive peptides from royal jelly protein and their antihypertensive ability in SHR [J]. J Nutr Biochem, 2002, 13 (2): 80-86.
    11. You SJ, Udenigwe CC, Aluko RE, et al. Multifunctional peptides from egg white lysozyme [J]. Food Res Int, 2010, 43 (3): 848-855.
    12. Vermeirssen V, Van Camp J, Devos L, et al. Release of angiotensin I converting enzyme (ACE) inhibitory activity during in vitro gastrointestinal digestion: from batch experiment to semicontinuous model [J]. J Agr Food Chem, 2003, 51 (19): 5680-5687.
    13. Church FC, Swaisgood HE, Porter HD, et al. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins [J]. J Dairy Sci, 1983, 66: 1219-1227.
    14.冯岩,冯志彪,王楠.乳清蛋白水解物游离氨基浓度测定方法比较[J].中国乳品工业, 2010, 38 (5): 46-48.
    15.徐英操,刘春红.蛋白质水解度测定方法综述[J].食品研究与开发, 2007, 28 (7): 173-176.
    16. Purcell AW, Zhao GL, Aguilar MI, et al. Comparison between the isocratic and gradient retention behaviour of polypeptides in reversed-phase liquid chromatographic environments [J]. J Chromatogr A, 1999, 852 (1): 43-57.
    17. Ondetti MA, Cushman DW. Enzymes of the renin-angiotensin system and their inhibitors [J]. Annu Rev Biochem, 1982, 51: 283-308.
    18. Cheung HS, Wang FL, Ondetti MA, et al. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence [J]. Journal of Biological Chemistry, 1980, 255 (2): 401-407.
    19. Marczak ED, Usui H, Fujita H, et al. New antihypertensive peptides isolated from rapeseed [J]. Peptides, 2003, 24 (6): 791-798.
    20. Meisel H. Biochemical properties of bioactive peptides derived from milk proteins: Potential nutraceuticals for food and pharmaceutical applications [J]. Livest Prod Sci, 1997, 50 (1-2): 125-138.
    21. Guan X, Liu J, Wang L, et al. Preparation, purification and structure identification ofangiotensin I converting enzyme inhibitory peptide with high activity from oat protein [J]. Chem J Chinese U, 2009, 30 (10): 1992-1997.
    22. Lee JK, Lee MS, Park HG, et al. Angiotensin I converting enzyme inhibitory peptide extracted from freshwater zooplankton [J]. J Med Food, 2010, 13 (2): 357-363.
    23. FitzGerald RJ, Meisel H. Milk protein-derived peptide inhibitors of angiotensin -I-converting enzyme [J]. Br J Nutr, 2000, 84 Suppl 1: S33-37.
    24. Loponen J. Angiotensin converting enzyme inhibitory peptides in Finnish cereals: a database survey [J]. Agr Food Sci, 2004, 13 (1-2): 39-45.
    25. Li CH, Matsui T, Matsumoto K, et al. Latent production of angiotensin I-converting enzyme inhibitors from buckwheat protein [J]. J Pept Sci, 2002, 8 (6): 267-274.
    26. Lee JE, Bae IY, Lee HG, et al. Tyr-Pro-Lys, an angiotensin I-converting enzyme inhibitory peptide derived from broccoli (Brassica oleracea Italica) [J]. Food Chem, 2006, 99 (1): 143-148.
    27. Tauzin J, Miclo L, Gaillard JL. Angiotensin-I-converting enzyme inhibitory peptides from tryptic hydrolysate of bovine alpha(S2)-casein [J]. Febs Letters, 2002, 531 (2): 369-374.
    28. Rohrbach MS, Williams EB, Jr., Rolstad RA. Purification and substrate specificity of bovine angiotensin-converting enzyme [J]. J Bio Chem, 1981, 256 (1): 225-230.
    29. Hara H, Funabiki R, Iwata M, et al. Partial absorption of small peptides in rats under unrestrained conditions [J]. J Nutr, 1984, 114 (6): 1122-1129.
    30. Pentzien AK, Meisel H. Transepithelial transport and stability in blood serum of angiotensin-I-converting enzyme inhibitory dipeptides [J]. Zeitschrift Fur Naturforschung Section C-a Journal of Biosciences, 2008, 63 (5-6): 451-459.
    31. Foltz M, Cerstiaens A, van Meensel A, et al. The angiotensin converting enzyme inhibitory tripeptides Ile-Pro-Pro and Val-Pro-Pro show increasing permeabilities with increasing physiological relevance of absorption models [J]. Peptides, 2008, 29 (8): 1312-1320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700