深海采矿装置智能升沉补偿系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深海采矿装置升沉补偿系统是保证深海采矿作业安全进行必不可少的装备之一。例如,当用水力流体提升式采矿系统开采分布在5000m左右深海海底具有很高开采价值的锰结核时,为减小海浪所引起的采矿船升沉运动对扬矿管的影响,有必要在扬矿管与采矿船之间安装一套升沉补偿系统,以减小扬矿管的轴向应力和变形,防止疲劳损坏。本文采用理论分析、计算机仿真和模拟试验相结合的方法,对深海采矿装置升沉补偿系统进行了系统的研究,其中重载扬矿管升沉补偿系统是本文的主要研究对象。
     论文提出了轻载升沉补偿系统、中载升沉补偿系统和重载升沉补偿系统等三种适用于不同场合的升沉补偿系统的设计方案,它们综合应用了电液比例、计算机控制、智能控制等技术,具有结构简单、可靠性好、补偿精度高等优点。论文对采用了速度型升沉补偿策略的用于扬矿管的升沉补偿的重载升沉补偿系统进行了参数设计。参数设计的结果表明,所设计的重载升沉补偿系统满足负载大、功率消耗小的设计要求。为了进行模拟试验研究,论文搭建了一个多功能的模拟试验台,利用该试验台和相似原理,可分别建立轻载升沉补偿模拟试验系统、中载升沉补偿模拟试验系统和重载升沉补偿模拟试验系统。每一种模拟试验系统均由升沉运动模拟系统、升沉补偿模拟系统和负载模拟系统组成。
     为了理论分析和仿真的需要,论文首先建立了比例方向阀的阀芯运动、三位四通不对称比例方向阀控制不对称缸动力机构和三位三通不对称比例方向阀控制不对称缸动力机构的数学模型,得出了重载升沉补偿系统、升沉运动模拟系统、和轻载、中载、重载三种升沉补偿模拟系统的传递函数。接着论文提出了一种基于simulink与功率键合图建立液压系统动作过程仿真模型的新方法,并通过升沉运动模拟系统的仿真与试验结果的对比验证了该仿真建模方法的正确性,该方法也可用于建立液压系统的动静态特性仿真模型。最后根据所建立的数学模型和提出的仿真建模方法,论文建立了重载升沉补偿系统的静态特性仿真模型,建立了重载升沉补偿系统及其模拟试验系统、中载升沉补偿模拟试验系统、轻载升沉补偿模拟试验系统的升沉补偿的仿真模型。
     重载升沉补偿系统的动静态特性的分析和仿真的结果表明,重载升沉补偿系
    
     广东工业大学工学博士学位论文
    统是一个大惯量的系统,升沉补偿系统及其模拟试验系统中普遍存在着非线性、
    死区、参数(如负载、摩擦力)时变、大滞后等不利因素。因此,它们的控制器
    的设计和控制策略的选择是至关重要的。为提高升沉运动模拟系统的升沉运动模
    拟精度,其控制器在位移反馈控制的基础上加人了前馈控制。论文提出了一种包
    含了速度反馈控制、位移反馈控制和扰动补偿控制的复合控制器,该复合控制器
    适用于采用不同升沉补偿策略的三种升沉补偿系统。论文实现了前馈控制器、低
    通滤波器和PID、模糊一PID两种反馈控制器的设计。扰动补偿控制对升沉补偿性
    能的影响最大,尤其是对大惯量的重载升沉补偿系统。论文设计了线性、非线性
    和神经网络等三种扰动补偿控制器,其中基于BP神经网络的扰动补偿控制器适用
    性广,具有较强的自适应能力。
     升沉补偿系统的计算机在线控制需要硬件和软件两方面的支持。论文以升沉
    补偿模拟试验系统为例,介绍了升沉补偿系统的计算机在线控制系统的硬件组成;
    开发了升沉补偿模拟试验系统的控制软件,指出并解决了开发升沉补偿系统的控
    制软件所要解决的几个关键技术难题。升沉补偿模拟试验系统的控制软件可直接
    应用于升沉补偿系统的控制。
     利用所建立的模拟试验系统和仿真模型、设计的控制器和开发的控制软件,
    论文对升沉补偿系统进行了仿真和模拟试验研究。仿真和模拟试验的结果与理论
    分析的结果基本上一致,升沉补偿系统及其模拟试验系统都获得了较高的补偿精
    度。从而也就证明了论文所提出的升沉补偿系统的设计方案是可行的,所设计的
    控制器和选用的控制策略和升沉补偿策略是有效的,所开发的控制软件是稳定可
    靠的。通过仿真和模拟试验结果的对比,证明了所建立的升沉补偿系统及其模拟
    试验系统的过程仿真模型是正确的,也进一步验证了论文提出的液压系统过程仿
    真建模的新方法。
     本课题受国家自然科学基金项目“深海采矿工程升沉补偿系统的研究”资
    助,完成了升沉补偿系统的方案和参数设计、数学建模、仿真建模、智能控制器
    的设计和控制软件的开发等研究,其研究成果将直接为我国开发海洋矿产资源的
    战略提供服务。
HCS for deep-sea mining device is one of the absolutely necessary instruments to secure the deep-sea mining production. For example, when mining the manganese nodule which is of very high mining value and dispersed on the 5000m depth ocean floor, in order to reduce the effect of the mining ship on the lifting pipe, it is necessary to install a HCS between the lifting pipe and the mining ship to reduce the axial stress and deformation of the lifting pipe and avoid its fatigue damage. In this thesis, HCS is studied by means of theory analysis, computer simulation and model test, among of which HHCS for lifting pipe is the main research object.
