城市污水生物絮凝吸附工艺的特性及模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于活性污泥对污水中有机污染物的初期去除作用开发出来的生物絮凝吸附工艺,在基建投资和运行费用较低的情况下可去除大部分污水中的有机污染物,对降低城市污水处理厂的投资和运行费用具有十分重要的现实意义。国内外对生物絮凝吸附工艺的系统构成、反应器结构形式及部分工艺参数如污泥浓度、停留时间等进行了研究,但对其工艺原理的认识不够深入,也未能建立描述该工艺的数学模型,其研究结果缺乏普适性。本论文通过小试系统研究并优化了生物絮凝吸附工艺的主要工艺参数,在解析其工艺原理的基础上建立了具有描述该工艺的数学模型,中试系统的稳定运行表明该工艺具有运行的可靠性和稳定性,其运行结果证明了所建数学模型的合理性和准确性,说明本研究的结果具有普适、性。本研究的主要成果如下:
     1.在分析生物絮凝吸附工艺各主要工艺参数的基础上,构建了生物絮凝小试系统;系统考察了气水比、絮凝时间、活化时间、污泥龄和回流比5个等主要工艺参数对系统污染物去除效果的影响,获得了生物絮凝吸附工艺的优化参数:气水比10:1,絮凝时间30min,活化时间2h,污泥龄6d,回流比40%-50%。
     2.对生物絮凝吸附工艺的污泥吸附特性进行了考察,结果表明该工艺对悬浮和胶体有机物的吸附效果好;污泥经活化后,吸附性能大大提高;伪二级动力学方程能更好地描述污泥对有机物的吸附特性,20℃下的伪二级吸附速率常数kads为0.816 g-COD/mg-MLVSS.h;添加抑制剂后的活性污泥比吸附率降低了10%左右,表明系统中仍存在微生物对有机污染物的生物降解作用;污泥的异养菌产率系数为0.69 g-COD/g-COD,污泥产量较高。
     3.根据对生物絮凝吸附工艺原理的剖析,引入吸附过程和水解过程,以ASM1模型为基础,建立了描述生物絮凝吸附工艺的数学模型;通过建立工艺过程动力学方程和物料平衡方程,对系统内的不同组分碳源进行了物料平衡分析;敏感分析结果表明,模型参数的敏感度从大到小依次为YH、μH、kH、KX、KS、kads、μA、bA,对敏感度较大的μH、kH、KX和Ks进行了参数估计;用生物絮凝小试系统的试验结果对模型进行了校正与验证,证明所建数学模型具有较高的准确性;应用所建数学模型对生物絮凝工艺参数进行优化的结果为:絮凝时间为40min、活化时间为1.5h、污泥龄为6d。
     4.以小试研究为基础,结合数学模型对工艺参数的优化结果,完成了生物絮凝中试系统的设计、安装和调试;水力负荷增大,中试系统对污水SS、COD和CODss去除效率大幅度下降,而SS和CODss去除率变化较小;污泥负荷在2-20 kgCOD/kgMLSSd之间变化,系统对COD和SS仍保持较高的去除率,而SCOD去除率随着污泥负荷的增加而降低;当回流比分别为50%和25%时,生物絮凝中试系统的COD平均去除率分别为70%和65%、NH3-N平均去除率分别为15%和10%、P043--P平均去除率分别为40%和20%;该工艺承受冲击负荷的能力较强;中试系统的运行结果进一步证明了所建数学模型的合理性和准确性,能够为污水处理厂的设计和运行提供理论指导。
The biological flocculation and adsorption process, which is developed based on the rapid organic matter adsorption by activated sludge, can remove organic matters in domestic wastewater significantly at lower investment of infrastructure and operation costs. Its application is beneficial for reducing the investment of infrastructure and the operation costs simultaneously to construct wastewater treatment plants (WWTPs). At present, most studies on such a process are focused only on system structure, reactor configuration and influencing factors, such as solids retention time (SRT), hydraulic retention time (HRT). However, its working principle is not yet clearly understood and its kinetics is not sufficient. Also, a mathematical model for describing this process is not available and the results are ununiversal. Through systematic experiments, the key parameters of the biological flocculation process were optimized and a universal mathematical model was developed in this study. The developed model was further proven to be reasonable and accurate with a pilot-scale study, which indicated the results are universal. Main results of this study are as follows:
     1. A laboratory-scale study was performed after analyzing the key parameters of the biological flocculation and adsorption process. The influences of ratio of gas/water, coagulation time, activation time, SRT and recirculation ratio on the system performance were evaluated. The optimized parameters were determined as follows: gas/water ratio 10:1, coagulation time 30 min, activation time 2 h, SRT 6 d and recirculation ratio 40%-50%.
