1. 离子液体存在下碳酸二甲酯的直接合成及其机理研究 2. 一甲川菁、苯乙烯染料的合成及结构与性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分为两部分,涉及到(ⅰ)离子液体存在下的碳酸二甲酯的直接合成及其机理研究;(ⅱ)一甲川菁染料、苯乙烯型染料的合成及其结构与性质的理论研究。
     第一部分离子液体存在下碳酸二甲酯的直接合成及其机理研究
     碳酸二甲酯是一种无毒、环保性能优异、用途广泛的化工原料,被誉为21世纪有机合成的“新基石”,市场前景看好,其合成工艺在国内外引起了广泛的关注。
     本论文介绍了碳酸二甲酯的基本性质、应用现状以及新合成技术。制备了6种常见离子液体:BmimBr、BmimBF_4、BmimPF_6、PmimBr、PmimBF_4、PmimPF_6,并对其粘度进行了测定。以制备的离子液体为介质,利用甲醇、碳酸钾、二氧化碳等为原料在温和条件下直接合成了碳酸二甲酯,提出了一种温和条件下直接合成碳酸二甲酯的新方法。用气-质联用仪(GC-MS)探索了制备碳酸二甲酯的反应机理、优化了反应条件,使得碳酸二甲酯的产率达到30.8%。同时将该方法推广到其它六种对称碳酸酯的合成,其中有三种碳酸酯产率达到了60%以上。
     第二部分一甲川菁、苯乙烯染料的合成及结构与性质的理论研究
     近年来,吲哚一甲川菁染料和苯乙烯型染料在光盘存储、生物荧光检测等多种领域的应用引起了人们的广泛关注。运用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)能够很好地研究染料分子的结构、电子光谱性质、发色机理及非线性光学特性,现已成为当今化学家广泛使用的研究工具之一。
     本论文简要介绍了吲哚一甲川菁染料和苯乙烯型染料的结构、应用以及本文理论研究所涉及到的DFT理论、TD-DFT理论和反应场理论,同时对近年来这两类染料分子结构与光谱性质的理论研究进展进行了介绍。利用吲哚啉和2-甲硫基喹啉季铵盐制备了四种吲哚一甲川菁染料、,并用~1H NMR,~(13)C NMR,IR,UV-Vis,MS对染料进行了结构表征。利用TD-DFT方法对吲哚一甲川菁染料的光谱性质进行了研究,并运用多元线性回归模型优化了其在不同溶剂中的吸收性质,其λ_(max)的相对偏差在-0.35%~-5.6%之间。分析了染料分子的前线轨道布居情况,其UV-Vis吸收光谱是源于π→π~*的电子跃迁。研究了一种染料的红外光谱,计算了其谐振频率,与实验值有着很好的一致性。
     合成了一种2-苯乙烯基-β-萘噻唑染料,并利用X-射线单晶衍射技术,~1H NMR,IR,UV-Vis,MS进行了结构表征,同时采用DFT理论研究了2-苯乙烯基-β-萘噻唑染料的结构和波谱性质。研究发现,所采用的理论方法均能很好的重现染料分子的实验检测结果。
This paper contains two parts: (i) Research on the synthesis of dimethyl carbonate and its synthetic mechanism in the presence of ionic liquid; (ii) The synthesis and theoretical study on the structure and properties of four monomethine cyanine dyes and one styryl dye.
     Part i: Research on the synthesis of dimethyl carbonate and its synthetic mechanism in the presence of ionic liquid.
     Dimethyl carbonate is a non-toxic, environmental friendly, and broadly utilized chemical material with great market potential. It is honored as the cornerstone of organic synthesis in the 21st century.
     In this paper, the basic property、application situation and new synthesis technology of dimethyl carbonate (DMC) are briefly introduced. A new direct synthesis technique of dimethyl carbonate from methanol、potassium carbonate and carbon dioxide etc. in the presence of ionic liquids under mild conditions is designed in this paper. Six kinds of ionic liquids (BmimBr、BmimBF_4、BmimPF_6、PmimBr、PmimBF_4、PmimPF_6) are prepared and their viscosity are also determined, respectively. The possible formation mechanism and the reaction conditions of DMC are studied under the assistance of GC-MS, and the yield of DMC is successfully improved. In addition, this new direct synthesis technique is also successfully extended to the synthesis of some other symmetric carbonates, and the yields of three carbonates rised up to more than 60%.
     Part ii: The synthesis and the theoretical study on the structure and properties of four monomethine cyanine dyes and one styryl dye.
