小麦/长穗偃麦草体细胞杂种渐渗系新种质的遗传基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验室以普通小麦济南177(JN177)原生质体为受体,经380gw/cm2紫外线照射30s的长穗偃麦草原生质体为供体进行非对称的体细胞杂交,获得了可育杂种植株,从中筛选出一系列高产、耐盐、耐旱、优质的小麦渐渗系新品种和新种质。本实验室前期的SSR分析表明小麦体细胞杂种渐渗系不仅含有长穗偃麦草的遗传物质,而且亲本JN177的DNA序列也发生了较大变异。对亲本济南177/长穗偃麦草和体细胞杂种渐渗系的高/低分子量麦谷蛋白亚基基因家族的克隆和序列比较分析表明,体细胞杂交过程产生了许多亲本小麦济南177所不具有的新的高、低分子量麦谷蛋白亚基基因。体细胞杂种渐渗系中的这些新基因,一部分是长穗偃麦草的基因渐渗进入济南177基因组,或者是济南177原有基因的变异,包括点突变和复制滑动,还有些来自双亲基因的重组。4个优质杂种渐渗系的所有22个麦谷蛋白亚基基因中,两个来源于长穗偃麦草,其它20个均在体细胞杂交过程中发生等位变异。进一步在全基因组水平研究体细胞杂交过程引起的遗传和表观遗传变异及其机制是将体细胞杂交技术应用于小麦作物改良的基础。本研究选择分别具有高产和耐盐新性状的两种渐渗系新品种和新品系山融1号(SR1)及山融3号(SR3)为材料,利用各种分子标记在全基因组水平上对体细胞杂交过程引起的小麦重复序列和基因编码区的DNA序列变异进行分析,探讨这种变异的可能机制。此外还对体细胞杂种渐渗系的基因表达变异进行分析,进而了解渐渗系表型和性状变异的原因,为更好地将体细胞杂交技术及杂种新种质用于育种实践奠定理论基础。另外,探究体细胞杂交引起的基因启动子区和编码区DNA甲基化修饰的变化可以帮助了解体细胞杂种渐渗系基因表达变化的机制,有助于解释杂种渐渗系和亲本济南177间的表型差异,也有助于我们对小麦耐盐机制的理解。
     本研究的主要结果如下:
     1.非对称体细胞杂交引起的遗传变异分析
     利用SSR/AFLP/EST-SSR/IRAP/REMAP技术系统分析体细胞杂种渐渗系SR1、SR3和JN177在重复序列、基因编码区、反转录转座子等的差异,并与多倍体化过程相比较,探讨体细胞杂交引起DNA序列变异的机制。
     利用基因组SSR位点分析可以了解杂种基因组简单重复序列的多态性及其产生的原因。通过对两个体细胞杂种渐渗系、JN177及长穗偃麦草基因组116个微卫星位点的研究,我们发现杂种渐渗系含有少量长穗偃麦草的遗传物质。与JN177相比,体细胞杂种渐渗系SR3和SR1在40(34.48%)个位点上发生了变异。两个体细胞杂种渐渗系间在检测的基因组SSR位点上没有出现差异。另外对体细胞杂种渐渗系SR3\SR1 R2和R10代间在SSR位点上的变异进行检测,我们发现体细胞杂种渐渗系早代和晚代间遗传序列保持稳定。
     为了研究体细胞杂交引起的基因编码区的简单重复序列(SSR)的变异,并与基因组SSR序列变异相比较,本实验利用根据小麦EST序列设计的SSR引物对体细胞杂种渐渗系的R2代与两个亲本JN177、长穗偃麦草的基因组进行分析。在所有检测的108对引物中,22(20.37%)对引物在SR3与JN177间表现出多态性的带型,比SR3与济南177间基因组SSR序列的差异(34.48%)小得多。同样,R2和R10代间的EST-SSR序列亦保持稳定。
     AFLP分析是在全基因组水平上对体细胞杂交引起的变异进行全面分析的技术。通过对杂种后代以及亲本基因组904个位点进行AFLP分析发现在杂种渐渗系SR3中消减的条带总数为28条,新出现的条带总数为20条。非对称体细胞杂交过程中亲本JN177约有3.54%的位点发生变异。
     本实验利用IRAP和REMAP技术检测体细胞杂种渐渗系反转录转座子的激活情况。在JN177和杂种渐渗系SR1/SR3中共检测了116个位点,其中10(8.26%)个位点在JN177和山融3号中表现出多态性。通过对部分发生变异的条带进行DNA序列分析,并在Genbank搜索其同源序列以了解变异序列的信息,我们发现反转录转座子的激活可能影响到其位点附近的功能基因。
     本研究利用SSCP技术检测体细胞杂交引起的JN177基因序列的变异。结果显示非对称体细胞杂交引起JN177基因组基因序列大片段的插入和删除,并影响对应基因的表达。另外非对称体细胞杂交引起JN177基因组基因序列的点突变也是一个广泛存在的现象。大量新的基因片段的出现是体细胞杂交不同于多倍体化过程的一个显著特点。
     以上结果表明:体细胞杂交过程同样引起亲本基因组序列的大规模变异,各种不同的序列组分在体细胞杂交过程中变异的比率有显著的差异。基因组中的易变位点,如SSR序列和反转录转座子序列变异比率分别高达34.4%和8.26%,而基因序列的变异比率(包括基因序列丢失/插入和SNP)为4.17%。各种不同序列所处染色质位置的不同结构可能是各种序列变异比率不同的原因。调控染色质结构的表观修饰机制在这一过程中的作用是个值得进一步的研究的问题。体细胞杂交引起的重复序列、基因编码序列等的变异与常规远缘杂交多倍体化过程都有明显的不同。同样经历了异源基因组造成“冲击"(shock),体细胞杂交与多倍体化存在显著的差异。此外,体细胞杂交还同时反映了远缘杂交和渐渗过程中的基因组变异的特点,是研究植物远缘杂交中植物基因组应对外源“冲击"(shock)和进化的一个不同于多倍体化的新的体系。
     2.非对称体细胞杂交引起的表观修饰变异
     包括DNA甲基化修饰在内的表观遗传修饰机制对基因表达调控具有重要的作用。本实验利用MSAP技术检测体细胞杂交引起的基因组水平的胞嘧啶甲基化修饰变异。在对照培养条件下,我们发现渐渗系SR3和亲本济南177相比在84(23.33%)个位点上出现甲基化修饰差异。体细胞杂交中DNA甲基化修饰状态发生变异的位点绝大多数在两个杂种渐渗系中保持一致。这说明体细胞杂交过程中DNA甲基化修饰状态的变异不是随机发生的。对甲基化修饰状态发生变异的位点进行测序比对发现变异序列主要来自反转录转座子。本实验还对盐处理条件下亲本济南177和渐渗系基因组DNA甲基化修饰状态进行分析,发现盐处理仅对基因组DNA甲基化修饰状态有很小的影响。体细胞杂交引起的DNA甲基化修饰变异是渐渗系与亲本济南177间DNA胞嘧啶甲基化修饰状态差异的主要原因。