     2. The adsorption characteristics of activated sludge in the biological flocculation and adsorption process were investigated. The suspended and colloidal organic matters were adsorbed effectively. The absorption capability was improved greatly after activation. The adsorption of organic matters by activated sludge followed the pseudo-second-order kinetics. The adsorption rate constant kads was 0.816 g COD/mg.MLVSS.h at 20℃. The adsorption ratio decreased 10%after the addition of inhibitosr, indicating that the microbial biodegradation occurred in the process. The heterotrophic bacteria yield coefficient was estaimated as 0.69 g COD/g COD and sludge yield was high.
     3. Based on ASM1 and the working principle of the biological flocculation and adsorption process, a mathematical model, which included biological adsorption and hydrolysis processes, was developed. The carbon sources of system were analyzed on the basis of kinetic equation and mass balance. The results of sensitivity analysis demonstrated that YH,μH, kH, KX, KS, kads,μA, bA were more sensitive. The model was calibrated and verified with the experimental data. The optimized simulation results were found to be:coagulation time of 40 min, activation time of 1.5 h, SRT of 6 d.
     4. A pilot-scale biological flocculation and adsorption system was well designed, installed and operated based on the results of the bench-scale study and mathematical model simulation. The removal efficiency of suspended solids, chemical oxygen demand (COD), CODss decreased significantly with an increase in hydraulic loading rate, and the removal rate of SS and CODss changed slightly. The removal efficiency of COD and SS remained high, while the removal efficiency of SCOD decreased with an increase in sludge loading rate when it was in a range of 2-20 kgCOD/kgMLSSd. The average COD, NH3-N and PO43--P removal efficiency were 70%,15%and 40%, respectively, at a recirculation ratio of 50%. At a recirculation ratio of 25%, the average COD, NH3-N and PO43--P removal efficiency was 65%,10%and 20%, respectively. The biological flocculation process had a resistance to shock loadings. The results of the pilot-scale study further demonstrated that the developed model was reasonable and accurate and was able to provide a theoretical foundation for its design and. operation in WWTPs.
引文
[1]高廷耀,顾国维,周琪.水污染控制工程(下册)[M].第三版.北京:高等教育出版社,2007
    [2]张自杰,林荣忱,金儒霖.排水工程(下册)[M].第四版.北京:中国建筑工业出版社,2000
    [3]赵旭涛,顾国维.生物吸附作用的性能探讨[J].中国给水排水,1994,14(3):28-30
    [4]任南琪,马放,杨基先等.污染控制微生物学[M].哈尔滨:哈尔滨工业大学出版社,2002
    [5]张忠祥,钱易.废水生物处理新技术[M].北京:清华大学出版社,2004
    [6]国家环境保护总局科技标准司.城市污水处理及污染防治技术指南[M].北京:中国环境科学出版社,2001
    [7]周健,龙腾锐.AB法A段机理及动力学研究现状[J].重庆建筑大学学报,1999,21(6):39-44
    [8]蒋展鹏等.城市污水强化一级处理新工艺——活化污泥法[J].中国给水排水,1999,15(2):1-5
    [9]靖朝森.上海竹园第一污水处理工艺优化研究[D].同济大学硕士论文,2002
    [10]Pavoni J L, Tenney M W, W F Echelberger Jr. Bacterial exocellular polymers and biological flocculation[J]. War. Pollut. Control Fed.,1972,44:414-431
    [11]夏北威.环境污染物生物降解[M].北京:化学工业出版社,2002
    [12]Hermansson M. The DLVO theory in microbial adhesion[J]. Colloids and surfaces B: Biointerfaces,1999,14:105-119
    [13]Deryagin B W, Landau L. Theory of the stability of strongly charged lyophobic sols and of the adhendion of strongly charged particles in solutions of electrolytes[J]. Acta Physico. Chim. URSS,1941,14:633-662
    [14]Verwey E J W. Theory of the stability of lyophobic colloids[J]. J.Phys.Chem.,1947,51 (3): 631-636