     The application of monomethine cyanine dyes with indole nucleus and styryl dyes in the areas of CD-recording and biological fluorescence detection has been gaining more and more attention all over the world. The density functional theory/time-dependent density functional theory (DFT/TD-DFT) theories, which can accurately predict the molecular structure、electronic spectrum、chromatic mechanism and the non-linear optical property of dyes, has become the most widely used calculation program by the chemists. The molecular structure and the application situation of the two kinds of dyes in this work are briefly introduced. The concepts of DFT/TD-DFT theories and self-consistent reaction field are simply explained. The theoretical research progress of the molecular structure and spectrum properties of the two kinds of dyes are also presented in this paper.
     A series of monomethine cyanine dyes with indole nucleus are prepared from indoline and 2-methylthio quinoline quaternary salts in the solvent of anhydride under nitrogen protection. The structures of dyes are confirmed by ~1H NMR, ~(13)C NMR, IR, UV-Vis, MS, and studied by DFT/TD-DFT method, respectively. The absorption of dyes in different solvents is optimized by a muti-linear regression model, and the relative deviation ofλ_(max) is in the range of -0.35%~-5.6%. The frontier orbital distribution analysis shows that the UV-Vis absorption spectrum derives from theπ→π~* transition. In addition, the IR spectrum of one dye was calculated and the results are in good agreement with the experimental value.
     A kind of 2-styryl-β-naphthathiazole dye is prepared according to the reported literature and confirmed by X-ray diffraction technique, ~1H NMR, IR, UV-Vis and MS. The crystal structure and the spectrum property of it are studied by theoretical method (DFT/TD-DFT). The result shows that all of the theoretical ways chosen in this work can accurately reproduce the experimental data of this styryl dye.
引文
[1]肖翠玲,王艳花.21世纪绿色基础化学原料—碳酸二甲酯[J].化工进展,2000,19(2):40-42.
    [2]方云进,肖文德.碳酸二甲酯作汽油添加剂的应用研究[J].现代化工,1998,20(4):20-22.
    [3]江怀友,沈平平,宋新民等.世界气候变暖形势严峻二氧化碳减排工作势在必行[J].中国能源,2007,29(5):10-16.
    [4]王轶博,高丽华,滕雯.离子液体中CO_2固定过程的研究和应用[J].北京工商大学学报(自然科学版).2008,26(3):17-20.
    [5]石英杰,吴昊,王丽娟等.CO_2固定化及资源化的技术进展[J].中国环保产业.2006,(1):40-42.
    [6]马一太,魏东,吕灿仁等.温室气体减排与CO_2资源化宏观研究与探讨[J].大连理工大学学报.2001,41(s1):9-13.
    [7]陈兴权,刘洋,董燕敏等.碳酸二甲酯作甲基化试剂合成邻氯苯甲醚[J].精细化工,2008,25(8):817-820.
    [8]张先林,傅人俊,盛荣等.含异氰酸酯基团的硅烷的制备方法[P].中国专利:CN 1631893A.2005-06-29.
    [9]丛津生,李芳,赵博等.1,5—萘二氨基甲酸甲酯的合成方法[P].中国专利:CN 1429183A.2003-01-26.
    [10]邓友全,石峰,郭晓光等.催化制备六亚甲基二氨基甲酸甲酯的方法[P].中国专利:CN 101195591A,2008-06-11.
    [11]Greco,Alberto.Polycarbonate-polyether polyols and their manufacture and use[P].欧洲专利:EP 798328,1996-03-28.
    [12]周伟.甲基叔丁基醚毒性研究综述[J].上海环境科学,1998,17(1):43-45.
    [13]张维昊,徐小清,方涛等.甲基叔丁基醚对生态与环境的影响[J].环境科学研究,2002,15(6):56-59.
    [14]于晓章.汽油添加剂甲基叔丁基醚(MTBE)对环境的危害性[J].生态科学,2003,22(8):257-260.
    [15]苏德中,仝少华.MTBE-1种前途未卜的汽油添加剂[J].炼油设计,1999,29(12): 49-51.
    [16]王国良,李朝恒,裴旭东等.碳酸二甲醋的催化偶联合成及作汽油添加剂的研究[J].石油炼制与化工,2003,34(09):40-43.
    [17]朱慎林,朴香兰,王桂明.绿色溶剂碳酸二甲酯处理含酚废水研究[J].化学工程,2002,04:49-52.
    [18]田秀梅,周启星,王林山.氯烃类污染物的生态行为与毒理效应研究进展[J].生态学杂志,2005,24(10):1204-1210.
    [19]张远欣.绿色基础化工原料碳酸二甲酯的主要用途[J].农林科技,2006,35(4):71.
    [20]王公应,刘绍英,王越等.碳酸二甲酯及其下游产品研究进展[J].精细化工中间体,2007,37(03):1-9.