     为了具体了解体细胞杂交引起的DNA胞嘧啶甲基化修饰状态的变化对基因表达的影响,本实验还选择了5个山融3号中已经鉴定功能的耐盐相关基因和启动子序列进行重亚硫酸盐测序,在碱基水平上精细分析基因序列中胞嘧啶甲基化修饰状态的变异,以及这种变异对基因表达的影响。本实验发现小麦基因启动子区域被甲基化修饰的比例较高,基因表达与启动子区域胞嘧啶甲基化修饰水平呈负相关。本实验检测的3个小麦基因编码区中,仅有1个基因编码区被甲基化修饰。体细胞杂交引起了SR3与JN77基因启动子区域广泛的胞嘧啶甲基化修饰变异,变异的比率根据基因的不同有所不同,从最低0.00%(TaWRKY1-7)到最高25.00%(TaCHP),平均变异比率为12.26%。我们发现非对称体细胞杂交引起的基因启动子序列胞嘧啶甲基化修饰程度变异对杂种渐渗系中对应基因的表达有重要的影响。但是除TaFLS2基因外,启动子区域胞嘧啶甲基化修饰变异趋势与基因芯片检测对应基因的表达变异情况并不完全对应。DNA甲基化修饰与激活或抑制基因表达的各种组蛋白修饰协调作用,共同形成调控基因表达的严密而灵敏的机制。DNA甲基化修饰作为表观修饰机制的一种,与基因表达量不能完全对应是正常的。我们还需要进一步研究体细胞杂交引起的其它表观遗传变异,综合理解体细胞杂种渐渗系中基因表达变异的机制。
     我们认为非对称体细胞杂交过程中,在细胞核中共存的长穗偃麦草和济南177的基因组包括同源序列和非同源序列间存在着复杂的相互作用,引起各种遗传和表观遗传变异。遗传和表观遗传变异之间并不是相互独立的。DNA胞嘧啶去甲基化引起反转录转座子的激活,同源序列间的相互作用可能引起基因沉默等。各种遗传和表观遗传变异结合起来,共同促进了体细胞杂种渐渗系优良表型的出现。
     3.非对称体细胞杂交引起的基因表达变异
     本实验利用SSCP技术分析了JN177和体细胞杂种渐渗系SR1/SR3在盐处理和对照培养条件下根和叶的基因表达情况。在检测的80对引物中,我们发现对照培养条件下有6(7.5%)对引物在渐渗系中发生了一个同源基因表达被抑制的情况。此外我们还发现了三例(3.75%)某一同源基因在渐渗系中被激活的现象。在SSCP分析中没有发现体细胞杂种渐渗系SR1/SR3间基因组DNA序列的差异。但是在叶的mRNA分析中我们发现两例(2.5%)SR1/SR3间基因表达差异的情况,而且SR1/SR3间基因表达差异具有器官特异性。这很可能是由于两个渐渗系间基因表达调控的差异引起的。渐渗系中基因表达的激活或沉默部分是由DNA序列的变异、基因表达调控网络和表观修饰的变化引起的。我们发现在渐渗系中酪蛋白激酶CK2和葡萄糖-6-磷酸脱氢酶基因被激活。这两个基因的激活对渐渗系的表型差异可能有重要的影响。
     本实验利用SSR/EST-SSR/AFLP/IRAP/REMAP/SSCP等多种分子标记技术对亲本济南177和两个具有优良表型的体细胞杂种渐渗系新材料SR1和SR3间的遗传、表观遗传和基因表达变异进行系统的研究。通过本论文的研究发现,非对称体细胞杂交过程引起了济南177基因组遗传、表观遗传水平的广泛变异。SSR序列和反转录转座子的变异对济南177的基因序列产生了影响。同源重组和非同源末端连接(NHEJ)等DNA修复方式也造成了基因编码序列的变异。表观修饰的变异对渐渗系的基因表达水平产生影响。遗传和表观遗传水平的各种变异综合起来促进了渐渗系表型的改善。非对称体细胞杂交过程引起的遗传和表观遗传变异与远缘杂交和多倍体化过程有相似的地方,也有自己独特的特点。因此体细胞杂种渐渗系是研究植物基因组进化的一个全新的体系。
We obtained various fertile introgression lines through asymmetric somatic hybridization between protoplast of common wheat (Triticum aestivum) cv. JN177 and UV-irradiated protoplast of tall wheatgrass (Thinopyrum ponticum) and these lines have inherited to F10 generation. Some of these introgression lines showed stable superior agronomic traits compared to JN177, including salt and/or drought tolerance, dwarf habit, disease resistance, high yield and good processing quality etc. SSR analysis conducted by Chen et al.(2004) indicated that genetic materials of Tall wheatgrass have been introgressed into the genome of JN177, and the SSR sequences of JN177 was altered by asymmetric somatic hybridization. Cloning and sequence analysis of HMW-GS/LMW-GS genes of various introgression lines and the two parents JN177 and tall wheatgrass showed that novel glutenin genes not discovered in JN177 appeared in somatic hybrid lines.These novel glutenin genes appeared in the introgression lines come directly from tall wheatgrass or from the recombination between HMW-GS/LMW-GS gene sequences of the two parents or gene sequence alterations of JN177 glutenin genes.14 of 37 cloned JN177 HMW-GS/LMW-GS genes were altered by asymmetric somatic hybridization. Further studies on the manner and mechanisms of genetic variation induced by asymmetric somatic hybridization are the basis for understanding these variations and will be helpful for wheat improvement utilizing these hybrid lines. To explore genomic variation derived from "genomic shock" via parental genome merging and donor genome introgression, a genetic analysis was performed with two asymmetric somatic