    [15]Mckinney R E. A fundamental approach to the activated sludge process Ⅱ:A proposed theory of floc formation[J]. Sewage Ind Wastes,1952,24:280-287
    [16]Gordon P Treweek, James J Morgan. The mechanism of E. coli aggregation by polyethyleneimine[J]. Journal of Colloid and Interface Science,1977,60(2):258-273
    [17]朱晓江,尹双凤,桑军强.微生物絮凝剂的研究和应用[J].中国给水排水,2001,17(6):19-22
    [18]金雪标,高运川.吸附生物降解发的讨论与应用[J].环境保护,1997,18:42-45
    [19]Schiewer S, Wong M H.. Metal binding stoichiometry and isotherm choice in biosorption[J]. Environ. Sci. Technol.,1999,33 (21):3821-3828
    [20]Schiewer S, Volesky B. Ionic strength and electrostatic effects in biosorption of divalent metal ions and protons[J]. Environ Sci. Technol., 1997,31:2478-2485
    [21]Yang J, Volesky B. Modeling the uranium-proton ion exchange[J].Environ. Sci. Technol., 1999,33(22):4079-4085
    [22]Aksu Z, Yener J A. Comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents[J]. Waste Manage,2001,21:695-702
    [23]Streat M, Patrick J W, Camporro-Perez M J. Sorption of phenol and p-chlorophenol from water using conventional and novel activated carbons[J]. Water Sci. Res.,1995,29:467-72
    [24]Tsezos M, Bell J P. Comparison of the biosorption and desorption of hazardous organic pollutants by live and dead biomass[J]. Water Res.,1989,23:561-8
    [25]Logan B E, Alleman B C, Amy G L, Gilbertson R L. Adsorption and removal of pentachlorophenol by white rot fungi in batch culture[J]. Water Res.,1994,28:1533-8
    [26]Bellot J C, Condoret J S. Modelling of liquid chromatography equilibria[J]. Process Biochem., 1993,28:365-76
    [27]Frlund B, Palmgren R, Keiding K,et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Res.,1996,30(8):1749-1758
    [28]Teoh Gaik Teng. Measuring activated sludge flocculation stability. Thesis design project. The university of Queensland.1999.
    [29]Sobeck,David C,Higgins,Matthew J. Examination of three theories for mechanisms of cation induced bioflocculation[J]. Water Res.,2002,36(3):527-538
    [30]韩志新,赵晓祥,周正慧.微生物絮凝剂的絮凝机理及应用[J].江苏环境科技,2006,19(2): 149-151
    [31]Speece R E. Anaerobic biotechnology for industrial wastewaters[M]. Nashville:TN United States Published by Archae Press,1996:134-135
    [32]Liu Y, T A, J H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge[J]. Water Res.,2002,36(7):1653-1665
    [33]Beun J J,van Loosdrecht M C M,Heijnen J J. Aerobic granulation in a sequencing batch airlift reactor[J]. Water Res.,2002,36(3):702-712
    [34]龙腾锐,何强,林刚.活性污泥中丝状菌与絮体结构的关系研究[J].中国给水排水,2000,16(2):5-8
    [35]冯骞,薛朝霞,汪岁羽,陈丽娜.水流剪切力对活性污泥特性影响的试验研究[J].河海大学学报,2006,34(4):373-377
    [36]Henze M, Grady C P L Jr, Gujer W,Marais G v R,MatsuoT. Activated Sludge Model No.1(IAWPRC Scientific and Technical Report No.1)[M]. London:IAWPRC,1987
    [37]Francis L R.,Lutgarde R. Role of filamentous microorganisms in activated sludge foaming: relationship of mycolata levels to foaming initiation and stability[J]. Wat. Res.,2002,36.
    [38]国家环保局.水和废水监测分析方法.第四版.北京:中国环境科学出版社,2002
    [39]师绍琪等.生活污水生物絮凝吸附强化一级处理的试验研究.中国给水排水,1998,14(2):5-7.
    [40]许保玖.当代给水与废水处理原理[M].北京:高等教育出版社,1990
    [41]GB 50014-2006,室外排水工程设计规范
    [42]尤作亮,蒋展鹏,师绍琪.活化污泥法中污泥活化度的理论分析与应用[J].中国给水排水,2002,8(2):23-25
    [43]蒋展鹏,尤作亮,师绍琪等.城市污水强化一级处理工艺一活化污泥法[J].中国给水排水,1999,5(12):1-5
    [44]范瑾初,金兆丰.水质工程.北京:中国建筑工业出版社,2009
    [45]许萍.‘城市污水生物絮凝吸附强化一级处理技术试验研究[J].北京建筑工程学院学报,2001,12(4):13-16
    [46]李德生,王宝山.强化生物吸附处理生活污水[J].环境工程,2003,21(3):25-27
    [47]B. Bunch, D. M. Griffin, Jr. Rapid removal of colloidal substrate from domestic wastewater.Journal WPCF[J].1987,59(11):957-963.