    [21]王新,李渊,赵新强等.环氧丙烷、二氧化碳和甲醇催化合成碳酸二甲酯[J].化学反应工程与工艺,2004,20(1):15-19.
    [22]Bhanage B.M.,Fujita S.,Ikushima Y.et al.Synthesis of dimethyl carbonate and glycols from carbon dioxide,epoxides,and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity[J].Applied Catalysis A:General,2001,219(1-2):259-266.
    [23]Romano U.,Tesel R.,Mauri M.M.,et al.Synthesis of DMC from,CO,and O_2 Catalyzed by Copper Compounds[J].Ind Eng Chem Prog Res Dev,1980,19:396-403.
    [24]Romano U.DMC and its produetion technology[J].Chim Ind(Milan),1993,75(4):303-306.
    [25]Dreoni D.,Rivetti F.,Romano U.Process and catalyst for Preparing organic carbonates[P].美国专利:US5395949.1995.
    [26]Dreoni D.,Rivetti F.,RomanoU.Procedure for the preparation of organic carbonates[P].美国专利:US 5457213.1995.
    [27]Ballivet-T.D.,Jerphagnon T.,Ligabue R.et al.The role of distannoxanes in the synthesis of dimethyl carbonates from carbon dioxide[J].Applied Catalysis A:General,2003,255(1):93-99.
    [28]Ichiro Y.,Akiyasu F.,Kiyoshi O.Electrocatalytic synthesis of DMC over the Pd/VGCF membrane anode by gas-liquid-solid phase-boundary electrolysis[J].Journal of Catalysis,2004,221:110-118.
    [29]房鼎业,曹发海,刘殿华.超临界条件下二氧化碳与甲醇直接合成碳酸二甲酯的方法[P].中国专利:CN1264698,2000-08-30.
    [30]Maria A.C.,Stefania C.,Leucio R.Electrogenerated Base-Promoted Synthesis of Organic Carbonates from Alcohols and Carbon Dioxide[J].European Journal of Organic Chemistry,2000,(13):2445-2448.
    [31]钮东方,罗仪文,张丽等.温和条件下CO_2为原料电合成碳酸二甲酯[J].有机化学,2008,28(5):832-836.
    [32]张丽,罗仪文,钮东方等.温和条件下电催化CO_2与环氧丙烷合成碳酸丙烯酯[J].催化学报,2007,28(2):100-103.
    [33]孔令丽,钟顺和,柳荫.Cu/NiO-MoO_3/SiO_2光催化CO_2与CH_3OH合成碳酸二甲酯的反应性能[J].催化学报,2005,26(10):917-922.
    [34]Wang M.H.,Wang H.,Zhao N.et al.High-Yield Synthesis of Dimethyl Carbonate from Urea and Methanol Using a Catalytic Distillation Process[J].Industrial & Engineering Chemistry Research,2007,46(9):2683-2687.
    [35]邬长城,赵新强,王延吉.尿素醇解法催化合成碳酸二甲酯连续反应工艺研究[J].石油化工,2004,33(6):508-511.
    [36]Yang B.L,Wang D.P.,Lin H.Y.et al.Synthesis of dimethyl carbonate from urea and methanol catalyzed by the metallic compounds at atmospheric pressure[J].Catalysis Communications,2006,7(7):472-477.
    [37]Wang,M.H.,Zhao N.,Wei W.et al.Synthesis of Dimethyl Carbonate from Urea and Methanol over ZnO[J].Industrial & Engineering Chemistry Research.2005,44(19):7596-7599.
    [38]赵新强,王延吉,申群兵等.金属氧化物催化剂上尿素与甲醇合成碳酸二甲酯[J].石油学报(石油加工).2002,18(5):47-52.
    [39]孙予罕,魏伟,王谋华等.一种用尿素和甲醇合成碳酸二甲酯的方法[P].中国专利:CN 1431190A.200.
    [40]姜瑞霞,谢在库.二氧化碳和甲醇直接合成碳酸二甲酯研究进展[J].化工进展,2006,25(5):507-51.
    [41]Wasserscheid P.,Keim W.Ionic liquids-"New solutions" for transition metal catalysis[J].Angew.Chem.Int.Ed.2000,39:3772-3789.
    [42]Brown R.A.,Pollet P.,Mckoon E.et al.Asymmetric Hydrogenation and Catalyst Recycling Using Ionic Liquid and Supercritical Carbon Dioxide[J].J.Am.Chem.Soc.2001,123:1254-1255.
    [43]蔡振钦,赵锁奇,徐春明等.离子液体对直接合成碳酸二甲酯反应的促进作用及机理分析[J].化工进展.2006,25(5):546-550.