introgression lines (released cultivars) involving bread wheat(Triticum aestivum), and its relative tall wheatgrass(Thinopyrum ponticum Podp). The two cultivars have proven to be phenotypically stable through a number of selfing generations. A spectrum of cytogenetic assays and DNA profiling techniques was applied to understand the nature of the genetic and epigenetic changes which had been induced by somatic hybridization. At the chromosome level the cultivars appeared very similar to their wheat parent but containing introgressed chromatin. The molecular profiling revealed many genetic and epigenetic differences, including the elimination of genomic DNA, the altered regulation of gene expression, changed patterns of cytosine methylation, and the reactivation of retrotransposons. Repetitive sequences combined with the epigenetic regulation of gene expression and/or retrotransposon transposition appear to be largely responsible for the phenotypic differences between the introgression cultivars and their wheat parent. These results confirmed that asymmetric somatic hybrid intogression lines provide useful materials to explore the nature of the genetic and epigenetic variation of the derivatives induced by genomic shock.
     The results of my research are listed as follows:
     1. Genetic alterations induced by asymmetric somatic hybridization
     We utilizd various molecular markers, including SSR/AFLP/EST-SSR/IRAP/ REMAP to analyse the genomic sequences of the introgression lines and the two parents, so as to obtain the data about the alterations of repetitive sequences/ restrotransposons and gene sequences of JN177 genome induced by asymmetric somatic hybridization, and then analyse underlying mechanisms.
     An examination of the genomic SSR profiles of cv. JN177, SR1 and SR3 revealed no polymorphism between SR1 and SR3, but at 40 of the 116 genomic SSR loci, the cv. JN177 profile differed from that of R2 SR1 and SR3 individuals. At two loci, SR1, SR3 and tall wheatgrass shared the same allele. No variation in SSR profile between the R2 and R10 generations of SR1 or SR3 was observed (data not shown). Given the genotypic stability of SR1 and SR3 over many generations, the remaining fingerprinting analysis was restricted to the R2 generation.
     Analysis of EST-SSR alterations between JN177 and the two introgression lines indicated that 22(20.37%) of 108 loci were altered in SR3 when compared with JN177, a percentage much lower than that of genomic SSR alterations(34.48%).
     AFLP profiling revealed 904 cv. JN177 and 777 tall wheatgrass fragments, of which 388 were common to both templates. The comparisons of cv. JN177 with SRI and SR3 revealed 872 monomorphic fragments. Eighteen cv. JN177 fragments were absent from both SRI and SR3, while another 4 and 10 fragments were eliminated from SRI and SR3 respectively; except for the eliminated fragments, SRI and SR3 showed respectively 16 and 20 novel bands.