    Three kinds of HCS, LHCS, MHCS, HHCS, are put forward for different purpose, which use synthetically the technologies of electro-hydraulic proportional control, computer control and intelligent control and have compact structure, good reliability, and high compensation precision. The parameter of HHCS which uses the speed-type heave compensation strategy is designed, and the result of the parameter design shows that the designed HHCS meet the requirement of heavy load as well as small power consumption. For the model test, a multifunctional model test-bed is built which can build LHCMTS, MHCMTS, and HHCMTS based on the similarity principle. Any HCSMTS is composed of a HMSS, a HCMS and a load simulation system.
    In order to satisfy the demand of theory analysis and computer simulation, firstly, the mathematic models are established for the spool movement of a proportional direction valve, the actuating unit with a 4/3-way asymmetric proportional direction valve controlling an asymmetric cylinder and the actuating unit with a 3/3-way asymmetric valve controlling an asymmetric cylinder, and the transfer functions are obtained for HHCS, HMSS, LHCMS, MHCMS and HHCMS. And then, a new kind of simulation modeling method based on the power bond graph and the software simulink to build the simulation model of a hydraulic system's executing process. It is proved correct by comparing the simulation result of the HMSS with its experimental result, and it also can be used to build the dynamic/static performance simulation model of a hydraulic system. At last, using the established mathematic model and the presented simulation modeling method, the static performance simulation model of the HHCS is built, and the heave compensatin
    g simulation model is built for the HHCS, HHCMTS, MHCMTS and LHCMTS.
    The analysis and simulation of dynamic/static performance of the HHCS shows that it is a large inertial system, and that there are such adverse factors in HCS and its model test system as nonlinear, dead zone, time variable parameters(e.g. load, friction), big delay. Therefore, it is very important to design their controllers and choose their
    
    
    control strategy. In order to improve the position tracing precision for simulating the heave motion of the HMSS, a feedforward controller is added into its controller except for a feedback. A multiplex controller, which is composed of a speed feedback controller, a displacement feedback controller and a disturbance compensation controller, is designed for the three kinds of HCS which use different heave compensation strategy. The feedfoward controller, low pass filter and two kinds of feedback controllers(PID controller and Fuzzy-PID controller) are designed. The disturbance compensation control has very significant effect on the compensation performance, especially to the large inertial HHCS. Three kinds of disturbance compensation controllers, linear, nonlinear and neural network, are designed to meet different requirement. Among of them, the disturbance compensation controller based on BP network has strong self-adapting ability.