    [44]Cai,Q.H.,Zhang L.,Shan Y.K.Promotion of Ionic Liquid to Dimethyl Carbonate Synthesis from Methanol and Carbon.Dioxide[J].Chinese Journal of Chemistry,2004,22(5):422-424.
    [1]姜瑞霞,谢在库.二氧化碳和甲醇直接合成碳酸二甲酯研究进展[J].化工进展,2006,25(5):507-511.
    [2]Wasserscheid P.,Keim W.Angew.Ionic liquids-new "solutions" for transition metal catalysis[J].Chem.Int.Ed.2000,39:3772-3789.
    [3]Fuller J.,Carlin R.T.,Osteryoung R.A.The room-temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate:electrochemical couples and physical properties[J].J.Electrochem.Soc.1997,144:3881-3886.
    [4]Brown R.A.,Polle P.,Mckoon E.et al.Asymmetric Hydrogenation and Catalyst Recycling Using Ionic Liquid and Supercritical Carbon Dioxide[J].J.Am.Chem.Soc.2001,123:1254-1255.
    [5]蔡振钦,赵锁奇,徐春明等.离子液体对直接合成碳酸二甲酯反应的促进作用及机理分析[J].化工进展,2006,25(5):546-550.
    [6]Cai,Q.H.,Zhang L.,Shan Y.K.Promotion of Ionic Liquid to Dimethyl Carbonate Synthesis from Methanol and Carbon Dioxide[J].Chinese Journal of Chemistry,2004,22(5):422-424.
    [7]刘建连.典型的离子液体的合成及表征[D].西安:西北大学,2006.
    [8]李艳.室温离子液体的合成及应用[D].昆明:昆明理工大学,2003.
    [9]许建勋.咪唑离子液体的合成及其在有机合成中的应用[D].南宁:广西师范大学,2005.
    [10]刘丽英,陈洪章.纤维素原料/离子液体溶液体系流变性能的研究[J].纤维素科学与技术,2006,14(2):8-12.
    [1]Daniel R.T.,Geoffrey D.,Smith W.E.IR and Raman assignments for zinc phthalocyanine from DFT calculations[J].Phys.Chem.Chem.Phys.,2000,2:3949-3955.
    [2]张庆梅,贡雪东,肖鹤鸣等.蒽醌及其羟基衍生物的密度泛函理论研究[J].化学学报2006,64(5):381-387.
    [3]Preat J.,Laurent A.D.,Michaux C.et al.Impact of tautomers on the absorption spectra of neutral and anionic alizarin and quinizarin dyes[J]:THEOCHEM,2009,901(1-3):4-30.
    [4]Katrina M.T.,John A.P.,David I.G.et al.Structural characterisation of the photoisomers of reactive sulfonated azo dyes by NMR spectroscopy and DFT calculations[J].Photochem.Photobiol.Sci.,2007,6:1010-1018.
    [5]Teimouri A.,Chermahini A.N.,Taban K.et al.Experimental and CIS,TD- DFT,ab initio calculations of visible spectra and the vibrational frequencies of sulfonyl azide-azoic dyes[J].Spectrochimica Acta,Part A:Molecular and Biomolecular Spectroscopy,2009,72A(2):369-377.
    [6]Denis J.,Julien P.,Valerie W.et al.Substitution and chemical environment effects on the absorption spectrum of indigo[J].J.Chem.Phys.2006,124(07):4104.
    [7]薛运生,贡雪东,肖鹤鸣等.靛族染料发色体电子光谱性质的含时密度泛函理论研究[J].分子科学学报,2005,21(1):6-11.
    [8]Lanzafame J.M.,Muenter A.A.,Bnunbaugh D.V.The effect of J-aggregate size on photoinduced charge transfer processes for dye-sensttized sliver halides[J].Chem.Phys.,1996,210(1-2):79-89.
    [9]Matsui M.,Hashimoto Y.,Funabiki K.et al.Application of near-infrared absorbing heptamethine cyanine dyes as sensitizers for zinc oxide solar cell[J].Synthetic Metals,2005,148(2):147-153.
    [10]Gao M.,Diao P.,Ren Y.J.et al.Photoelectrochemical studies of nanoerystalline TiO_2co-sensitized by novel cyanine dyes[J].Solar Energy Materials and Solar Cells,2005,88(1):23-35.
    [11]Park K.H.,Lee C.J.,Song D.H.et al.Optical record-ing properties of styryl derivatives for digital versatile disc-recordable(DVD-R)[J].Mol.Cryst.Liq.Cryst.,2002,370(1): 165-168.
    [12]Zhou X.,Zhou J.Improving the signal sensitivity and shotostability of DNA hybridizations on microarrays by using dye-doped core-shell silica nano-particles[J].Anal.Chem.,2004,76(18):5302-5312.