     IRAP and REMAP were used to analyze retrotransposon movement in response to somatic hybridization. Of 116 fragments detected,10 were polymorphic between cv. JN177 and SR3. Five of the 10 fragments were absent, and other 5 fragments were present in SR3 but not in cv. JN177. Eleven bands were polymorphic between cv. JN177 and SRI, with 6 bands unique to JN177 and 5 unique to SRI. There were 3 polymorphisms between SRI and SR3. In an attempt to identify the genes associated with retrotransposon activation, some of the unexpected fragments were sequenced, but the analysis of these sequences only recognized homology related to one (present in cv. JN177, absent in SR3), which identified a Ty3-gypsy subclass retrotransposon (ABA97230.1). A second fragment present in SR1/SR3, but absent from cv. JN177 was highly homologous to a wheat pore-forming toxin-like protein Hfr-2 (AAW48295.1), involved in plant defence.
     SSCP analysis was utilized to detecte the alterations of JN177 gene sequences. Gene loss and insertion were detected in the two introgression lines and gene sequence alterations effects corresponding gene expression. SNPs between JN177 and the two introgression lines were also a commonly observed phenomeon. Novel gene bands in the introgression lines were a unique feature of asymmetric somatic hybridization, different from that of polyploidization.
     These results indicated that asymmetric somatic hybridization induced large scale DNA sequence alterations of JN177, but different components of JN177 genome showed largely different tendency to alternation. Highly mutantable sequences, genomic SSR sequences showed an alternation percentage of 34.4%, while only 4.17% gene sequence of JN177 was altered in somatic hybrids.We supposed that different chromosome configurations between different sequence types were the main cause of different alternation tendencies. Different epigenetic modifications, including cytosine methylation/histone modifications/chromatin remodeling, around different sequences prabably contribute to this process. We also found that the genetic alterations induced by somatic hybridization showed different characters when compared with that of ployploidization. Asymmetric somatic hybrid intogression lines provide useful materials to explore the nature of the genetic and epigenetic variation of the derivatives induced by genomic shock.
     2. Epigenetic alterations induced by asymmetric somatic hybridization
     Thirteen pairs of selective primers were used to determine methylation status at 360 CCGG loci. Of these, SR3 and cv. JN177 differed for 84 fragments, with 35 appearing to be hypermethylated and 49 hypomethylated in SR3; while SRI and cv. JN177 differed for 77 fragments, with 31 appearing to be hypermethylated and 46 hypomethylated in SRI. Although rarely happened, the hypermethylation from H to M banding pattern or hypomethylation from M to H banding pattern was detected in the introgression lines. There were less MSAP polymorphisms between SRI and SR3 (25,6.9%) than between cv. JN177 and the two introgression cultivars, of which 12 were hypermethylated and 13 hypomethylated in SRI. Sequence analysis of a number of differentially methylated fragments showed that three of the five hypomethylated fragments in SR3 were highly repeated retrotransposons (TREP acession number: TREP255, TREP1418, TREP3251), and two showed no significant similarity to any known sequence. While the five fragments hypermethylated in SR3 also showed no significant similarity to any known sequence.
     We also analysed the cytosine methylation pattern of JN177 in gene promoter and coding sequences using bisulfite sequencing, in order to investigate the cytosine methyaltion alterations and its effects on gene expression. The results indicated that the gene promoter sequences of wheat were highly methylated, and cytosine methylation in gene promoter negatively affects corresponding gene expression. Only one of three analysed gene body sequence was methylated. The cytosine methylation level in wheat gene promoter was altered by asymmetric somatic hybridization. The percentage of cytosines with altered methyaltion pattern was different between different genes, from 0.00%(TaWRKY1-7) to 25%(TaCHP). The average alternation percentage was 12.26%. The alternation of cytosine methylation level between JN177 and SR3 was not always correlates with gene expression alteration, except for TaFLS2. We suppose that epigenetic modifications except for cytosine methylation, such as histone acetylation/methylation and chromatin remodeling also contributes to gene expression alterations in the somatic hybrids. Further study on histone modification/chromatin remodeling alterations between JN177 and introgression lines is needed to fully understand the mechanism of gene expression alterations.
     We suppose that homologous sequences between JN177 and tall wheatgrass may experience complex interactions and induce various genetic and epigenetic varitions in the introgression lines. And genetic and epigenetic alterations all contribute to gene expression alteration and superior agronomic traits of the somatic hybrids.
     3.Gene expression alterations induced by asymmetric somatic hybridization
     To survey the extent of gene sequence alterations and homoeologous gene silencing or activation induced by somatic hybridization, SSCP analysis was performed using genomic DNA from cv. JN177, SR1 and SR3 and RNA from the shoots and roots of cv. JN177, SR1 and SR3 seedlings. Of the 80 SSCP amplicons,11 were informative between cv. JN177 and SR1/SR3. In four of six missing cDNA fragments, the corresponding genomic amplification products were also missing. Other two missing cDNA was absent from one or both of SR1/SR3 compared to cv. JN177. In two activated cDNAs, products were present in SR1/SR3 but not in cv. JN177. For other three of these genes, the migration of the corresponding cDNAs was also affected. Similar to genomic SSR analysis, we did not find any difference between SR1 and SR3 in genomic sequences in SSCP analysis. However, SR1/SR3 shoot showed qualitatively different gene expression in two genes tested. It is likely that these two genes were differently regulated in SRI and SR3.