    Computer on-line control of the HCS needs hardware and software. Taking HCMTS for example, the hardware component of the computer on-line control system for HCS is introduced. Through the brief introduction of the control software developed for the HCMTS, several main technical difficulties are found and solved. The c
引文
[1] 陈奋翔.海洋世纪的挑战.海洋开发与管理,1998,15(4):4~8
    [2] 文先保编著.海洋开采.北京:冶金工业出版社,1996
    [3] Jin S. Chung, Katsuya Tsurusaki. Advance in deep-ocean mining systems research. Proceedings of the Fourth(1994) International Offshore and Polar Engineering Conference. Japan, April 10-15,1994.18~31
    [4] 吕华.海洋开发与管理的探讨.地质科技管理,1999,No.1:7~11
    [5] 陈晓洪,傅崇说.海洋多金属结核处理研究现状及发展趋势.有色金属:冶炼部分,1994,No.4:39~41
    [6] 任新民.海洋采矿与我国的对策.西安建筑科技大学学报,1995,27(2):197~202
    [7] D.C.Tolefson, J.P. Latimer, R.Kaufman, et al. Design considerations for a commercial deep ocean nodule mining system.470~480
    [8] R.Kaufman, J.P.Latimer, and D.C. Tolefson, et al. The design and operation of a pacific ocean deep-ocean mining test ship: R/V Deepsea Miner Ⅱ. Proceedings of the 17th annual offshore technology conference. Houston,Texas. 1985, Vol.2, OTC 4901:33~43
    [9] C. Charles, B. Taine, P.A. Schoentgen. Numerical study of the dynamic behavior of a deep sea mining system using hydraulic lift. Proceedings of the 18th annual offshore technology conference. Houston, Texas, 1986, OTC 523 8:153~156
    [10] Jean-Pierre Lenoble. Future deep-sea bed mining of polymetallic nodules ore deposits. XV World Mining Congress Madrid, 1992.1~9
    [11] 简曲 王明和.大洋多金属结核工业采矿系统的研究.湖南有色金属,1995,12(4):12~15
    [12] 牛京考.中国对大洋多金属结核研究与开发述评.中国矿业,1996,5(5):5~6
    [13] 谢龙水.我国深海采矿技术研究的阶段性成果及今后工作方向.湖南有色金属.1999,15(1):1~5
    [14] 吴百海.深海采矿工程升沉补偿系统的研究.国家自然科学基金项目,2000~2002.No.59975018
    [15] D.W. Williams, C.M. McBride, S.C. Kinnaman. Deep ocean mining-technolgy
    
    transfer from and to the offshore drilling industry. Proceedings of the 9th annual offshore technology conference. Houston, Tex.. 1977, OTC 2775:395~400
    [16] 谢龙水.深海多金属结核采集方法的技术评价.湖南有色金属,1994,10(6):326~333
    [17] Deep ocean floor nodule mining-first generation techniques are here. Mining Engineering, 1975, No.4:47~52
    [18] B.K. Jacobsen, K. Kure. Deep sea mining model tests. Proceedings of the 11th annual offshore technology conference. Houston, Tex., 1979, Vol.2, OTC 3453:823~832
    [19] 谢龙水.深海水力提升式采矿系统的研究.中国矿业,1995,4(4):27~35
    [20] 毛纪陵,凌胜等.大洋采矿水力扬矿系统工艺参数的仿真计算.有色金属(矿山部分),1994,No.4:29~33
    [21] 简曲,陈新明,王明和.21世纪中国的大洋多金属结核工业开采.中国矿业,1997,6(4):16~19
    [22] Conrad G. Welling. An advanced design deep sea mining system. Proceedings of the 13th annual offshore technology conference. Houston, TX, 1981, Vol.1, OTC4091:247~250
    [23] R.Kaufman, J.P.Latimer. The design and operation of a prototype deep-ocean mining ship. The Society of Naval Architects and Marine Engineers, 1971.3-1~3-24
    [24] 简曲,王明和.深海采矿集矿机的设计.矿业研究与开发,1998,18(1):33~36
    [25] 王明和,简曲.中国大洋矿区采矿环境研究.中国矿业,1996,5(4):22~24
    [26] 简曲.中国大洋矿区开采条件研究.世界采矿快报,1996,12(5):5~7
    [27] 陈圣源,杨胜雄等.东太平洋多金属结核矿床地质.北京:地质出版社,1997
    [28] 方华灿.海洋石油钻采设备理论基础.北京:石油工业出版社,1984
    [29] A.W. Brink, Jin S. Chung. Automatic position control of a 30,000 tons ship during ocean mining operations. Proceedings of the 13th annual offshore technology conference. Houston, TX. 1981, Vol. 1, OTC4091:205~212
    [30] George G. Hartnup, Robert G. Airey, Peter Wilkinson,et al. Hydrodynamic tests on marine risers. Proceedings of the 14th annual offshore technology conference. Houston, Tex., 1982, Vol.3, OTC 4319:223~227
    
    