    [13]Kawakami M.,Koya K.,Ukai T.et al.Structure-activity of novel rhodacyanine dyes as antitumor agents[J].J.Med.Chem.,1998,41(1):130-142.
    [14]Sokotowska J.,Podsiadtya R.,Stoczkiewicza,J.Styryl dyes as new photoinitiators for free radical polymerization.Dyes and Pigments,2008,77(3):510-514.
    [15]Kabatc J.,Jdrzejewska B.,Pczkowski J.Asymmetric cyanine dyes as fluorescence probes and visible-light photoinitiators of free-radical polymerization processes[J].Journal of Applied Polymer Science,2006,99(1):207-217.
    [16]周广勇,任燕,王春等.一种新型有机染料反式-4-[4¢-(N-羟乙基-N-甲基胺基)苯乙烯基]-N-甲基吡啶对甲苯磺酸盐的双光子吸收和频率上转换性质[J].科学通报,2001,46(5):432-435.
    [17]Vasilev A.,Deligeorgiev T.,Gadjev N.et al.Novel environmentally benign procedures for the synthesis of styryl dyes[J].Dyes and Pigments,2008,77(3):550-555.
    [18]Kim S.H.,Functional Dyes,Chapter 4,(T.Deligeorgieva,A.Vasileva)[M],Elsevier,Amsterdam,2006.
    [19]Tokar V.P.,Losytskyy M.Yu.,Kovalska V.B.et al.Fluorescence of styryl dyes-DNA complexes induced by single-and two-photon excitation[J].Journal of Fluorescence,2006,16(6):783-791.
    [20]Lee C.,Yang W.,Parr R.G.Development of the Colle-Salvetti correlation-energy formula in to a functional of the electron density[J].Phys.Rev.B,1988,37(2):785-789.
    [21]Becke A.D.Density-functional exchange-energy approximation with correct asymptotic behavior[J].Phys.Rev.A,1988,38(6):3098-3100.
    [22]Perdew J.P.In electronic structure of solids 91,Ed.Ziesche P.Eschrig H.,Berlin,Akademie Verlag,1991,11.
    [23]Perdew J.P.,Burke K.,Wang Y.Generalized gradient approximation for the exchange-correlation hole of a many-electron system[J].Phys.Rev.B,1996,54(23):16533-16539.
    [24] Gill P.M.W.A new gradient-corrected exchange functional[J]. Molecular Physics. 1996. 89(2): 433-445.
    [25] Miehlich B.,Savin A.,Stoll H.,Preuss H. Results obtained with the correlation energy density functionals of becke and Lee,Yang and Parr[J]. Chem. Phys. Lett., 1989, 157(3): 200-206.
    [26] Becke A.D. Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing[J]. J. Chem. Phys., 1996, 104(3): 1040-1046.
    [27] Tretiak S., Chernyak V. Resonant nonlinear polarizabilities in the time-dependent density functional theory [J]. J. Chem. Phys., 2003, 119(17): 8809-8823.
    [28] Casida M.E. Propagator corrections to adiabatic time-dependent density-functional theory[J]. J. Chem. Phys., 2005, 122(5): 054111-054119.
    [29] Casida M. E.,Jamorski C.,Casida K. C.,Salahub D. R. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold[J]. J. Chem. Phys., 1998, 108(11): 4439-4449.
    [30] Theophilou A.K. The energy density functional formalism for excited states[J]. Journal of Physics C: Solid State Physics, 1979, 12(24): 5419-5430.
    [31] Zangwill A., Soven P. Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases[J]. Phys. Rev. A, 1980, 21(5):1561-1572.
    [32] Van Caillie C, Amos R. D. Geometric derivatives of density functional theory excitation energies using gradient-corrected functionals [J]. Chem. Phys. Lett., 2000, 317(1-2): 159-164.
    [33] Peuckert V. A new approximation method for electron systems[J]. J. Phys. C: Solid State Phys., 1978, 11:4945-4956.
    [34] Bartolotti 1. J. Time-dependent extension of the Hohenberg-Kohn-Levy energy-density functional[J]. Phys. Rev. A, 1981, 24(4): 1661-1667.
    [35] Gross E. K. U. Density-Functional Theory for Time-Dependent Systems[J]. Phys. Rev. Lett., 1984, 52(12): 997-1000.
    [36] Shao Y., Head-Gordon M., Krylov A. I. The spin-flip approach within time-dependent density functional theory:Theory and application to diradicals[J].J.Chem.Phys.,2003,118(11):4807-4818.
    [37]Wang F.,Ziegler T.Time-dependent Density functional theory based on a noncollinear formulation of the exchange-correlation potential[J].J.Chem.Phys.,2004,121(24):12191-12196.
