移动通信网分布式天线位置优选关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式多天线主导的网络架构作为未来移动通信网的显著特征,可以提高系统容量、降低发射功率和扩大网络覆盖。对于分布式多天线系统而言,由于天线分布在不同的地理位置,首先要解决的问题就是如何优选天线的位置。然而,目前对于移动通信网分布式天线位置优选的研究还很不充分。
     本文针对两种典型的分布式多天线系统——“分布式发射天线系统”和“协同中继系统”展开研究。针对分布式发射天线系统,从误码率角度研究了选择部分天线发射策略下的分布式天线位置优选和室内三维环境中的天线位置优选;针对中继系统,从中断概率角度研究了相关阴影衰落信道下的中继位置优选和协同自动重传请求(ARQ:Automatic Repeat reQuest)中继系统的中继位置优选。具体来说,全文包含以下四个创新点:
     首先,在半径为R的圆形小区内,针对圆形布局的分布式发射天线系统,推导了下行选择部分天线发射策略下的误符号率,提出了最小化小区平均误符号率的分布式天线位置优选方法,并且以选择1根发射天线和选择2根发射天线两种情况为例对所提方法做了说明。数值和仿真结果表明最优的天线半径与路径损耗因子、总天线数目和选择天线数目有关。特别的,当总天线数为6,选择天线数为2,路径损耗因子为3时最优的分布式天线半径是0.65R。
     其次,研究了室内三维环境中分布式发射天线空时分组码(STBC: Space TimeBlock Coding)系统的天线位置优选技术。在考虑信号经历路径损耗、阴影衰落和莱斯衰落的情况下,首先推导了用户在室内的平均误符号率,然后通过最小化室内平均误符号率得到了最优的发射天线位置。理论分析和仿真表明优选的发射天线位置与房间的尺寸和移动台的高度有关,当房间的长a、宽b、高c和移动台高度h满足a2b212(c h)2≤0时,分布式发射天线退化为集中式发射天线,即两根发射天线集中放置在屋顶中心;当a2b212(c h)2>0时,两根天线分布在屋顶沿着房间长方向的中轴线上,并且关于屋顶中心对称,距中心距离为(a2-b2)12-(c-h)2。
     再次,研究了相关阴影信道下放大转发(AF: Amplify-and-Forward)中继系统的功率分配和中继位置优选问题。在考虑路径损耗、小尺度瑞利衰落和相关阴影信道的基础上,首先推导了3点中继系统在高信噪比下的近似中断概率,然后以最小化近似中断概率为目标,分别研究了固定中继位置下的功率分配优化,固定发射功率下的中继位置优化,以及功率分配和中继位置的联合优化。理论分析和仿真表明:阴影衰落的标准差和相关系数会显著影响最优的功率分配和中继位置,因此在实际系统中不能忽略相关阴影衰落的影响;在考虑阴影衰落相关系数与位置有关时最优的中继位置不一定在源节点到目的节点的连线上;相比固定中继位置下优化功率分配和固定发射功率下优化中继位置,联合优化能得到更好的性能。
     最后,研究了协同ARQ中继系统的功率分配和中继位置优化。首先推导了快衰落瑞利信道下3点解码转发(DF: Decode-and-Forward)ARQ中继系统在高信噪比下的近似中断概率,然后以最小化近似中断概率为目标,分别研究了固定中继位置下的功率分配优化,固定发射功率下的中继位置优化,以及功率分配和中继位置的联合优化。理论分析和仿真表明:当中断概率为10-3时,协同ARQ相对于直接传输有大约4dB的性能增益;最大重传次数和路径损耗因子会影响最优的功率分配和中继位置。
     论文在分布式天线位置优选方面做出的上述研究成果,从误码率和中断概率角度给出了分布式多天线系统位置优选的方案,可以作为分布式移动通信网天线选址的重要参考。
As a significant feature of the future mobile communications networks, distributedmultiple antennas systems can achieve high channel capacity, decrease the transmitpower and enhance the cell coverage. Therefore, distributed multiple antennas systemshave become research hotspot in recent years. For the distributed multiple antennassystems, antennas are placed in different locations, so the first problem to be solved ishow to place antennas to obtain the best performance. However, research in this area isstill insufficient.
     We focus on two kinds of typical distributed multiple antennas systems: distributedtransmit antenna systems and cooperative relay systems. For the distributed transmitantenna systems, we investigate the antenna location optimization for antenna selectionsystem and indoor distributed space time block coding (STBC) system from theperspective of bit error ratio (BER). For the cooperative relay systems, we investigatethe relay location optimization for amplify-and-forward (AF) cooperative relaying overcorrelated shadowed fading channels and decode-and-forward (DF) automatic repeatrequest (ARQ) relaying over fast Rayleigh fading channels from the perspective ofoutage probability. The details of the investigation are as follows:
     Firstly, we present the downlink antenna selection strategies and derive the symbolerror ratio for the distributed transmit antennas systems, considering a circular cell withthe radius of R and with antenna circular layout. Then optimal distributed antennaradius can be obtained by minimizing cell averaged symbol error ratio (CASER). Wetake selecting one antenna and selecting two antennas for example to illustrate ourproposed method. Numerical and simulation results show that the optimal antennaradius depends on the path loss exponent, the total number of distributed antennas andthe number of selected antennas. In particular, when the total number of antennas is6,the number of selected antennas is2, and the path loss exponent is3, the optimal radiusof the distributed antenna is0.65R.