    [48]Chua H. Effects of trace chromium on organic adsorption capacity and organic removal in activated sludge[J]. The Science of the Total Environment,1998,214:239-245
    [49]沈耀良,王宝贞.废水生物处理新技术——理论与应用[M].北京:中国环境科学出版社,1999:4-11
    [50]周健,苗利利,龙腾锐.胞外聚合物对活性污泥吸附及再生的影响研究[J].环境污染治理技术与设备.2004,5(5):21-25
    [51]Serpil Ozmihci,Fikret Kargi.Utilization of powdered waste sludge(PWS) for removal of textile dyestuffs from wastewater by adsorption[J].Journal of Environmental Management,2006,81:307-314
    [52]Xue-jiang Wang,Si-qing Xia,Ling Chen,et al.Biosorption of cadmium(Ⅱ) and lead(Ⅱ) ions from aqueous solutions onto dried activated sludge[J]. Journal of Environmental Sciences, 2006,18(5):840-844
    [53]Z Al-Qodah. Biosorption of heavy metal ions from aqueous solutions by activated sludge[J]. Desalination,2006,196:164-176
    [54]G McKay,Ho Y S. The sorption of lead(II) on peat[J]. Wat. Res.,1999,33:578-584
    [55]G McKay,Ho Y S. Pseudo-second-order model for sorption processes[J]. Process Biochem, 1999,34:451-465
    [56]王建龙,吴立波,齐星,钱易.用氧吸收速率(OUR)表征活性污泥硝化活性的研究[J].环境科学学报,1999,19(3):225-228
    [57]张广萍,邓英春.硝化微生物对五日生化需氧量测定的影响研究[J].水文,2000,20(2):36-38
    [58]张亚雷,李咏梅.活性污泥数学模型[M].上海:同济大学出版社,2002
    [59]韦林,刘绍根.污泥吸附性能的研究[J].工业用水与废水,2005,36(1):38-40
    [60]周雪飞.活性污泥1号模型有机组分和参数的测定研究[D].上海:同济大学,2003
    [61]Monika Schoenerklee,Momtchil Peev,Heleen De Wever. Stefan Weiss. Thorsten Reemtsma. Micropollutant Degradation in WastewaterTreatment:Experimental Parameter Estimation for an Extended Biokinetic Model[J]. Water Air Soil Pollut,2009, (2010) 206:69-81
    [62]宋文清,杨海真.活性污泥数学模型中异养菌产率系数的测定[J].环境污染与防治,2004,26(4):49-50
    [63]Serpil Ozmihci, Fikret Kargi. Utilization of powdered waste sludge (PWS) for removal of textile dyestuffs fromwastewater by adsorption[J]. Journal of Environmental Management, 2006,81(4):307-314
    [64]Su K Z,Yu H Q. Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater[J]. Environ Sci Technol,2005,39:2818-2827
    [65]Nicolella C, Van Loosdrecht M C M, Heijnen J J.Mass transfer and reaction in a biofilm airlift suspension reactor[J]. Chem. Eng. Sci.,1998,53:2743-2753
    [66]Basibuyuk M,Forster C F. A examination of the adsorption characteristics of basic dye(Maxilon Red BL-N)on to live activated sludge system[J]. Process Biochemistry, 2003,38:1311-1316
    [67]Wentzel M C, Mbewe A, Lakay M T, Ekama G A. Batch test for characterization of the carbonaceous materials in municipal wastewaters[J]. Water SA,1999,25:327-335
    [68]Roeleveld P J, Van Loosdrecht M C M. Experience with guidelines for wastewater characterisation in The Netherlands[J]. Water Sci. Technol.,2002,45:77-87
    [69]Grady Jr C P L, Glen T D, Henry C L. Biological wastewater treatment[M]. Second edition. Marcel Dekker, Inc,1999
    [70]Makinia J, Rosenwinkel K H, Spering V. Long-term simulation of the activated sludge process at the Hanover-Gummerwald pilot WWTP[J], Water Res.,2005,39:1489-1502
    [71]Meijer S C F, Van Loosdrecht M C M, Heijnen JJ. Modelling the start-up of a full-scale biological phosphorous and nitrogen removing WWTP[J]. Water Res.,2002,36:4667-4682.
    [72]Sahlstedt K E, Aurola A M, Fred T. Practical modelling of a large activated sludge DN-process with ASM3. Proceedings of the Ninth IWA Specialized Conference on Design, Operation and Economics of Large Wastewater Treatment Plants[J].2003, Praha, Czech Republic:141-148
    [73]Koch G, Kuhni M., Gujer W, Siegrist H. Calibration and validation of activated sludge model No.3 for Swiss municipal waste water [J]. Water Res.,2000,34:3580-3590
    [74]Wichern M., Lubken M., Blomer R., Rosenwinkel K H. Efficiency of the Activated Sludge Model No.3 for German wastewater on six different WWTPs[J]. Water Sci. Technol., 2003,47:211-218.