    [31] T. Pakarinen. Analysis of a 6,000-m riser system. Proceedings of the 20th annual offshore technology conference. Houston, Texas., 1988, Vol.3, OTC 5800:489~496
    [32] C. Ganapathy, S.Panda. Nonlinear analysis of pipe string for deep sea mining. Proceedings of the 21st annual offshore technology conference. Houston, Texas., 1989, Vol.4, OTC 6179:633~640
    [33] Jin S.Chung, A.k Whitney W.A. Loden, et al. Nonlinear transient motion of deep ocean mining pipe. Proceedings of the 12th annual offshore technology conference. Houston, Texas.1980, OTC 3832:341~352
    [34] K. Zare, T.K. Datta. Dynamic response of lazy-S in random sea. OTC90, Houston, Texas. 1990, OTC 6440:177~184
    [35] Shifeng Yuan, Kazuo Aso. Static behavior of a pipe string designed for mining manganese nodules. JSME International Journal, 1990, Vol.33, No.1:101~106
    [36] W.F. Lammert, J.R. Hale, V. Jacobsen. Dynamic response of submarine pipelines exposed to combined wave and current action. Proceedings of the 21 st annual offshore technology conference. Houston, Texas. 1989, Vol.3, OTC 6058:159~170
    [37] Jin S. Chung, Bao-rong Cheng H.-P. Huttelmaier. Three-dimensional coupled response of a vertical deep-ocean pipe: Part Ⅱ. Excitation at pipe top and external torsion. International Journal of Offshore and Polar Engineering, 1994,Vol.4, No.4:331~339
    [38] Bao-rong Cheng, Jin S. Chung, H.-P. Huttelmaier, et al. 3-D coupled responses of a deep-ocean manganese nodule mining pipe. Proceedings of the Specail Offshore Symposium Chian(SOSC-94/PACOMS-94). Beijing, China, 1994. 419~431
    [39] C.A.FeliPa, J.S. Chung. Nonlinear static analysis of deep ocean mining pipe—Part Ⅰ: modeling and formulation. Journal of Energy Resources Technology, 1981,Vo1.103:11~15
    [40] C.A. FeliPa, J.S. Chung. Nonlinear static analysis of deep ocean mining pipe—Part Ⅱ: Numerical Studies. Journal of Energy Resources Technology, 1981,Vo1.103:16~25
    
    
    [41] Jin S. Chung. Hydrodynamic forces on a marine riser: A velocity-potential method. Journal of Energy Resources Technology, 1982, Vol. 104:53~57
    [42] J.C. Chao, K.F. Lambrakos, R.L.P. Verley. Hydrodynamic force characteristics for submarine pipelines. Proceedings of the 21st annual offshore technology conference. Houston, Texas. 1989, Vol.3, OTC 6060:181~188
    [43] 冯雅丽,李浩然,张云仙.深海采矿扬矿管横向液动力分析.金属矿山,1999,273(3):18~21
    [44] Kazuo Aso, Katsushige Kan, Hitoshi Doki, et al. The optimum design of a stepped pipe string for mining manganese nodules with consideration for reducing its maximum axial stress. Proceedings of the sixth(1996)-International Offshore and Polar Engineering Conference. Los Angeles, USA. 1996, Vol. 1:29~36
    [45] 冯雅丽,张云仙.5000m扬矿管的纵向振动.金属矿山,1999,274(4):13~15
    [46] 冯雅丽,李浩然,张云仙.5000m扬矿管纵向振动研究.有色金属,1999,51(4):13~18
    [47] 张云仙.大洋采矿扬矿管纵向振动特性分析研究.北京科技大学硕士学位论文,北京科技大学图书馆,1998
    [48] Gang Cui, Kazuo Aso. The optimum design of a stepped pipe string with vibration absorbers for mining manganese nodules in the deep sea, with consideration for reducing its maximum axial stress. In: Proceedings of the 16th International Conference on Offshore Mechanics and Arctic Engineering, 1997.315~322
    [49] K. Aso, K. Kan, H. Doki, et al. The shape-effect of buffer on the longitudinal vibration of a pipe-string in the deep sea. International Journal of Offshore and Polar Engineering, 1991, Vol. 1, No.2:154~160
