草酸二乙酯气相加氢催化剂助剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙二醇(EG)和乙醇酸乙酯(MPEG)是重要的有机合成中间体,应用前景十分广阔。由合成气经草酸二乙酯(DEO)进行催化加氢反应不但可以得到上述两种高附加值的化工产品,而且能够充分利用煤和天然气资源,对能源安全和环境保护都具有重要意义。本文对DEO气相加氢催化剂的制备方法和助剂的影响进行了研究。
     在反应温度240℃、压力1MPa、氢酯摩尔比200、液体空速0.3h-1的条件下,对以方法一制备的各催化剂的性能进行考察。结果表明,Zn的加入有利于提高EG的选择性;加入Cr后DEO转化率和EG选择性都有所提高;引入3%质量分数的Mo能够显著提高催化剂的性能,使DEO转化率和目的产物收率分别达到95.4%和94.0%。
     以方法二制备了一系列催化剂。评价结果表明Cu25(2)催化剂能够在反应温度220℃、压力2.5MPa、氢酯摩尔比60、液体空速0.6h-1的条件下获得86.9%的DEO转化率和79.0%的目的产物收率。Cr0.05(2)催化剂拥有更长的使用寿命,并能使DEO转化率和目的产物收率分别达到95.8%和74.2%。
     运用TPR、氮气吸附、XRD、SEM、ICP、XPS等表征方法对催化剂活性组分的含量、助剂的影响等进行了深入的探讨。发现各助剂的作用主要在于对催化剂表面结构的改变:Zn有助于增大催化剂的孔容和孔径;3%的Mo能使催化剂活性位直径减小而且分布得更加均匀;在适量Cr的作用下,Cr0.05(2)催化剂具有更大的比表面积。此催化剂在目的产物选择性、DEO转化率和寿命等方面都有良好的性能。
Ethylene glycol (EG) and ethyl glycolate (MPEG) are both versatile organic synthesis intermediates. Not only the economic chemicals can be produced, but also the resources of coal and natural gas can be sufficiently utilized via the hydrogenation of diethyl oxalate (DEO) which can be made from synthesis gas. The technology is very important in both safety of energy sources and protection of environment fields. In this paper, the method of catalysts preparation and the effects of promoters are studied.
     The catalysts prepared through method 1 were tested as the reaction temperature, pressure, molar ratio of H2/DEO and LHSV were set to 240℃, 1MPa, 200 and 0.3h-1, respectively. The results showed that EG selectivity increased because of the addition of Zn; DEO conversion and EG selectivity increased as the introduction of Cr. 3 wt% of Mo can help DEO convert and the desired product yield reach 95.4% and 94.0%, respectively.
     A series of catalysts were prepared through method 2. DEO conversion of 86.9% and the desired product yield of 79.0% were obtained by using Cu25(2) catalyst when the reaction temperature, pressure, molar ratio of H2 /DEO and LHSV were 220℃, 2.5MPa, 60 and 0.6h-1. The Cr0.05 (2) catalyst which had a longer serve life can increase DEO conversion and the desired product yield to 95.8% and 74.2%, respectively.
     Several characterization methods, such as TPR, N2 absorption, XRD, SEM, ICP and XPS, were applied to discuss the content of active component and the effects of the promote elements. It is found that the promoters influence the performances of catalysts mainly by changing the surface configurations. It is indicated that the pore volume and pore size were enlarged by adding Zn, the size of active sites was reduced and the distribution was better due to the influence of 3wt% Mo. The surface of Cr0.05 (2) catalyst was obviously extended because of the effect of Cr. As a result, the catalytic performances were advanced by enhancing desired product yield, DEO conversion or life.