     Secondly, the area averaged symbol error ratio (AASER) for indoor STBC downlinkwith distributed transmit antennas is derived, considering the effects of path loss,shadow fading and Rician fading. Then optimal antenna location can be obtained byminimizing AASER. Theoretical analyses show that the optimal antennas location isrelated to the room length a, width b, height c and the height of the mobile station h.When a2b212(c h)2≤0, the distributed antennas degenerate into the centralizedantennas. When a2b212(c h)2>0, two antennas should be located on the longitudinaldirection of the central axis of the room, and should be symmetrical about the center ofthe roof. Furthermore, the distance from the distributed antenna to the center of the roof
     Thirdly, we investigate the relay placement and power allocation for AF cooperativerelaying. Considering the joint effects of path loss, correlated shadowing, and flatRayleigh fading, we first derive the approximate outage probability in the highsignal-to-noise ratio (SNR) regime. Then three optimization problems are formulated tominimize the obtained approximate outage probability, namely, optimal relay placementwith fixed power allocation, optimal power allocation with fixed relay location, andjoint optimization of relay placement and power allocation. It is shown by the analyticaland numerical results that the correlation coefficients and the standard deviations ofshadowing have significant impacts on the optimal relay placement and powerallocation. As such, the impact of the correlated shadowing cannot be ignored. Theoptimal relay position may not be on the line connecting the source and the destinationfor certain scenarios. Furthermore, the joint optimization obtains the best outageperformance.
     Finally, we investigate the power allocation and relay placement for cooperative ARQrelaying over fast Rayleigh fading channels, where the channel gains are constantduring each ARQ transmission round and change independently from round to round.We derive the asymptotically tight approximation of outage probability in the high SNRregime. Furthermore, three optimization problems are formulated to minimize theobtained asymptotic outage probability, namely, optimization of the power allocation atthe source and the relay with fixed relay placement, optimization of the relay placementwith fixed power allocation, and joint optimization of the power allocation and relayplacement. It is shown that the cooperative ARQ relaying has4dB gain at outageprobability of10-3compared to direct transmission, and the maximum number of ARQrounds and the path loss exponent will impact the optimal power allocation and relayplacement.
     The research results in this dissertation provide feasible schemes for distributedantennas placement from the perspective of system BER and outage probability, whichcan be applied to the future distributed mobile communications networks.
引文
[1] T. S. Rappaport. Wireless Communications: Principles and Practice(2nd Edition)[M]. NewYork: Addison Wesley/Pearson,2004.
    [2] G. L. Stüber. Principles of mobile communications (3rd Edition)[M]. New York: Springer,2011.
    [3] M. Rahnema. Overview of the GSM system and protocol architecture [J]. IEEE Commun.Mag.,1993,31(4):92–100.
    [4] D. N. Knisely, S. Kumarm, S. Laha, et al. Evolution of wireless data services: IS-95to cdma2000[J]. IEEE Commun. Mag.,1998,36(10):140–149.
    [5] E. Dahlman, B. Gudmundson, M. Nilsson, et al. UMTS/IMT-2000based on wideband CDMA[J]. IEEE Commun. Mag.,1998,36(9):70–80.
    [6] P. Chaudhury, W. Mohr, S. Onoe. The3GPP proposal for IMT-2000[J]. IEEE Commun. Mag.,1999,37(12):72–81.
    [7]李世鹤. TD-SCDMA第三代移动通信系统标准[M].北京:人民邮电出版社,2003.
    [8] International Telecommunications Union. About mobile technology and IMT-2000[EB/OL].http://www.itu.int/osg/spu/imt-2000/technology.html, April4,2011.
    [9] ITU-R. ITU global standard for international mobile telecommunications IMT-Advanced [EB/OL].http://www.itu.int/ITU-R/information/promotion/e-flash/2. March,2008.
    [10]佟学俭,罗涛. OFDM移动通信技术原理与应用[M].北京:人民邮电出版社,2003.
    [11] G. J. Foschini, M. J. Gans. On limits of wireless communications in a fading environmentwhen using multiple antennas [J]. Wireless Personal Commun.,1998,6(3):311–335.
    [12] S. M. Alamouti. A simple transmit diversity technique for wireless communications [J]. IEEEJ. Select. Areas Commun.,1998,16(8):1451–1458.
    [13] V. Tarokh, N. Seshadri, A. R. Calderbank. Space-time codes for high data rate wirelesscommunications: performance criterion and code construction [J]. IEEE Trans. Inf. Theory,1998,44(2):744–765.