    [50] K. Aso, K. Kan, H. Doki, et al. Vibration-control of a pipe string for mining manganese nodules by the shape of buffer. Proceedings of the Third(1993) International Offshore and Polar Engineering Conference, Singpore, 1993, Vo1.1:143~148
    [51] Kazuo Aso, Katsushige Kan, Hitoshi Doki. Experiment for optimum buffer damping in reducing longitudinal vibration of a long pipe string. International
    
    Journal of Offshore and Polar Engineering, 1997, Vol.7, No.2:104~109
    [52] Yoshikazu kobayashi, Kazuo Aso. Longitudinal vibration-control of pipe string for mining manganese nodules in deep sea with an elastic support. Proceedings of the Seventh(1997) International Offshore and Polar Engineering Conference, Honolulu, USA.1997, Vo1.1:128~135
    [53] Bao-Rong Cheng, Jin S. Chung. Effect of elastic joints on eigenfrequency of a vertical deep-ocean pipe. ASME 1995, PVP-Vol.198:153~160
    [54] K. Aso, K. Kan, H. Doki, et al. The effects of vibration absorbers on the longitudinal vibration of a pipe string in the deep sea—Part 2: a case of mining manganese nodules. International Journal of Offshore and Polar Engineering, 1994, Vol.4, No.1:62~67
    [55] Kazuo Aso, Katsushige Kan, Hitoshi Doki, et al. The effects of vibration absorbers with nonlinear spring on the longitudinal vibration of a pipe strin gfor mining manganese nodules. Proceedings of the Fifth(1995) International Offshore and Polar Engineering Conference. The Hague, The Netherlands. 1995,Vol. 1 : 303~309
    [56] Kazuo Aso, Katsushige Kan, Hitoshi Doki, et al. A method for semi-active control of the longitudinal vibration of a pipe string for mining manganese nodules. Proceedings of the Fourth(1994) International Offshore and Polar Engineering Conference. Osaka, Japan. April 10-15, 1994.Vol. 1: 301~306
    [57] Jochen Halfar, Rodney M. Fujita. Precautionary management of deep-sea mining. Marine Policy, 2002, Vol.26, No.2:103~106
    [58] Hermann J.Becker, Bernd Grupe, Horst U.Oebius, et al. The behaviour of deep-sea sediments under the impact of nodule mining processes. Deep-Sea Research Ⅱ: Topical Studies in Oceanography, 2001, Vol.48, Issue 17-18:3609~3627
    [59] Sharma, Rahul. Indian Deep-sea Environment Experiment (INDEX): An appraisal. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2001, Vol.48, Issue 16:3295~3307
    [60] Susanne Rolinski, Joachim Segschneider, J(?)rge S(?)ndermann. Long-term
    
    propagation of tailings from deep-sea mining under variable conditions by means of numerical simulations. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2001, Vol. 48, Issue 17-18:3469-3485
    [61] Hjalmar Thiel, Gerd Schriever, Ahmed Ahnert, et al. The large-scale environmental impact experiment DISCOL—reflection and foresight. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2001, Vol. 48, Issue: 17-18:3869-3882
    [62] 廖谟圣.海洋开发机器与液压技术.北京:海洋出版社,1988
    [63] http ://www.cnooc.com.cn/ywyl/daxing.html.中国海洋石油总公司/专业技术服务/大型设备索引
    [64] 中国大洋协会.国外科学调查船及船舶设备考察团考察报告摘要
    [65] 方华灿.海洋石油钻采装备与结构.北京:石油工业出版社,1990.11
    [66] 赴英、荷、丹海洋石油钻采集输设备考察组.赴英、荷、丹海洋石油钻采集输设备考察报告。北京:第一机械工业部技术情报所,1979
    [67] 郜焕秋 益其乐.深海采矿中试系统水面支持船方案设计简介
    [68] R.Kaufman, J.P.Latimer. The Design and Operation of a pacific Ocean Deep-Ocean mining Test Ship: R/V Deepsea Miner □. OTC 4901
    [69] 王占林.近代液压控制.北京:机械工业出版社,1997
    [70] 卢长耿,李金良.液压控制系统的分析与设计.北京:煤炭工业出版社,1991
    [71] 刘世勋,刘少军.国外液压控制技术发展动向.液压与气动,1996,No.4:3~4
    [72] 黎启柏.电液比例控制与数字控制系统.北京:机械工业出版社,1997
    [73] Ke Li, M.A. Mannan, Mingqian Xu, et al. Electro-hydraulic proportional control of twin-cylinder hydraulic elevators. Control engineering practice, 2001, No.9:367~373.