     In conclusion, somatic hybridization between wheat and tall wheatgrass has generated a series of introgression lines displaying a variety of novel genetic and epigenetic changes relative to their wheat parent. The genetic alterations induced by somatic hybridization showed different characters when compared with that of ployploidization. Asymmetric somatic hybrid intogression lines provide useful materials to explore the nature of the genetic and epigenetic variation of the derivatives induced by genomic shock. Moreover, we found repetitive sequences, epigenetic regulation of gene expression and/or retrotransposon transposition mainly relative to the novel phenotypic and agricultural traits. Therefore, somatic hybrid introgression lines provide a unique means to explore the nature of the genetic and epigenetic variation induced by genomic shock. An understanding of these mechanisms should improve our understanding of the genetic basis of agriculturally important phenotypic variation and may shed light on the variation generated by sexual wild hybridization.
引文
1.白建荣,郭秀荣,侯变英(1999)分子标记的类型、特点及在育种中的应用。山西农业科学27(4):33-38
    2.陈穗云(2003)小麦与长穗偃麦草体细胞杂种后代的遗传特征及基因组分析。博士论文,山东大学
    3.陈穗云,夏光敏,陈惠民(2000)小麦与高冰草(长穗偃麦草)体细胞杂种株系与其亲本幼苗抗盐性的比较。西北植物学报20(3):327-332
    4.刁现民,孙敬三(1999)植物体细胞无性系变异的细胞学和分子生物学研究进展.植物学通报16(4):372-377
    5.董玉琛,小麦远缘杂交育种,21世纪小麦遗传育种展望.小麦遗传育种国际学术讨论会文集,郑州.2001,5:12-22
    6.伏军,徐庆国(1997)水稻与高粱远缘杂交育种若干问题探讨.湖南农业大学学报:自然科学版23(6)
    7.韩建国,浦心春,毛培胜(1998)高羊茅种子老化过程中酶活性的变化.草地学报6(2):84-89
    8.胡能书,万贤国(1985)同工酶技术及其应用湖南科学技术出版社
    9.李大玮,邱纪文,欧阳平,姚庆筱,普通小麦与鸭毛状摩擦禾的远缘杂交:Ⅰ胚形成频率。遗传学报1994,(21):398-402
    10.李振声,小麦远缘杂交。北京:科学出版社.1985
    11.刘宝(2008)表观遗传变异与作物遗传改良。吉林农业大学学报30(4):386-393
    12.刘旺清,魏亦勤,裘敏,李红霞,张双喜,王平,马恒(2004)远缘杂交在小麦育种研究中的应用进展。SEED WORLD (12)
    13.毛丽萍,任君,畅志坚,刘惠民(2006)远缘杂种鉴定方法在小麦育种中的应用。山西农业科学2006,34:83-87
    14.彭克勤,夏石头,李阳生(2001)涝害对早中稻生理特性及产量的影响。湖南农业大学学报(自然科学版)21:173-176
    15.秦耀国,张祥胜(2002)植物远缘杂交及其在瓜类蔬菜育种中的应用。长江蔬菜(11)
    16.王纪娟,杨淑娟,任兰柱(2010)植物远缘杂交及其在小麦育种中的应用。BULLETIN OF AGRICULTURAL SCIENCE AND TECHNOLOGY (6)
    17.王景林,孙敬三,路铁刚,方仁,崔海瑞,程书增,杨才(1991)小麦×玉米的受精作用和胚胎发育。植物学报(33):674-679
    18.夏光敏,王槐,陈惠民(1996)小麦与新麦草及高冰草属间不对称体细胞杂交的植株再生。科学通报41(15):1423-1426
    19.夏光敏,向凤宁,周爱芬,陈惠民(2001)小麦与高冰草体细胞杂种的遗传与性状研究,国际小麦遗传育种大会论文集。中国农业科技出版社
    20.夏光敏,向凤宁,周爱芬,王槐,何世贤,陈惠民(1999)小麦与高冰草属间体细胞杂交获可育杂种植株。植物学报41(4):1-5
    21.向凤宁(2003)小麦远缘体细胞杂交及体细胞杂种的遗传研究。博士论文,山东大学
    22.向凤宁,夏光敏,周爱芬,陈惠民(1999)小麦与无芒雀麦不对称体细胞 杂交的研究。植物学报41(5):458-462
    23.谢兆辉,牟春红,王彬,吴先军,汪旭东(2002)植物多倍化及在育种上的应用。中国农学通报18(3):70-76
    24.杨晖(2004)反转录转座子的REMAP和IRAP指纹图谱技术。安徽农业科学4
    25.姚景侠,李浩兵,钟少斌,吴鹤鸣(1995)小麦与玉米杂交及单倍体的产生。植物学报12:31-35
    26.张学勇,董玉琛(1993)小麦和彭梯卡偃麦草杂种及其衍生后代的细胞学研究Ⅰ彭梯卡偃麦草及其与普通小麦和硬粒小麦杂种F1的染色体配对。遗传学报20(5):439-447
    27.张学勇,董玉琛(1994)小麦和彭梯卡偃麦草杂种及其衍生后代的细胞学研究Ⅱ来自小麦和彭梯卡(长穗)偃麦草及中间偃麦草杂种后代11个八倍体小偃麦的比较研究。遗传学报21(4):287-296