    [38]Chiba M.,Tsuneda T.,Hirao K.An efficient state-specific scheme of time-dependent density functional theory[J].Chem.Phys.Lett.,2006,420(4-6):391-396.
    [39]Deb B.M.,Ghosh S.K.Schr(o|¨)dinger Fluid Dynamics of Many-electron Systems in a Time-dependent Density-functional Framework[J].J.Chem.Phys,1982,77:342-348.
    [40]Gross E.K.U.Density-Functional Theory for Time-Dependent Systems[J].Phys.Rev.Lett.,1984,52(12):997-1000.
    [41]Ullrich C.A.,Gossmann U.J.,Gross E.K.U.Time-dependent Optimized Effective Potential[J].Phys.Rev.Lett.,1995,74:872.
    [42]Petersilka M.,Gossmann U.J.,Gross E.K.U.Excitation Energies from Time-dependent Density-Functional Theory[J].Phys.Rev.Lett.,1996,76:1212.
    [43]Jamorski C.,Casida M.E.,Salahub D.R.Dynamic Polarizabilities and Excitation Spectra from a Molecular Implementation of Time-Dependent Density-Functional Response Theory:N2 as a Case Study[J].J.Chem.Phys.,1996,104:5134.
    [44]林梦海.量子化学计算方法与应用[M].北京:科学出版社,2004.
    [45]Filatov M.,Shaik S.A spin-restricted ensemble-referenced Kohn-Sham method and its application to diradicaloid situations[J].Chem.Phys.Lett.,1999,304(5,6):429-437.
    [46]Grimme S,Waletzke M.A Combination of Khon-Sham Density Functional Theory and Multi-Reference Configuration Interaction Methods[J].J.Chem.Phys,1999,111:5645.
    [47]Cossi M.,Barone V.,Cammi R.,Tomasi J.Ab initio study of solvated molecules:a new implementation of polarizable continuum model[J].Chem.Phys.Lett.,1996,255(4-6):327-355.
    [48]Barone V.,Cossi M.Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model[J].J.Phys.Chem.A,1998,102(11):1995-2001.
    [49]Maxime G.,Vincent L.,Benoit C.et al.Time-dependent density functional theory investigation of the absorption and emission spectra of a eyanine dye[J].Chemical Physics Letters, 2007, 446(1-3): 165-169.
    [50] Zhang X.H., Wang L.Y., Zhai G.H. et al. Microwave-assisted solvent-free synthesis of some dimethine cyanine dyes spectral properties and TD- DFT /PCM calculations[J]. Bulletin of the Korean Chemical Society, 2007, 28(12): 2382-2388.
    [51] Wang L.Y., Chen Q.W., Zhai G.H. et al. Investigation of the structures and absorption spectra for some hemicyanine dyes with pyridine nucleus by TD-DFT/PCM approach[J]. Journal or molecular structureTHEOCHEM, 2006, 778(1-3): 15-20.
    [52] Wang, L.Y., Chen Q.W., Zhai G.H. et al. Theoretical study on the structures and absorption properties of styryl dyes with quinoline nucleus[J]. Dyes and Pigments, 2007, 72(3): 357-362.
    [53] Zhang X.H., Wang L.Y., Chen Q.W.et al. A time-dependent density functional theory study on methy1-2-substituted styryl benzimidazole dyes. Xibei Daxue Xuebao, Ziran Kexueban, 2007, 37(4): 582-586.
    [54] Zhang X.H., Wang L.Y., Zhai G.H. et al. X - ray and DFT studies of the structure and spectral property of 2-[2-(4-dimethylaminophenyl)ethenyl]-l-methyl-pyridinium iodide. Journal of Molecular Structure, 2008, 881(1-3): 117-122.
    [55] Huang W., Fu Y.L., Wang L.Y. Study on Thermodynamics of Three Kinds of Benzindocarbocyanine Dyes in Aqueous Methanol Solution[J]. Bull. Korean Chem. Soc, 2009, 30(3): 556-560.
    [1]赵文芳,Saijo H.,Kobayashi Y等.不同取代基的噻碳菁和吲哚碳菁染料对其在溴化银微晶上吸附能力及形成J-聚集体尺寸分布的影响[J].影像科学与光化学,1997,15(4):327-334.
    [2]Liao W.Y,Lee M.C.,Huang,C.L.el al.Preparation of cyanine dye for high density optical recording disk[P].日本专利,JP 2004219915,2004.
    [3]Umezawa K.,Morita S.,Takazawa K.et al.Optical disk,information recording method,and information reproducing method[P].欧洲专利,EP 1863026,2007.
    [4]Morishita D.,Okitsu I.,Uchida M.et al.Monomethine dye compound,optical information recording medium utilizing the compound and process for producing the same[P].欧洲专利,EP 1734080,2006.