    [74] 罗禹权,郭建业,季卫.水轮机调速器的高压电液比例随动装置.长江科学院院报,2004,17(2):51~53
    [75] 林富华,沈思源,林建亚等.水轮机微机电液比例控制系统的研究.机电工程,1995,No.3:12~13
    [76] 王强,龚烈航.推土机铲刀的电液比例控制.建筑机械化,1995,No.5:17~20
    [77] 张永果.液压控制系统中智能控制的应用.液压气动与密封,1994,No.3:42~45
    [78] 蒋志明,林廷圻,李锋等.电液位置伺服系统的高精度神经网络控制研究.机
    
    床与液压,2001,No.4:50~52
    [79] 罗绍新,王芙蓉.电液比例阀控系统的自学习模糊控制的研究.机床与液压,2002,No.3:55~56
    [80] 黄茹楠,高英杰.电液力控制系统的模糊智能控制.燕山大学学报,2001,25(4):368~370
    [81] 何玉彬,刘艳秋,徐立勤等.电液伺服系统的神经网络在线自学习自适应控制.中国电机工程学报,1998,18(6):434~437
    [82] 谢龙水.深海采矿船设计的研究.有色金属(矿山部分),1995,No.3:1~6
    [83] Jan Lundgren, Anders Berg. Wave-included motions on a four-column semisubmersible obtained from model tests. Proceedings of the 14th annual offshore technology conference. Houston,Tex.. 1982, Vol. 1, OTC 4230:759~763
    [84] 雷天觉等.液压工程手册.北京:机械工业出版社,1990
    [85] 罗富生,赵连利,周士昌.液压压下伺服缸的密封及摩擦力的研究,1996,No.5:14~16
    [86] 邓起孝,戚昌滋.流体液压系统现代设计方法.北京:中国建筑工业出版社,1985
    [87] 德国力士乐公司.力士乐公司产品样本手册
    [88] 吴百海,肖体兵,龙建军等.深海采矿装置的自动升沉补偿系统的模拟研究.机械工程学报,2003,39(7):128~132
    [89] 丁汉哲.试验技术.北京:机械工业出版社,1982
    [90] 陆严,姚香根,曲以义.用于三峡升船机模型试验的液压均衡系统.液压气动与密封,1995,No.4:26~29
    [91] 肖体兵,吴百海,滕召旗.计算机控制的电液比例同步系统的设计.机械开发,2000,121(增刊):30~33
    [92] 马杰,田金文,彭复员.海浪的数值模拟及其仿真.华中理工大学学报,2000,28(4):63~65
    [93] 唐露新,李定华,卢伟坚.电液比例阀控制系统分析及应用研究.机械开发,1996,No.4:6~9
    [94] 唐露新,岳克宁,张玲.PVA-1000系列电液比例阀控制器的开发研究。机床与液压,1997,No.5:7~8
    [95] 陆元章.液压系统的建模与分析.上海:上海交通大学出版社,1989
    
    
    [96] 陈鹰,谢英俊,徐立.液压仿真技术的新进展.液压与气动,1997,89(1):4~7
    [97] 陈燎原.基于Matlab Simulink的液压绞车动态特性仿真研究.煤炭科学技术,2002,30(4):18~21
    [98] 孙涛,董秀林,李鹤一.基于SIMULINK的电液比例速度控制及仿真.矿山机械,2002,No.4:42~46
    [99] 石红雁,许纯新,付连宇.基于simulink的液压系统动态仿真.农业机械学报,2000,31(5):94~96
    [100] 侯友夫,李龙海,陈飞.SIMULINK在液压系统仿真中的应用.江苏煤炭,2002,No.1:10~11
    [101] 高钦和.利用simulink实现液压系统动态仿真.电子技术与应用,1999,N0.9:29~32
    [102] 赵玲.基于SIMULINK的汽车悬架系统动态仿真.机械,2002,29(增刊):11~13
    [103] 王牧野,王洁,陈先惠.液压伺服闭环控制系统的simulink仿真实现.沈阳工业大学学报,2000,22(5):370~372
    [104] 丁问司.基于SIMULINK的氮爆式液压冲击器系统仿真模型.建筑机械,2001(10):21~25
    [105] 卢贵主,胡国清.利用功率键合图和simulink实现液压系统动态仿真.机床与液压,2001,No.4:79~81
    [106] 陈桂明,张明照,戚红雨等.应用matlab建模与仿真.北京:科学出版社,2001
    [107] 徐霖等编著.液压动力控制系统.重庆:重庆大学出版社,1996
    [108] 王士刚,田树军.液压仿真可视化建模环境中功率键合图的自动生成.机床与液压,2001,No.4:55~61
    [109] 孙树礼,田树军.基于功率键合图法的液压破碎冲击器动态特性数字仿真研究.凿岩机械气动工具,1997,No.3:23~27
    [110] W.霍夫曼著,陈鹰译.液压元件及系统的动态仿真.浙江:浙江大学出版社,1998
    [111] 杨世文,郑慕侨.摩擦力非线性建模与仿真.系统仿真学报,2002,Vol.14,No 10:1365-1368