    28.张学勇,董玉琛(1995)小麦和彭梯卡偃麦草杂种及其衍生后代的细胞学研究Ⅲ小麦和偃麦草基因重组的遗传浅析。遗传学报22(3):217-222
    29.张正斌,小麦遗传学。北京:中国农业出版社.2001
    30.赵同金权太勇夏光敏陈惠民(2003)小麦与高冰草体细胞杂种F5代麦谷蛋白及SDS沉降值分析。山东大学学报:理学版38(3)112-116
    31.赵永华,杨世林,刘惠卿(2001)西洋参种子休眠解除与戊糖磷酸途径关系的研究。中草药3(2)259-231
    32.钟冠昌,穆素梅,张正斌,麦类远缘杂交。北京:科学出版社.2002
    33.周爱芬,向凤宁,夏光敏等(1999)单倍体小麦与簇毛麦的不对称体细胞杂交。山东大学学报(自然科学版)34:224-229
    34. Adams, K.L., and Wendel, J.F. (2005a) Polyploidy and genome evolution in plants. Cur. Opin. Plant Biol.8:135-141.
    35. Adams, K.L., and Wendel, J.F. (2005b) Novel patterns of gene expression in polyploid plants. Trend Genet.21:539-543.
    36. Adams, K.L., Cronn, R., Percifield, R., and Wendel, J.F. (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc. Natl. Acad. Sci. USA 100, 4649-4654.
    37. Ahmed K., Gerber D.A., Cochet C. (2002) Joining the cell survival squad:an emerging role for protein kinase CK2. Trends Cell Biol.12:226-230
    38. Akagi H., Sakamoto M., Negishi T., Fujimura T. (1989) Construction of rice cybrid plants. Mol Gen Genet.215:501-506
    39. Alleman M., Sidorenko L., McGinnis K., Seshadri V., Dorweiler J.E., White J., Sikkink K., Chandler V.L. (2006) An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442:295-298.
    40. Anders M.L., Cao X.F., James P.J., Zilberman D., McCallum C.M. et al. (2001) Requirement of CHROMOMETHYLASE3 for Maintenance of CpXpG Methylation. Science 292(5524):2077-2080
    41. Andrew B., Robert M.D.K. (2008) Variation for homoeologous gene silencing in hexaploid wheat. The plant journal 56(2):297-302
    42. Ann J.S., Susan I.F., Dayna L., Michael N.S.& Daniel F. (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nature Biotechnology 23:75-81
    43. Assche F.V., Cardinaels C., Clijisters H (1988) Induction of enzyme capacity in plants as a result of heavy metal toxicity:dose-response in Phaseolus vulgaris L. treated with zinc and cadmium. Environ Pollut,52:103-115
    44. Asuka M., Miyuki N., Soichi I., Akie K., Hidetoshi S., and Tetsuji K. (2009) An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites. EMBO J.28(8):1078-1086.
    45. Bates G.W, Hasenkampf C.A, Contotliacl (1987) Asymmetric hybridization in Nicotiana by fusion of irradiated protoplasts. Theor. Appl.Genet. 1987,74:718-726.
    46. Baumel, A., Ainouche, M., Kalendar, R., and Schulman, A.H. (2002). Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica C.E. Hubbard (Poaceae). Mol.Biol. Evol.19:1218-1227.
    47. Bender J (2004) DNA methylation and epigenetics. Ann Rev Plant Biol.55: 41-68
    48. Bennetzen, J.L. (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol. Biol.42,251-269.
    49. Bennetzen, J.L., Schrick, K., Springer, P.S., Brown, W.E. and SanMiguel, P. (1994) Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA. Genome,37,565-576.
    50. Bento, M., Pereira, H.S., Rocheta, M., Gustafson, P., Viegas, W., and Silva, M. (2008). Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in triticale. PLoS One.3:e1402.
    51. Bestor,T.H. (2000) The DNA methyltransferase of mammals. Hum. Mol.Genet.9,2395-2402.
    52. Bock, C., Reither S., Mikeska T., Paulsen M., Walter J. and Lengauer T. (2005). "BiQ Analyzer:visualization and quality control for DNA methylation data from bisulfite sequencing." Bioinformatics 21(21):4067-8.