引文
[1]陈健,乙二醇合成技术进展及应用前景,塑料加工, 2007, 42(5): 39~40
    [2]崔小明,乙二醇生产现状及市场分析,石油化工技术经济, 2005, 21(2): 32~38
    [3]何寿杰,哈静,张子生等,乙二醇溶液中圆锥泡声致发光的发光特性,物理学报, 2007, 56(3): 1779~1784
    [4]和春梅,马勤,三乙醇胺、乙二醇用作水泥助磨剂的实验研究,昆明冶金高等专科学校学报, 2007, 23(1): 17~19, 39
    [5] Loder D J, Wilmington, Teeters W O, et al, Ester of Glycolate Acid. US Patent, 2290128, 1942
    [6] Marstokk K M, M?llendal H, Microwave Spectrum, Conformational Equilibrium and Ab Initio Computations for Ethyl Glycolate, Acta Chemica Scandinavica, 1992, 46:1183~1187
    [7]黄谢久,王丽华,乙醇酸乙酯的非均相催化合成工艺,试剂与精细化学品, 1996, (9): 44~45
    [8]程文军,羟基乙酸在化学清洗中的应用,化学清洗, 1998, 14(4):30~32
    [9] Yu R J, Van Scott E J. Method of Using Glycolic Acid for Treating Wrinkles. US Patent, 5385938 , 1991
    [10]杜锡光,陈莉,梁奇志等,乙交脂(GA)的合成及表征,东北师大学报自然科学版, 2003, 35(3):109~112
    [11]冯斌,乙醇酸的制法,甲醛与甲醇, 2002, (5):11-13
    [12] Bellis H E, Wilmington D, Process for preparing highly pure cyclic esters. US Patent, 4727163 ,1988
    [13] Heinson G E. Selectivity in the Oxidative Dehydrogenation of Alkyl Glycolate. US Patent, 5187307, 1993
    [14] William J B. Process for the Preparation of Ethylene Glycol. US Patent, 4677234, 1987
    [15]俞传明,氟草定乙酯的合成,农药, 2006. 45(6):390~391
    [16] Jacquot S, Schmitt G, Laude B, et al, Nucleophilic Additions of Sodium Alkoxides to 4,4-Dichloro-1,1-diphenyl-2-azabuta-1,3-diene, European Journal of Organic Chemistry, 2000, (7): 1235~1239
    [17] Hertzog D L, Barazanji KA AI, Bigham E C, et al, The Discovery and Optimization of Pyrimidinone-containing MCH R1 Antagonists, Bioorganic & Medicinal Chemistry Letters, 2006,6(18): 4723~4727
    [18] Mcdonald J M, Hong C C. Lube Extraction with an Ethyl Glycolate Solvent, US Patent, 3567627, 1971
    [19]赵余晖,环氧乙烷/乙二醇的工艺技术进展及市场情, .医药化工, 2007. (7):24~29
    [20]刘定华,刘晓勤,华强等,乙二醇合成技术进展及应用前景,南京工业大学学报, 2002, 24(6): 95~98
    [21]朱培玉,李扬,王永宏,乙二醇生产新技术研究进展,化工进展, 2002, 21(10): 713~717
    [22]郑元昌,住友化学公司研究改良的乙二醇生产工艺,化工生产与技术, 2003, 10(2): 41
    [23]钱伯章,三菱化学开发催化法乙二醇工艺,精细石油化工进展, 2002, 8(3): 12
    [24]李应成,何文军,陈永福,环氧乙烷催化水合制乙二醇研究进展,工业催化, 2002, 10(3): 38~45
    [25]华强,刘定华,马正飞等,催化水合法合成乙二醇,石油化工, 2003, 32(4): 317~320
    [26]黄彦科,徐文清,朱凌辉,谭振明等,环氧乙烷催化水合生产乙二醇工艺技术研究,化工科技, 2006, 14(6): 33~36
    [27]崔小明,环氧乙烷合成乙二醇的研究进展,化工文摘, 2006(3): 42~47
    [28]丁国容,赵庆国,碳酸乙烯酯法合成乙二醇技术概述,化工科技市场, 2005, 28(9): 25~27
    [29]朱永健,徐安阳,煤和天然气路线合成乙二醇研究进展,精细石油化工进展, 2007, 8(8):47~50
    [30]郑爱华,钱伯章,乙二醇生产的市场动态和技术进展,聚酯工业, 2007, 20(1): 8~15, 37
    [31]赵宇培,刘定华,刘晓勤等,合成气合成乙二醇工艺进展和展望,天然气化工, 2006, 31(3):56~60
    [32]黄卫国,贺德华,刘金尧等,非石油路线合成乙二醇方法评述,天然气化工, 1997, 22(5):35~39
    [33]何立,肖含,李应成,乙二醇合成技术研究进展,工业催化, 2006,14(6):11~15
    [34] Montedison S P A, Process for Preparing Glycolic Acid and its Polymers, US Patent, 4052452, 1977
    [35]许茜,王保伟,许根慧,乙二醇合成工艺的研究进展,石油化工, 2006, 36(2):194~199
    [36]万文,郝健,刘义平等,乙醇酸酯的合成方法,中国专利, 1752066A, 2006
    [37]尹厚毅,一种乙醇酸乙酯的工业生产方法,中国专利, 89105014.0, 1990
    [38]骆萌,羟基乙酸酯的合成工艺,化工中间导刊, 2005, (11):13~14
    [39]郑其煌,固-液相转移催化法合成羟基乙酸酯,化学试剂, 1991, 13(4):252~253
    [40]吕瑶姣,张季爽, EDTA母液制备羟基乙酸酯的研究,化工环保, 1992. 12(2):111~112
    [41] Kliegman J M, Charlestion, Barnes R K, Glycolates from Acetals, US Patent, 3780087, 1973
    [42] Yeakey E L, Sanderson J R, Production of Alkyl Glycolates, US Patent, 4602102, 1986