    [14] V. Tarokh, H. Jafarkhani, A. R. Calderbank. Space-time block codes from orthogonal designs[J]. IEEE Trans. Inf. Theory,1999,45(5):1456–1469.
    [15] A. Goldsmith, S. A. Jafar, N. Jindal, et al. Capacity limits of MIMO channels [J]. IEEE J.Select. Areas Commun.,2003,21(5):684–702.
    [16] G. L. Stüber, J. R. Barry, S. W. Mclaughlin, et al. Broadband MIMO-OFDM wirelesscommunications [J]. Proceedings of the IEEE,2004,92(2):271–294.
    [17] H. Bolcskei, D. Gesbert, A. J. Paulraj. On the capacity of OFDM-based spatial multiplexingsystems [J]. IEEE Trans. Commun.,2002,50(2):225–234.
    [18] A. van Zelst, T. C. W. Schenk. Implementation of a MIMO OFDM-Based wireless LANsystem [J]. IEEE Trans. Signal Process.,2004,52(2):483–494.
    [19] H. Sampath, S. Talwar, J. Tellado, et al. A fourth-generation MIMO-OFDM broadbandwireless system: design, performance, field trial results [J]. IEEE Commun. Mag.,2002,38(9):143–149.
    [20] D. Gesbert, M. Shafi, S. Da-shan, et al. From theory to practice: An overview of MIMOspace-time coded wireless systems [J]. IEEE J. Select. Areas Commun.,2003,21(3):281–302.
    [21] A. J. Paularj, D. A. Gore, D. A. Core, et al. An overview of MIMO Communications a key togigabit wireless [J]. Proceedings of the IEEE,2004,92(2):198–218.
    [22] H. Bolcskei, E. Zurich. MIMO-OFDM wireless systems: basics, perspectives, and challenges[J]. IEEE Wireless Commun.,2006,13(4):31–37.
    [23] M. Z. Siam, M. Krunz. An overview of MIMO-oriented channel access in wireless networks[J]. IEEE Wireless Commun.,2008,15(1):63–69.
    [24] D. Tse and P. Viswanath. Fundamentals of Wireless Communication [M]. New York:Cambridge University Press,2005.
    [25] G. D. Durgin. Space-Time Wireless Channels [M]. New Jersey: Prentice Hall,2003.
    [26] D. Shui, G. Foschini, M. Gans, et al. Fading correlation and its effect on the capacity ofmultielement antenna systems [J]. IEEE Trans. Commun.,2000,48(3):502–513.
    [27] M. Chiani, M. Z. Win, A. Zanella. On the capacity of spatially correlated MIMO Rayleighfading channels [J]. IEEE Trans. Inf. Theory,2003,49(10):2363–2371.
    [28] Z. Hong, K. Liu, R. Heath, et al. Spatial multiplexing in correlated fading via the virtualchannel representation [J]. IEEE J. Select. Areas Commun.,2003,21(5):856–866.
    [29] A. Saleh, A. Rustako, R. Roman. Distributed antennas for indoor radio communications [J].IEEE Trans. Commun.,1987,35(12):1245–1251.
    [30] K. J. Kerpez. A radio access system with distributed antennas [J]. IEEE Trans. Veh. Technol.,1996,45(2):265–275.
    [31] H. Xia, A. B. Herrera, S. Kim et al. A CDMA-distributed antenna system for in-buildingpersonal communications services [J]. IEEE J. Select Areas Commun.,1996,14(4):644–650.
    [32] W. Roh, A. Paulraj. MIMO channel capacity for the distributed antenna systems [C]. IEEEVTC-Fall, Vancouver, Canada,2002,706–709.
    [33] W. Roh, A. Paulraj. Outage performance of the distributed antenna systems in a compositefading channel [C]. IEEE VTC-Fall, Vancouver, Canada,2002,1520–1524.
    [34] H. Hu, Y. Zhang, J. Luo. Distributed antenna systems: open architecture for future wirelesscommunications [M]. Boca Raton: Auerbach Publications,2007.
    [35] W. Choi, J. G. Andrews. Downlink performance and capacity of distributed antenna systems ina multicell environment [J]. IEEE Trans. Wireless Commun.,2007,6(1):69–73.
    [36] S. Zhou, M. Zhao, X. Xu, et al. Distributed wireless communication system: a newarchitecture for future public wireless access [J]. IEEE Commun. Mag.,2003,41(3):108–113.
    [37]尤肖虎,赵新胜.分布式无线电和蜂窝移动通信网络结构[J].电子学报,2004,32(12A):16–21.
    [38]王京,姚彦,周世东,等.分布式无线通信系统的概念平台[J].电子学报,2002,30(7):937–940.
    [39] C. Zhong, K. K Wong, S. Jin. Capacity bounds for MIMO Nakagami-m fading channels [J].IEEE Trans. Signal Process.,2009,57(9):3613–3623.