    [75]刘毅,陈吉宁,杜鹏飞.环境模型参数识别与不确定性分析[J].环境科学,2002,23(6):404-408
    [76]Kim J R, Ko J H, Lee J J, Kim SH. Park parameter sensitivity analysis for activated sludge models NO.1 and 3 combined with one-dimensional settling model[J].Wat.Sci.Tech 2006,53(1):129-138
    [77]Dirk J W, De Pauw, Peter A.Vanrolleghem. Practical Aspects of Sensitivity Analysis for Dynamic Models[M]. Biomath,Ghent University,Belgium
    [78]Abusam A,Keesman K J. Sensitivity analysis of the secondary setting tank double exponential function model.Official Publication of the European Water Association. European Water Management Online.2002.
    [79]Shahalam A B, Elsamra R, Ayoub G M, Acra A. Parametric sensitivity of comprehensive model of aerobic fluidized-bed biofilm process[J]. Environ. Eng-ASCE,1996,122:1085-1093
    [80]Koch G, Kuhni M, Gujer W, Siegrist H. Calibration and validation of activated sludge model No.3 for Swiss municipal wastewater[J]. Water Res.,2000,34:3580-3590
    [81]Reichert P. Aquasim 2.0-User Manual, Computer Program for the Identification and Simulation of Aquatic Systems[M]. EAWAG:Dubendorf, Switzerland,1998
    [82]Karahan O, Van Loosdrecht M C M, Orhon D. Modeling the utilization of starch by activated sludge for simultaneous substrate storage and microbial growth[J]. Biotechnol,2006,94, 43-53
    [83]Gujer W, Henze M, Mino T, Van Loosdrecht M C M. Activated sludge model NO.3[J]. Water Sci. Technol,1999,39:183-193
    [84]Rieger L, Koch G, Kuhni M, Gujer W, Siegrist H. The EAWAG bioP-module for activated sludge model No.3[J]. Water Res.,2001,35:387-390
    [85]Henze M, Harremoes P, Cour Jansen J la, Arvin, E. Wastewater treatment:biological and chemical processes [M]. Third edition,Springer,2002.
    [86]李德生,王宝山.强化生物吸附处理生活污水[J].环境工程,2003,21(3):25-27
    [87]Ho YS, Wase DAJ, Forster CF. Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat[J]. Environmental Technology.1996,17(1):71-77
    [88]王长生,傅金祥,张萍.抚顺污水处理厂活性污泥培养驯化与启动调试[J].给水排水,2003,28(4):6-11
    [89]李健,陈双星,石凤林等.大型SBR工艺启动特点及活性污泥培养驯化[J].给水排水,2001,27(5):30-32
    [90]邱维.城市污水生物絮凝强化一级处理+生物膜过滤技术试验研究[D].重庆大学硕士论文,2001
    [91]顾国维.水污染治理技术研究[M].上海:同济大学出版社,1997
    [92]崔和平,钟艳萍.丝状菌污泥膨胀的原因及其控制方法[J].中国给水排水,2004,24(6):99-101
    [93]康冠军.活性污泥膨胀上浮的原因分析及对策[J].石油化工环境保护,2006,2:31-33
    [94]肖作义,范荣华,王子瑞.活性污泥形状和生物相的观察与指导[J].环境科学与术,2006,29:123-124,152
    [95]Warrer J. Stable foams and sludge bulking:the largest remaining problems[J]. JCIWEM,1998, 12(10):368-374
    [96]Tipping P J. Foaming in activated sludge processes:an operator's overview[J]. CIWEM,1995,9(7):281-290
    [97]Stratton H M,Brooks P R,Griffiths P C et al. Cell surface hydrophobicity and mycolic acid composition of Rhodococcus strains isolated from activated sludge foam[J].Journal of Industrial Microbiology & Biotechnology,2002(8):264-267
    [98]李探微,彭永臻,陈志根等.活性污泥法的生物泡沫形成和控制[J].中国给水排水,2000,17(4):73-76
    [99]柏景方.污水处理技术[M].哈尔滨:哈尔滨工业大学出版社,2006
    [100]曹宇,三思让.污水处理厂运行管理培训与教程[M].北京:化学工业出版社,2005
    [101]王超,陈致和.活性污泥中原生动物种类及数量变化对污水处理效率的指示作用[J].动物学报,1997,43:1-5
    [102]聂英进,罗翠华.污水厂活性污泥生物的指示作用[J].铁道劳动安全卫生与环保,2004,31(5):247-249

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700