    [5]Deligeorgiev T.G.,Gadjev N.I.,Vasilev A.A.et al.Synthesis and properties of novel asymmetric monomethine cyanine dyes as non-covalent labels for nucleic acids[J].Dyes and Pigments,2007,75(2):466-73.
    [6]Volkova K.D.,Kovalska V.B.,Balanda A.O.et al.Specific fluorescent detection of fibrillar a-synuclein using mono-and trimethine cyanine dyes[J].Bioorganic & Medicinal Chemistry,2008,16:1452-1459.
    [7]Zhang X.H.,Wang L.Y.,Nan Z.X.et al.Microwave-assisted solvent-free synthesis and spectral properties of some dimethine cyanine dyes as fluorescent dyes for DNA detection[J].Dyes and Pigments,2008,79(2):205-209.
    [8]Zhao H.L.,Yuan H.H.,Lan M.B.Application of cyanine dyes and related compounds as fluorescent probes and photodynamic therapy[J].Photographic Science and Photochemistry,2003,21(03):212-222.
    [9]Delaey E.,Van L.F.,De V.D.et al.A comparative study of the photosensitizing characteristics of some cyanine dyes[J].Journal of Photochemistry and Photobiology,B:Biology,2000,55(1):27-36.
    [10]Abd El-Aal R.M.,Younis M.Synthesis and antimicrobial activity of certain novel monomethine cyanine dyes[J].Dyes and Pigments,2004,60(3):205-214.
    [11]李春兰.含吲哚核短波长菁染料的绿色合成及性质研究[D].西安,西北大学,2006
    [13]Wang L.Y.,Chen Q.W.,Zhai G.H.et al.Investigation of the structures and absorption spectra for some hemicyanine dyes with pyridine nucleus by TD-DFT/PCM approach[J].Journal of Molecular Structure:THEOCHEM,2006,778(1-3):15-20.
    [14]Runge E.,Gross E.K.U.Density-functional theory for time-dependent systems[J].Physical Review Letters,1984,52(12):997-1000.
    [15]Gross E.K.U.,Kohn W.Local density-functional theory of frequency-dependent linear response[J].Physical Review Letters,1985,55(26):2850-2852.
    [16]Oh D.,Choe J.I..DFT Study of p-tert-butylealix[5]crown-6-ether complexed with alkylammonium ions[J].Bulletin of the Korean Chemical Society,2007,28(4):596-600
    [17].Kim K.,Choe J.I.DFT study of bis(crown-ether) analogue of Troger's base complexed with bisammonium ions:hydrogen bonds[J].Bulletin of the Korean Chemical Society,2006,27(11):1737-1740.
    [18]Wang L.Y.,Chen Q.W.,Zhai G.H.et al.Theoretical study on the structures and absorption properties of styryl dyes with quinoline nucleus[J].Dyes Pigments,2007,72(3):357-362.
    [19]王伟,姚祖光.环方酸菁染料的合成及性能[J].感光科学与光化学,1997,15(4):321-326.
    [20]Lutz E.,Volker B.Synthesis of the First Chiral Bisindolyl Monomethinium Cyanine Dyes[J].Liebigs Annalen,1996,6:979-983.
    [21]Ivan H.Dictionary of organic compounds Ⅳ[M].Beijing,Science press,1966(chinese version).
    [22]Ficken G.E.,Kendall J.D.The reactivity of the alkylthio-group in nitrogen ring compounds.Part Ⅱ:Cyanine bases from 3,3-dimethyl-2-methylthio-3H-indole[J].Journal of the Chemical Society,1960,1529-1536.
    [23]West W.,Geddes A.L.The effects of solvents and of solid,substrates on the visible molecular absorption spectrum of cyanine dyes[J].Journal of Physical Chemistry,1964,68(4):837-847.
    [24]Becke,A.D.Density-functional thermochemistry.Ⅲ:The role of exact exchang[J].The Journal of Chemical Physics,1993,98:5648-5652.
    [25]Perdew J.P.,Burke K.,Ernzerhof M.Generalized gradient approximation made simple[J]. Physical Review Letters,1996,77(18):3865-3868.
    [26]Frisch M.,Trucks G.W.,Schlegel H.B.et al.Gaussian 03,Revision B.03,Gaussian,Inc.:Pittsburgh,PA,2003.
    [27]Zhang X.H.,Wang L.Y.,Zhai G.H.et al.Microwave-assisted Solvent-free Synthesis of Some Dimethine Cyanine Dyes,Spectral Properties and TD-DFT/PCM Calculations[J].Bulletin of the Korean Chemical Society,2008,28(12):2382-2388.