    [40] J. Zhang, J. G. Andrews. Distributed antenna systems with randomness [J]. IEEE Trans.Wireless Commun.,2008,7(9):3636–3646.
    [41] D. Wang, X. You, J. Wang, et al. Spectral efficiency of distributed MIMO cellular systems in acomposite fading channel [C]. IEEE ICC, Beijing, China,2008,1259–1264.
    [42] J. Park, E. Song, W. Sung. Capacity analysis for distributed antenna systems using cooperativetransmission schemes in fading channels [J]. IEEE Trans.Wireless Commun.,2009,8(2):586–592.
    [43] X. You, D. Wang, X. Gao, et al. Cooperative distributed antenna systems for mobilecommunications [J]. IEEE Wireless Commun.,2010,17(3):35–43.
    [44] M. Sawahashi, Y. Kishiyama, A. Morimoto, et al. Coordinated multipoint transmission/reception techniques for LTE-Advanced [J]. IEEE Wireless Commun.,2010,17(3):26–34.
    [45] P. Marsch and G. P. Fettweis. Coordinated Multi-Point Mobile Communications: From Theoryto Practice [M]. New York: Cambridge University Press,2011.
    [46] D. Castanheira and A. Gameiro. Distributed antenna system capacity scaling [J]. IEEEWireless Commun.,2010,17(3):68–75.
    [47] X. You, D. Wang, P. Zhu, et al. Cell edge performance of cellular mobile systems [J]. IEEE J.Select Areas Commun.,2011,29(6):1139–1150.
    [48] D. Lin. A comparative study on uplink sum capacity with co-located and distributed antennas[J]. IEEE J. Select Areas Commun.,2011,29(6):1200–1213.
    [49] H. Zhu. Performance comparison between distributed antenna and microcellular systems [J].IEEE J. Select Areas Commun.,2011,29(6):1151–1163.
    [50] F. Heliot, R. Hoshyar, R. Tafazolli. An accurate closed-form approximation of the distributedMIMO outage probability [J]. IEEE Trans.Wireless Commun.,2011,10(1):5–11.
    [51] R. W. Heath, Jr., T. Wu, Y. H. Kwon, et al. Multiuser MIMO in distributed antenna systemswith out-of-cell interference [J]. IEEE Trans. Signal Process.,2011,7(9):4885–4899.
    [52] M. Michail, D. C. Nestor, K. K. George. A new lower bound on the ergodic capacity ofdistributed MIMO systems [J]. IEEE Signal Process. Lett.,2011,18(4):227–230.
    [53] H. Kim, S. Lee, K. Lee, et al. Transmission schemes based on sum rate analysis in distributedantenna systems [J]. IEEE Trans.Wireless Commun.,2012,11(3):1201–1209.
    [54] S. Lee, S. Moon, J. Kim, et al. Capacity analysis of distributed antenna systems in a compositefading channel [J]. IEEE Trans.Wireless Commun.,2012,11(3):1076–1086.
    [55] H. Zhu. On Frequency reuse in cooperative distributed antenna systems [J]. IEEE Commun.Mag.,2012,50(4):85–89.
    [56] H. Ai-Raweshidy, S. Komaki. Radio over fiber technologies for mobile communications [M].Boston: Artech House,2002.
    [57] Q. Wang, D. Jiang, J. Jin, et al. Application of BBU+RRU based CoMP system toLTE-Advanced [C]. IEEE ICC, Dresden, Germany,2009,1–5.
    [58]刘敏.中兴通讯光纤到塔顶解决方案[J].通信世界,2006,2006(28):62.
    [59] T. M. Cover, A. A. E. Gamal. Capacity theorems for the relay channel [J]. IEEE Trans. Inf.Theory,1979,25(5):572–84.
    [60] A. Sendonaris, E. Erkip, B. Aazhang. User cooperation diversity: Part I and Part II [J]. IEEETrans. Commun.,2003,51(11):1927–1948.
    [61] J. N. Laneman, G. W. Wornell. Distributed space-time coded protocols for exploitingcooperative diversity in wireless networks [J]. IEEE Trans. Inf. Theory,2003,49(10):2415–2425.
    [62] J. N. Laneman, D. N. C. Tse, G. W. Wornell. Cooperative diversity in wireless networks:efficient protocols and outage behavior [J]. IEEE Trans. Inf. Theory,2004,50(12):3062–3080.
    [63] R. U. Nabar, H. Bolcskei, F. W. Kneubuhler. Fading relay channels: performance limits andspace-time signal design [J]. IEEE J. Select. Areas Commun.,2004,22(6):1099–1109.
    [64] A. Nosratinia, T. E. Hunter, A. Hedayat. Cooperative communication in wireless networks [J].IEEE Commun. Mag.,2004,42(10):74–80.
    [65] A. Host-Madsen, J. Zhang. Capacity bounds and power allocation for wireless relay channels[J]. IEEE Trans. Inf. Theory,2005,51(6):2020–2040.