    [43] Scardovi N, Casalini A, Peri F, et al, Domino Processes as a Tool for Recovering Substandard Reactions. Synthesis and Use of Nitroacetic Acid Esters and Amides, Organic Letters, 2002. 4(6):965~968
    [44]许根慧,马新宾,李振花等,气相法CO偶联再生催化循环制草酸二乙酯,中国专利, 96109811.2 , 1997
    [45]王保伟,马新宾,李振花等, CO气相偶联制草酸模拟放大研究,中国工程科学, 2001,3(2):79~85
    [46] Santos S M, Silva A M, Jordao E, et al, Hydrogenation of Dimethyl Adipate over Bimetallic Catalysts Catalysis Communications, 2004, 5(7): 377~381
    [47] Naota T, Takaya H, Murahashi SI, Ru-Catalyzed Reactions for Organic Synthesis, Chemical Reviews, 1998, 98(7): 2599~2660
    [48] Matteoli U, Bianchi M, Menchi G, et al, Hydrogenation of Dimethyl Oxalate in the Presence of Ruthenium Carbonyl Carboxylates: Ethylene Glycol Formation, Journal of Molecular Catalysis, 1985, 29(2): 269~270
    [49] Matteoli U, Menchi G, Bianchi M, et al, Homogeneous Catalytic Hydrogenation Dicarboxylic Acid Esters. II , Journal of Organometallic Chemistry, 1986, 299(2): 233~238
    [50] Matteoli U, Menchi G, Bianchi M, et al, Homogeneous Catalytic Hydrogenation of the Esters of Bicarboxylic Acids. Part III, Ethylene Glycol from Dimethyl Oxalate, Separation Science and Technology, 1987, 22(11): 347~355
    [51] Matteoli U, Menchi G, Bianchi M, et al, Selective Reduction of Dimethyl Oxalate by Ruthenium Carbonyl Carboxylates in Homogeneous Phase Part IV, Journal of Molecular Catalysis, 1991, 64(3): 257~267
    [52] Boardman B, Hanton M G, Rensburg H V, et al, A Tripodal Sulfur Ligand for the Selective Ruthenium-catalysed Hydrogenation of Dimethyl Oxalate , Chemical Communications, 2006, 21: 2289~2291
    [53] van Engelen M C, Teunissen H T, de Vries J G, et al, Suitable Ligands for Homogeneous Ruthenium-catalyzed Hydrogenolysis of Esters , Journal of Molecular Catalysis A: Chemical, 2003, 206(1-2): 185~192
    [54]李竹霞,钱志刚,赵秀阁等,草酸二甲酯加氢Cu/SiO2催化剂前体的研究,华东理工大学学报(自然科学版), 2004, 30(6): 613~617
    [55] Thomas D J, Wehrli J T, Wainwright M S, et al. Hydrogenolysis of Diethyl Oxalate over Copper-based Catalysts , Applied Catalysis A: General, 1992, 86(2): 101~114
    [56]李振花,李延春,许根慧,草酸二乙酯气相催化加氢合成乙二醇的研究,化学工业与工程. 1993, 10(4): 27~33
    [57]李振花,许根慧,王海京等,铜基催化剂的制备方法对草酸二乙酯加氢反应的影响,催化学报. 1995, 16(1): 9~14
    [58] Xu G H, Li Y C, Li Z H, et al, Kinetics of the Hydrogenation of Diethyl Oxalate to Ethylene Glycol , Industrial and Engineering Chemistry Research, 1995, 34 (7):2 371~2 378
    [59] Wang B W, Xu Q, Song H, et al, Synthesis Methyl Glycolate through Hydrogenation of Dimethyl Oxalate over Cu-Ag/SiO2 Catalyst, Journal of Natural Gas Chemistry, 2007, 16(1): 78~80
    [60]许茜,草酸二乙酯气相加氢制乙二醇催化剂研究:[硕士学位论文],天津:天津大学,2007
    [61]李竹霞,钱志刚,赵秀阁等,载体对草酸二甲酯加氢铜基催化剂的影响,华东理工大学学报(自然科学版), 2005, 31(1): 27~30
    [62]黄当睦,陈彰明,陈福星等,草酸二乙酯催化加氢制乙二醇模试研究,工业催化, 1996, (4): 24~29
    [63] Poppelsdorf F, Process for the Preparation of Ethylene Glycol, EP Patent, 0060787, 1982
    [64] Brands D S, Poels E K, Bliek A, Ester Hydrogenolysis over Promoted Cu/SiO2 Catalysts , Applied Catalysis A: General, 1999, 184(2): 279~289
    [65]于国良,乙二醇生产消费现状及发展前景,石油化工技术经济, 2007, 23(1): 35~38
    [66]李增新,李相仁,张慧等,铜铬氧化物废催化剂中铜铬的回收,环境污染与防治, 2004, 26(1): 65~66
    [67]吴同宝,孙杰,用草酸还原法处理含铬污水及绿色抛光膏的研制,材料保护, 2007, 40(2): 57~58, 76
    [68]张国栋,贾金平, pH值对含铬废水处理效果的影响研究,工业用水与废水, 2006, 37(5): 44~46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700