    [112] Stuart Bennett. The past of PID controllers. Annual Reviews in Control ,2001, Vol.25:43-53
    
    
    [113] K.J. (?)str6m, T. H(?)igglund. The future of PID control. Control Engineering Practice, 2001, Vol.9, No.11: 1163~1175
    [114] G. P. Liu, S. Daley. Optimal-tuning nonlinear PID control of hydraulic systems. Control Engineering Practice, 2000, Vol.8, No.9:1045~1053
    [115] 陶永华,尹怡欣,葛芦生等.新型PID控制及其应用.北京:机械工业出版社,1998
    [116] K.J. (?)str(?)m, Pedro Albertos, Joseba Quevedo. Preface:PID control. Control Engineering Practice, 2001, Vol.9, No. 11:1159~1161
    [117] Wei-Der Chang, Rey-Chue Hwang, Jer-Guang Hsieh. A multivariable on-line adaptive PID controller using auto-tuning neurons. Engineering Applications of Artificial Intelligence, 2003, Vol. 16, No. 1:57~63
    [118] Tae-Yong Kuc, Han, Woong-Gie An adaptive PID learning control of robot manipulators, Automatica, 2000, Vol.36, No.5:717~725
    [119] 邱志雄.模糊PID控制器.电气自动化,1994,No.4:3~7
    [120] D.E. Rivera, S.V. Gaikwad. Digital PID controller design using ARX estimation. Computers & Chemical Engineering, 1996, Vol.20, No. 11 : 1317~1334
    [121] 薛定宇.控制系统计算机辅助设计.北京:清华大学出版社,1996
    [122] 陈福祥,杨志雄.PID调节器自整定的PM法及其公式推导.自动化学报,1993,19(6):736~740
    [123] G.P. Liu, S. Daley. Optimal-tuning PID control for industrial systems. Control Engineering Practice, 2001, Vol.9, No. 11:1185~1194
    [124] Lee C.C., Fuzzy logic in control systems: fuzzy logic controller-Parts Ⅰ & Ⅱ. IEEE Trans.on Syst. Man and Cyber., 1990, Vol.20, No.2:404~335
    [125] R.Johnston. Fuzzy logic control. Microelectronics Journal, 1995, Vol.26, No.5:481~495
    [126] N.SEPEHRI, T.CORBET and P.D. LAWRENCE. Fuzzy position control of hydraulic robots with valve deadbands. Mechatronics, 1995, Vol.5, No.6:623~643
    [127] Young-Hyun Lee, R.Kopp. Application of fuzzy control for a hydraulic forging machine. Fuzzy Sets and Systems, 2001, Vol. 118, No. 1:53~61
    [128] 李卓,萧德云,何世忠.基于Fuzzy推理的自调整PID控制器.控制理论与
    
    应用,1997,14(2):238~243
    [129] Shi-Yuan Chen, Fang-Ming Yu, Huang-Yuan Chung. Decoupled fuzzy controller design with single-input fuzzy logic. Fuzzy Sets and Systems, 2002, Vo1.129:335~342
    [130] C.M.Lim. Implementation and experimental study of a fuzzy logic controller for dc motors. Computers in Industry, 1995, 93-96.