    [66] T. E. Hunter, A. Nosratinia. Diversity through coded cooperation [J]. IEEE Trans. WirelessCommun.,2006,5(2):283–289.
    [67] W. Su, A. K. Sadek, K. J. Ray Liu. SER performance analysis and optimum power allocationfor decode-and-forward cooperation protocol in wireless networks [C]. IEEE WCNC, NewOrleans, USA,2005,984–989.
    [68] Z. Lin, E. Erkip, A. Stefanov. Cooperative regions and partner choice in coded cooperativesystems [J]. IEEE Trans. Commun.,2006,54(7):1323–1334.
    [69] B. Liu, B. Chen, R. Blum. Minimum error probability cooperative relay design [J]. IEEETrans. Signal Process.,2007,55(2):656–664.
    [70] G. Farhadi, N. C. Beaulieu. Power-optimized amplify-and-forward multi-hop relaying systems[J]. IEEE Trans. Wireless Commun.,2009,8(9):4634–4643.
    [71] N. Ahmed, M. A. Khojastepour, A. Sabharwal, et al. Outage minimization with limitedfeedback for the fading relay channel [J]. IEEE Trans. Commun.,2006,54(4):659–669.
    [72] M. O. Hasna and M.-S. Alouini. Optimal power allocation for relayed transmissions overRayleigh-fading channels [J]. IEEE Trans. Wireless Commun.,2004,3(6):1999–2004.
    [73] M. M. Fareed, M. Uysal. BER-optimized power allocation for fading relay channels [J]. IEEETrans. Wireless Commun.,2008,7(6):2350–2359.
    [74] A. Khabbazibasmenj, S. A. Vorobyov. Power allocation based on SEP minimization intwo-hop decode-and-forward relay networks [J]. IEEE Trans. Signal Process.,2011,59(8):3954–3963.
    [75] F. S. Tabataba, P. Sadeghi, M. R. Pakravan. Outage probability and power allocation ofamplify and forward relaying with channel estimation errors [J]. IEEE Trans. WirelessCommun.,2011,10(1):124–134.
    [76] X. He, T. Luo, G. Yue. Optimized distributed MIMO for cooperative relay networks [J]. IEEECommun. Lett.,2010,14(1):9–11.
    [77] A. Nasri, R. Schober, I. F. Blake. Performance and optimization of amplify-and-forwardcooperative diversity systems in generic noise and interference [J]. IEEE Trans. WirelessCommun.,2011,10(4):1132–1143.
    [78] C. Hoymann, W. Chen, J. Montojo, et al. Relaying operation in3GPP LTE: challenges andsolutions [J]. IEEE Commun. Mag.,2012,50(2):156–162.
    [79] G. Robert, V. Manju, N. Mort, et al. Multicell CDMA network design [J]. IEEE Trans. Veh.Technol.,2001,50(5):711–722.
    [80] R. M. Leandro, L. B. Henry. Cell shape for microcellular systems in residential andcommercial environments [J]. IEEE Trans. Veh. Technol.,1994,43(5):270–278.
    [81] H. D. Sherali, C. M. Pendyala, T. S. Rappaport. Optimal location of transmitters formicro-cellular radio communication system design [J]. IEEE J. Select. Areas Commun.,1996,14(4):662–673.
    [82] Q. Hao, B. H. Soong, E. Gunawan, et al. A low-cost cellular mobile communication system: ahierarchical optimization network resource planning approach [J]. IEEE J. Select. AreasCommun.,1997,15(9):1315–1326.
    [83] K. Tutschku. Demand-based radio network planning of cellular mobile communicationsystems [C]. INFOCOM98Proceedings, San Francisco, USA,1998,1054–1061.
    [84] A. Ligeti, J. Zander. Minimal cost coverage planning for single frequency networks [J]. IEEETrans. Broadcast.,1999,45(1):78–87.
    [85] A. Molina, A. R. Nix, G. E. Athanasiadou. Optimised base-station location algorithm for nextgeneration microcellular networks [J]. Electron. Lett.,2000,36(3):668–669.
    [86] R. Bose. A smart technique for determining base-station locations in an urban environment [J].IEEE Trans. Veh. Technol.,2001,50(1):43–47.
    [87] D. D. Falconer, J.-P. DeCruyenaere. Coverage enhancement methods for LMDS [J]. IEEECommun. Mag.,2003,41(7):86–92.
    [88] W. Nicole, S. Gabor, W. Karsten, et al. Evolutionary multiobjective optimization for basestation transmitter placement with frequency assignment [J]. IEEE Trans. EvolutionaryComputation,2003,7(4):189–203.
    [89] B. Abolhassani, J. E. Salt, D. E. Dodds. A two-phase genetic K-means algorithm forplacement of radioports in cellular networks [J]. IEEE Trans. Systems, Man, and Cybernetics,Part B: Cybernetics,2004,34(1):533–538.
    [90] S. S. Samer, J. S. Khoury. An alternative setup for a base-station cellular antenna [J]. IEEETrans. Veh. Technol.,2007,56(1):35–42.