    53. Bossdorf, O., Richards, C.L., and Pigliucci, M. (2008). Epigenetics for ecologists. Ecol. Lett.11:106-115.
    54. Bottley, Xia G. M., Koebner R. M. D. (2006) Homoeologous gene silencing in hexaploid wheat.The plant journal.47(6):897-906
    55. Boyko, A., and Kovalchuk, I. (2008). Epigenetic control of plant stress response. Environ. Mol. Mutagen.49:61-72.
    56. Brenner S., Miller J.H., Encyclopedia of genetics. San Diego, Academic Press. 2001, (2):663-666
    57. Bryan G. J, Collins A. J., Stephenson P., Orry A., Smith J. B. and Gale M. D. (1997) Isolation and characterisation of microsatellites from hexaploid bread wheat. Theor.Appl.Genet.94(5):557-563,
    58. Cao X., Jacobsen S.E. (2002.) Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc. Natl. Acad. Sci.99:16491-16498
    59. Cao X., Jacobsen S.E. (2002) Role of the Arabidopsis DRM Methyltransferases in De Novo DNA Methylation and Gene Silencing. Current Biology,12(13):1138-1144
    60. Chan, et al (2004) RNA Silencing Genes Control de Novo DNA Methylation.Science 27 1336-1345
    61. Chen S.Y., Liu S.W., Xu C.H., Chen Y.Z., Xia G.M. (2004) Heredity of chloroplast and nuclear genomes of asymmetric somatic hybrid lines between wheat and couch grass. Acta Bot Sin.46:110-115
    62. Chen, Z.J. (2007). Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu. Rev. Plant Biol.58: 377-406.
    63. Chen, Z.J., and Ni, Z. (2006). Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. BioEssays 28:240-252
    64. Chen, Z.J., Ha, M., and Soltis, D. (2007). Polyploidy:Genome obesity and its consequences. New Phytol.174:717-720.
    65. Cogoni C., Macino G.(1997) Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa. Proc. Natl. Acad. Sci.94:10233-10238.
    66. Comai, L. (2000). Genetic and epigenetic interactions in allopolyploid plants. Plant Mol. Biol.43:387-399.
    67. Comai, L. (2005). The advantages and disadvantages of being polyploid. Nat. Rev. Genet.6:836-846.
    68. Comai, L., Tyagi, A.P., Winter, K., Holmes-Davis, R., Reynolds, S.H., Stevens, Y., and Byers, B. (2000). Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell 12:1551-1567.
    69. Dong, Y.Z., Liu, Z.L., Shan, X.H., Qiu, T., He, M.Y., and Liu, B. (2005). Allopolyploidy in wheat induces rapid and heritable alterations in DNA methylation patterns of cellular genes and mobile elements. Russ. J. Genet.41: 890-896.
    70. Dubcovsky, J., and Dvorak, J. (2007). Genome plasticity a key factor in the success of polyploid wheat under domestication. Science.316:1862-1866.
    71. Eilam T., Anikster Y., Millet E., Manisterski J., andFeldman M. (2008) Nuclear DNA amount and genome downsizing in natural and synthetic allopolyploids of the genera Aegilops and Triticum. Genome 51(8):616-627
    72. Eilam T., Anikster Y., Millet E., Manisterski J., Sagi-Assif O., and Feldman M. (2007) Genome size and genome evolution in diploid Triticeae species. Genome 50(11):1029-1037
    73. Feher A, Preiszner J, Litkey Z, Csanadi Gy, Dudits D (1992) Characterization of chromosome instability in interspecific somatic hybrids obtained by X-ray fusion between potato (Solarium tuberosum L.) and S. brevidens Phil. Theor Appl Genet.84:880-890
    74. Feldman M., Liu B., Segal G., Abbo S., Levy A.A., Vega J.M. (1997) Rapid elimination of low-copy DNA sequences in polyploid wheat:A possible mechanism for differentiation of homoeologous chromosomes. Genetics 147: 1381-1387
    75. Feldman, M., and Levy, A.A. (2005). Allopolyploidy-A shaping force in the evolution of wheat genomes. Cytogenet. Genome Res.109:250-258.
    76. Feldman, M., Lupton, F.G.H., and and Miller, T.E. (1995). Wheats. In Evolution of Crop Plants,2nd Edition. J. Smartt and N.W. Simmonds eds (London:Longman Scientific), pp.184-192.
    77. Felipe F. A., Nick M., Seung Y.R., Rodrigo A.G. (2008) The rules of gene expression in plants:Organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana. BMC Genomics.9:438
    78. Feng D.S., Chen F.G., Zhao S.Y., Xia G.M. (2004a) High-molecular weight glutenin subunit genes in decaploid Tall wheatgrass. Acta Bot Sin 46: 489-496
    79. Feng D.S., Xia G.M., Zhao S.Y., Chen F.G. (2004b) Two quality-associated HMW glutenin subunits in a somatic hybrid line between Triticum aestivum and Tall wheatgrass. Theor Appl Genet 110:136-144
    80. Finnegan E., Peacock J., Dennis E. (1996.) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci US A 93:8449-8454
    81. Flavell R.B., Bennett M. D., Smith J. B. and Smith D. B. (1974) Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochemical Genomics 12(4):257-269
    82. Gaeta, R.T., Pires, J.C., Iniguez-Luy, F., Leon, E., and Osborn, T.C. (2007). Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403-3417.
    83. Gao, X., Liu, S.W., Sun, Q. and Xia, G.M. (2010) High frequency of HMW-GS sequence variation through somatic hybridization between Tall wheatgrass and common wheat. Planta,231,245-250.
    84. Gaut, B. and Doebley J. (1997) DNA Sequence evidence for the segmental allotetraploid origin of maize. Proc. Natl. Acad. Sci.94:6809-6814.