    [28]陈沁闻,王兰英,翟高红等.苯乙烯基-β-萘噻唑染料电子光谱的含时密度泛函研究[J].化学学报,2005,63(1):39-43.
    [1] Mees C.E.K., James T. The Theory of the Photographic Process Part1 [M], (Tao H., Trans.), Science Press, Beijing, 1979.
    [2] Kim S.H., Functional Dyes Chapter 2[M]. (H. Tian, F.S. Meng), Elsevier, Amsterdam, 2006.
    [3] Sokolowska J., Podsiadly R., Stoczkiewicz J. Styryl dyes as new photoinitiators for free radical polymerization [J]. Dyes and Pigments, 2008, 77(3): 510-514.
    [4] Kabatc J., Jedrzejewska B., Paczkowsk J. Asymmetric cyanine dyes as fluorescence probes and visible-light photoinitiators of free-radical polymerization processes[J]. Journal of Applied Polymer Science, 2006, 99(1): 207-217.
    [5] Waggoner A.S. Cyanine dyes as labeling reagents for detection of biological and other materials by luminescence methods[P]. 美国专利US 6989275.
    [6] Wang M., Gao M.Z., Miller K.D. et al. Simple synthesis of carbon-11 labeled styryl dyes as new potential PET RNA-specific, living cell imaging probes[J]. European Journal of Medicinal Chemistry, 2009, 44(5): 2300-2306.
    [7] Vasilev A., Deligeorgiev T., Gadjev N. et al. Novel environmentally benign procedures for the synthesis of styryl dyes[J]. Dyes and Pigments, 2008, 77(3): 550-555.
    [8] Kim S.H., Functional Dyes, Chapter 4[M], (T. Deligeorgieva, A. Vasileva), Elsevier, Amsterdam, 2006.
    [9] Tokar V.P., Losytskyy M.Yu., Kovalska, V.B. et al. Fluorescence of styryl dyes-DNA complexes induced by single- and two-photon excitation[J]. Journal of Fluorescence, 2006, 16(6): 783-791.
    [10] Zhang, X. H.; Wang, L. Y.; Zhai, G. H. et al. X - ray and DFT studies of the structure and spectral property of 2-[2-(4-dimethylaminophenyl)ethenyl] -1-methy1-pyridinium iodide[J]. Journal of Molecular Structure, 2008, 881(1-3): 117-122.
    
    [11] Dega-Szafran Z., Dulewicz E., Szafran M. et al. Structure, conformation and hydrogen bonding of 4-(N-methylpiperidinium)-butyric acid bromide[J]. Journal of Molecular Structure, 2007, 828(1-3): 19-24.
    
    [12] Andrikopoulos P.C., McCarney K.M., Armstrong D.R. et al. A density functional theory and resonance Raman study of a benzotriazole dye used in surface enhanced resonance Raman scattering[J].Journal of Molecular Structure,2006,789(1-3):59-70.
    [13]Wang L.Y.,Chen Q.W.,Zhai G.H.et al.Investigation of the structures and absorption spectra for some hemicyanine dyes with pyridine nucleus by TD-DFT/PCM approach[J],THEOCHEM,2006,778(1-3):15-20.
    [14]王兰英,王少康,李娜等.苯乙烯基-β-萘噻唑染料的微波促进合成[J].有机化学2004,24(8):970-972.
    [15]Sheldrick G.M.,SHELXS-97,Program for Solution Crystal Structure,University of G(o|¨)ttingen,Germany,1997.
    [16]Sheldrick G.M.,SHELXL-97,Program for Solution Crystal Structure and Refinement,University of G(o|¨)ttingen,Germany,1997.
    [17]Stereochemical Workstation Operation Manual,Release 3.4,Siemens Analytical X-ray Instruments INC.Madison,1989.
    [18]Becke A.D.Density-functional thermochemistry.Ⅲ.The role of exact exchange[J].Journal of Chemical Physics,1993,98(7):5648-5652.
    [19]Lee,C.,Yang W.,Parr R.G.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J].Physical Review B:Condensed Matter and Materials Physics,1988,37(2):785-789.
    [20]Perdew J.P.,Burke K.,Ernzerhof M.Generalized gradient approximation made simple[J].Physical Review Letters,1996,77(18):3865-3868.
    [21]Frisch M.J.,Trucks G.W.,Schlegel H.B.et al.Gaussian 03,Revision B.03,Gaussian,Inc.,Pittsburgh PA,2003.
    [22]陈沁闻,王兰英,翟高红等.苯乙烯基-β-萘噻唑染料电子光谱的含时密度泛函研究,化学学报,2005,63(1):39-43.
    [23]Wolinski K.,Hinton J.F.,Pulay P.Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations[J].Journal of the American Chemical Society,1990,112(23):8251-8260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700