    [91] L. F. Ibrahim, M. H. Al Harbi. Employing clustering techniques in mobile network planning[C]. New Technologies, Mobility and Security (NTMS), Morocco,2008,1–9.
    [92] J. Munyaneza, A. Kurien, B. Van Wyk. Optimization of antenna placement in3G networksusing genetic algorithms [C].3rd International Conference on Broadband Communications,Information Technology&Biomedical Applications (BroadCom), Gauteng,2008,30–37.
    [93] H. A. Salman, L. F. Ibrahim. Efficient mobile network planning algorithm in the presence ofobstacles [C]. Sixth International Conference on Wireless and Mobile Communications(ICWMC), Vakencia, Spain,2010,509–514.
    [94] J. Zhong, T. K. Sarkar, B. Li. Methods for optimizing the location of base stations for indoorwireless communications [J]. IEEE Trans. Antennas Propag.,2002,50(10):1481–1483.
    [95] D. Stamatelos, A. Ephremides. Spectral efficient and optimal base placement for indoorwireless networks [J]. IEEE J. Select. Areas Commun.,1996,14(4):651–661.
    [96] K. C. Li, W. Y. Wong. Optimal base placement for indoor wireless communications at1800MHz [J]. Electron. Lett.,1997,33(10):897–898.
    [97] K. W. Cheung, R. D. Murch. Optimising indoor base-station locations in coverage andinterference-limited indoor environments [J]. IEEE proc. Commun.,1998,145(12):445–450.
    [98] F. A. Agelet, A. Martínez, J. M. Hernando, et al. Bundle method for optimal transmitterlocation in indoor wireless system [J]. Electron. Lett.,2000,36(3):573–574.
    [99] M. Kobayashi, S. Haruyama, R. Kohno, et al. Optimal access point placement in simultaneousbroadcast system using OFDM for indoor wireless LAN [C]. The11th IEEE PIMRC, London,2000,200–204.
    [100] K. S. Butterworth, K. W. Sowerby, A. G. Williamson. Base station placement for in-buildingmobile communication systems to yield high capacity and efficiency [J]. IEEE Trans.Commun.,2000,48(4):658–669.
    [101] F. A. Agelet, A. Martínez, L. J. Alvarez-Vázquez, et al. Optimization methods for optimaltransmitter locations in a mobile wireless system [J]. IEEE Trans. Veh. Technol.,2002,51(11):1316–1321.
    [102] J. He, A. A. Verstak, L. T. Watson, et al. Globally optimal transmitter placement for indoorwireless communication systems [J]. IEEE Trans. Wireless Commun.,2004,3(6):1906–1911.
    [103] K. Kyung Bae, J. Jiang, H. William. WCDMA STTD performance analysis with transmitterlocation optimization in indoor systems using ray-tracing technique [C]. IEEE Radio andWireless Conference(RAWCON),2002,123–127.
    [104] J. K. L. Wong, A. J. Mason, M. J. Neve, et al. Base station placement in indoor wirelesssystems using binary integer programming [J]. IEE Proceedings Communications,2006,153(5):771–778.
    [105] A. H. Wong, M. J. Neve, K. W. Sowerby. Antenna selection and deployment strategies forindoor wireless communication systems [J]. IET Communications,2007,1(4):732–738.
    [106] X. P. Yang, Q. Chen, K. Sawaya. Effect of antenna locations on indoor MIMO system [J].IEEE Antennas and Wireless Propag. Lett.,2007,6(10):165–167.
    [107] J. Zhang, X. Jia, Z. Zheng, et al. Minimizing cost of placement of multi-radio andmulti-power-level access points with rate adaptation in indoor environment [J]. IEEE Trans.Wireless Commun.,2011,10(7):2186–2195.
    [108] H. Liang, B. Wang, W. Liu, et al. A novel transmitter placement scheme based on hierarchicalsimplex search for indoor wireless coverage optimization [J]. IEEE Trans. Antennas Propag.,2012,60(8):3921–3932.
    [109] J. S. Lamminmaki, J. J. A. Lempiainen. Radio propagation characteristics in curved tunnels [J].IEE proc. Microw. Antennas Propag.,1998,145(8):327–331.
    [110] Y. Lee, K. Kim, Y. Choi. Optimization of AP placement and channel assignment in wirelessLANs [C].27th Annual IEEE Conference on Local Computer Networks (LCN), Tampa, USA,2002,831–836.
    [111] F. Y. S. Lin, P. L. Chiu. A near-optimal sensor placement algorithm to achieve completecoverage/discrimination in sensor networks [J]. IEEE Electronics Lett.,2005,9(1):43–45.
    [112] Y. Wang, C. Hu, Y. Tseng. Efficient placement and dispatch of sensors in a wireless sensornetwork [J]. IEEE Trans. Mobile Comput.,2008,7(2):262–274.