    [131] Chih-Hsun Chou, Jen-Chao Teng. A fuzzy logic controller for traffic junction signals. Information Sciences, 2002, Vol. 143:73~97
    [132] 李士勇.模糊控制神经控制和智能控制论.哈尔滨:哈尔滨工业大学出版社,1998
    [133] 诸静等著.模糊控制原理与应用.北京:机械工业出版社,1995
    [134] M. G(?)zelkaya, I. Eksin, E. Yesil. Self-tuning of PID-type fuzzy logic controller coefficients via relative rate observer. Engineering Applications of Artificial Intelligence, 2003, Vol. 16, No.3:227-236
    [135] Dragan D.Kukolj,Slobodan B.Kuzmanovic, Emil Levi. Design of a PID-like compound fuzzy logic controller. Engineering Applications of Artificial Intelligence, 2001, Vol.14, No.6:785-803
    [136] Jianliang Lu, Guangrong Chen, Hao Ying. Predictive fuzzy PID control: theory, design and simulation. Information Sciences, 2001, Vol. 137:157~187
    [137] Manukid Parnichkun, Charoen Ngaecharoenkul. Kinematics control of a pneumatic system by hybrid fuzzy PID. Mechatronics, 2001, No. 11:1001~1023
    [138] 肖体兵,吴百海,吴冉泉等.模糊.PID控制的比例补偿同步系统的设计和试验.机床与液压,2001,124(4):57~59
    [139] 黄坚.自动控制原理及其应用.北京:高等教育出版社,2001
    [140] 王庆丰,顾临怡,袁犹坤,路甬祥.电液比例高精度定位的变死区自学习补偿研究.机床与液压.1994,No.5:249~251
    [141] 刘白雁.电液比例方向阀死区的智能补偿.机床与液压,2002,No.2:89~90
    [142] 刘白雁.电液比例方向阀死区的自寻优动态补偿研究.机床与液压,1996,No.1:24~27
    [143] 彭熙伟,莫波,曹泛.基于变死区动态补偿的电液比例高精度点位控制.北
    
    京理工大学学报,1999,19(1):34~38
    [144] 李进取,王占林,祁晓野等.介绍一种超高温液压泵源方案及电液比例控制系统的死区动态补偿。机床与液压,2002,No.1:55~56
    [145] 余永权.神经网络模糊逻辑控制.北京:电子工业出版社,1999
    [146] 王永骥,涂健.神经元网络控制.北京:机械工业出版社,1998
    [147] 丛爽.神经网络、模糊系统及其在运动控制中的应用.安徽:中国科学技术大学出版社,2001
    [148] 李伯全,张捷.应用MATLAB工具箱在VC++中实现神经网络的程序设计.机械制造,2002,40(459):22~24
    [149] 杨李成,杨智.Matlab与C/Visual C++混合编程的实现.机械研究与应用,1999,12(3):28~29
    [150] 李志明,曹杰,谢求成.VC++与matlab的混合编程.遥控遥测,1999,20(6):59~63
    [151] 李罗生,白立芬,李庆祥等.用VC++6.0和MATLAB语言混编开发图像处理实验软件.实验技术与管理,2001,18(4):50~53
    [152] 石波,陈淑珍,李海鸥.VC与Matlab接口方法剖析.计算机工程,2000,26(3):98~100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700