    [113] L. Greco, M. Gaeta, B. Piccoli. Sensor deployment for network-like environments [J]. IEEETrans. Autom. Control,2010,55(11):2580–2585.
    [114] D. Shan, Z. Wan, L. Qiao. Optimal Sensor Placement for Long-span Railway Steel TrussCable-stayed Bridge [C]. Third International Conference on Measuring Technology andMechatronics Automation (ICMTMA), Shanghai,2011,795–798.
    [115] H. Zhuang, L. Dai, L. Xiao, et al. Spectral efficiency of distributed antenna system withrandom antenna layout [J]. IEEE Electronics Lett.,2003,39(6):495–496.
    [116] Y. Shen, Y. Tang, T. Kong, et al. Optimal antenna location for STBC-OFDM downlink withdistributed transmit antennas in linear cells [J]. IEEE Commun. Lett.,2007,11(5):387–389.
    [117] X. Wang, P. Zhu, M. Chen. Antenna location design for generalized distributed antennasystems [J]. IEEE Commun. Lett.,2009,13(5):315–317.
    [118] J. S. Gan, Y. Z. Li, L.M. Xiao, et al. On sum rate and power consumption of multi-userdistributed antenna system with circular antenna layout [J]. EURASIP Journal on WirelessCommunications and Networking,2007.
    [119] T. Zhang, C. Zhang, L. Cuthbert, et al. Energy Efficient Antenna Deployment Design Schemein Distributed Antenna Systems [C]. IEEE VTC-Fall, Ottawa, Canada,2010:1–5.
    [120] E. Park, S. Lee, I. Lee. Antenna placement optimization for distributed antenna systems [J].IEEE Trans. Wireless Commun.,2012,11(7):2468–2477.
    [121] W. Zhang, C. Diao, M. Zhao, et al. Impact of path loss exponents on antenna location designfor GDAS [C]. IEEE VTC-Spring, Yokohama, Japan,2012,1–5.
    [122] A. K. Sadek, Z. Han, K. J. Ray Liu. Distributed relay-assignment protocols for coverageexpansion in cooperative wireless networks [J]. IEEE Trans. Mobile Comput.,2011,9(4):505–515.
    [123] X. Chen, S. H. Song, K. B. Letaief. Relay position optimization improves finite-SNR diversitygain of decode-and-forward MIMO relay systems [J]. IEEE Trans. Commun.,2012,60(11):3311–3321.
    [124] H. Wei, S. Ganguly, R. Izmailov. Ad hoc relay network planning for improving cellular datacoverage [C]. IEEE PIMRC, Barcelona, Spain,2004,769–773.
    [125] G. Kramer, M. Gastpar, P. Gupta. Cooperative strategies and capacity theorems for relaynetworks [J]. IEEE Trans. Inf. Theory,2005,51(9):3037–3063.
    [126] V. Aggarwal, A. Bennatan, A. R. Calderbank. On maximizing coverage in Gaussian relaynetworks [J]. IEEE Trans. Inf. Theory,2009,55(6):2518–2536.
    [127] J. Cannons, L. B. Milstein, K. Zeger. An algorithm for wireless relay placement [J]. IEEETrans. Wireless Commun.,2009,8(11):5564–5574.
    [128] D. Niyato, E. Hossain, D. I. Kim, et al. Relay-centric radio resource management and networkplanning in IEEE802.16j mobile multihop relay networks [J]. IEEE Trans. Wireless Commun.,2009,8(12):6115–6125.
    [129] H. V. Zhao, W. Su. Cooperative wireless multicast: performance analysis and power/locationoptimization [J]. IEEE Trans. Wireless Commun.,2010,9(6):2088-2100.
    [130] B. Lin, L. Lin. Site planning of relay stations in green wireless access networks: a geneticalgorithm approach [C]. International Conference of Soft Computing and Pattern Recognition(SoCPaR), Dalian, China,2011,167–172.
    [131] S. S. Ikki, S. A ssa. A study of optimization problem for amplify-and-forward relaying overWeibull fading channels with multiple antennas [J]. IEEE Commun. Lett.,2011,15(11):1148–1152.
    [132] V. Pourahmadi, S. Fashandi, A. Saleh, et al. Relay placement in wireless networks: a study ofthe underlying tradeoffs [J]. IEEE Trans. Wireless Commun.,2011,10(5):1383–1388.
    [133] S. S. Ikki, S. A ssa. Multihop wireless relaying systems in the presence of cochannelinterferences: performance analysis and design optimization [J]. IEEE Trans. Veh. Technol.,2012,61(2):566–573.
    [134] J. Mo, M. Tao, Y. Liu. Relay placement for physical layer security: a secure connectionperspective [J]. IEEE Commun. Lett.,2012,16(6):878–881.
    [135] S. S. Ikki, S. A ssa. Performance evaluation and optimization of dual-hop communication overNakagami-m fading channels in the presence of co-channel interferences [J]. IEEE Commun.Lett.,2012,16(8):1149–1152.
    [136] A. B. Saleh,. Bulakci, J. H m l inen, et al. Analysis of the impact of site planning on theperformance of relay deployments [J]. IEEE Trans. Veh. Technol.,2012,61(7):3139–3150.
    [137]. Bulakci, A. B. Saleh, J. H m l inen, et al. Performance analysis of relay site planning overcomposite fading/shadowing channels with cochannel interference [J]. IEEE Trans. Veh.Technol.,2013,62(4):1692–1706.
    [138] W. Guo and T. O’Farrell. Relay deployment in cellular networks: planning and optimization[J]. IEEE J. Select. Areas Commun.,2013,31(8):1597–1606.
    [139] IST-4-027756WINNER II. D1.1.2V1.1. WINNER II Channel Models [S]. P. Ky sti, et al.,2007.
    [140]徐士良.数值分析与算法[M].北京:机械工业出版社,2003.
    [141] R. L. Burden. Numerical Analysis (Seventh Edition)[M]. Beijing: Higher Education Press,2001.
    [142] M. K. Simon, M. Alouini. Digital communication over fading channels [M]. New York: JohnWiley&Sons,2000.
    [143] H. S. Abdel-Ghaffar and S. Pasupathy. Asymptotical performance of M-ary and binary signalsover multipath/multichannel Rayleigh and Ricain fading [J]. IEEE Trans. Commun.,1995,COM-43:2721–2731.
    [144] J. G. Proakis. Digital Communications (Fourth Edition)[M]. New York: McGraw-Hill,2001.
    [145] S. Boyd, L. Vandenberghe. Convex Optimization [M]. New York: Cambridge University Press,2004.
    [146] P. Agrawal, N. Patwari. Correlated link shadow fading in multi-hop wireless networks [J].IEEE Trans. Wireless Commun.,2009,8(8):4024–4036.
    [147] S. S. Szyszkowicz, H. Yanikomeroglu, J. S. Thompson. On the feasibility of wirelessshadowing correlation models [J]. IEEE Trans. Veh. Technol.,2010,59(9):4222–4236.
    [148] F. Graziosi, F. Santucci. A general correlation model for shadow fading in mobile radiosystems [J]. IEEE Commun. Lett.,2002,6(3):102–104.
    [149] B. Zhao, M. C. Valenti. Practical relay networks: a generalization of hybrid-ARQ [J]. IEEE J.Select. Areas Commun.,2005,23(1):7–18.
    [150] T. Tabet, S. Dusad, R. Knopp. Diversity-multiplexing-delay tradeoff in half-duplex ARQ relaychannels [J]. IEEE Trans. Inf. Theory,2007,53(10):3797–3805.
    [151] I. Stanojev, O. Simeone, Y. Bar-Ness, et al. Energy efficiency of non-collaborative andcollaborative hybrid-ARQ protocols [J]. IEEE Trans. Wireless Commun.,2009,8(1):326–335.
    [152] S. Tomasin, M. Levorato, M. Zorzi. Steady state analysis of coded cooperative networks withHARQ protocol [J]. IEEE Trans. Commun.,2009,57(8):2391–2401.
    [153] S. Lee, W. Su, S. Batalama, et al. Cooperative decode-and-forward ARQ relaying:performance analysis and power optimization [J]. IEEE Trans. Wireless Commun.,2010,9(8):2632–2642.
    [154] S. V. Amari, R. B. Misra. Closed-form expressions for distribution of sum of exponentialrandom variables [J]. IEEE Trans. Reliability.,1997,46(4):519–522.
    [155] M. L. Ulrey. Formulas for the distribution of sums of independent exponential randomvariables [J]. IEEE Trans. Reliability.,2003,52(2):154–161.
    [156] H. V. Khuong, H. Y. Kong. General expression for pdf of a sum of independent exponentialrandom variables [J]. IEEE Commun. Lett.,2006,10(3):159–161.
    [157] S. Haykin. Cognitive radio: brain-empowered wireless communications [J]. IEEE J. Sel. AreasCommun.,2005,23(2):201–220.
    [158] J. Mitola. Cognitive radio architecture evolution [J]. Proceedings of IEEE,2009,97(4):626–641.
    [159] Y. C. Liang, K. C. Chen, G. Y. Li, et al. Cognitive radio networking and communications: anoverview [J]. IEEE Trans. Veh. Technol.,2011,60(7):3386–3407.
    [160] Y. Chen, S. Zhang, S. Xu, et al. Fundamental trade-offs on green wireless networks [J]. IEEECommun. Mag.,2011,49(6):30–37.
    [161] G. Y. Li, Z. Xu, C. Xiong, et al. Energy-efficient wireless communications: tutorial, survey,and open issues [J]. IEEE Wireless Commun.,2011,18(6):28–35.
    [162] Z. Hasan, H. Boostanimehr, V. K. Bhargava. Green cellular networks: a survey, some researchissues and challenges [J]. IEEE Communications Surveys&Tutorials,2011,13(4):524-540.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700