    85. Glimelius K., Fahleson J., Landgren M., Sjodin C, Sundberg (1991) Gene transfer via somatic hybridization in plants. Trends Biotech 9:24-30
    86. Gong Z., Morales-Ruiz T., Rafael R. A., Teresa R.-A., Lisa D. and Zhu J.K. (2002) ROS1, a Repressor of Transcriptional Gene Silencing in Arabidopsis, Encodes a DNA Glycosylase/Lyase.Cell 111(6):803-814
    87. Grosser J.W., Gmitter F.G., Castle W.S. (1995) Production and evaluation of citrus somatic hybrid rootstocks:progress report. Proc Fla State Hort Soc 108: 140-143
    88. Grunau C, Clark S.J., Rosenthal A. (2001) Bisulfite genomic sequencing: systematic investigation of critical experimental parameters.Nucl. Acids Res.29(13):e65
    89. Hardy S.H., Balick M., Schierwater B. (1992) Applications of random amplified polymorphic DNA (RAPD) in molecular ecology Molecular Ecology,1(1)55-63
    90. Han, F., Fedak, G, Guo, W., and Liu, B. (2005). Rapid and repeatable elimination of a parental genome-specific repeat (pGc1R-1a) in newly synthesized wheat allopolyploids. Genetics 170:1239-1245.
    91. Han, F.P., Fedak, G, Ouellet, T., and Liu, B. (2003). Rapid genomic changes in interspecific and intergeneric hybrids and allopolyploids of Triticeae. Genome 46:716-723.
    92. Harberd N. P., Flavell R. B. and Thompson R. D. (1987) Identification of a transposon-like insertion in a Glu-1 allele of wheat.Molecular And General Genetics.209(2):326-332
    93. Harding K., Millam S. (1999) Analysis of ribosomal RNA genes in somatic hybrids between wild and cultivated Solanum species. Mol Breeding 5:11-20
    94. Harding K., Millam S. (2000) Analysis of chromatin, nuclear DNA and organelle composition in somatic hybrids between Solanum tuberosum and Solanum sanctae-rosae. Theor Appl Genet 101:939-947
    95. He G, Zhu X., Axel A. E., Chen L., Wang X., Guo L., Liang M., He H., Zhang H., Chen F., Qi Y, Chen R.,and Deng X.W. (2010) Global Epigenetic and Transcriptional Trends among Two Rice Subspecies and Their Reciprocal Hybrids.The Plant Cell,22:17-33
    96. He, P., Friebe, B.R., Gill, B.S., and Zhou, J.M. (2003). Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Mol. Biol.52: 401-414.
    97. Hegarty, M.J., Barker, G.L., Brennan, A.C., Edwards, K.J., Abbott, R.J., and Hiscock, S.J. (2008). Changes to gene expression associated with hybrid speciation in plants:further insights from transcriptomic studies in Senecio. Philosoph. Transac. Royal Soc. B:Biol. Sci.363:3055-3069.
    98. Heidenfelder, B.L. and Topal, M.D. (2003) Effects of sequence on repeat expansion during DNA replication. Nucleic Acids Res.31,7159-7164.
    99. Herman J.G., Graff J.R., Myohanen S., Nelkin B.D., and Baylin S.B. (1996) Methylation-specific PCR:a novel PCR assay for methylation status of CpG islands. PNAS 93(18):9821-9826
    100.Hidetoshi S., Akiko S., Asuka M., Tetsuji K..(2008).Control of Genic DNA Methylation by a jmjC Domain-Containing Protein in Arabidopsis thaliana. Science.319,462-465
    101.Huang J., Zhang H.S., Wang J.F., Yang J.S., (2003) Molecular cloning and characterization of rice 6-phosphogluconate dehydrogenase gene that is up-regulated by salt stress. Mol Biol Rep,30:223-227
    102.Huck-Hui N.,Peter J.,and Adrian B. (2000) Active Repression of Methylated Genes by the Chromosomal Protein MBD1.Molecular and Cellular Biology 20(4):1394-1406
    103.Ilia J. L., and Michael D. B. (1997) Polyploidy in angiosperms.Trends in Plant Science 2(12):470-476
    104.Jackson J.P., Anders M. L., Cao X.& Steven E. J. (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556-560
    105.Jane M. (1994)Stomatal Size in Fossil Plants:Evidence for Polyploidy in Majority of Angiosperms. Science 264(5157) 421-424
    106.Jeddeloh, J.A., Stokes, T.L., Richards, E.J.,(1999) Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nat. Genet.22,94-97.
    107.Jiang N., Bao Z., Zhang X.,Sean R. E. (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569-573
    108.Jianlin W.,Lu T.,Andreas M.,Hyeon-Se L.,Meng C.Jinsuk J. L.,Brian W.,Trevor K.,Luca C. and Chen Z. J.y (2004)Stochastic and Epigenetic Changes of Gene Expression in Arabidopsis Polyploids. Genetics. 167:1961-1973
    109.Joanna I. L.,Sherif F. El-Khamisy,Anastasia Z.,David J. M.,Douglas W. C.,Jun Q.,Stefania S.,Flavio M.,Lorenzo A. P. and Keith W. C. (2004) The protein kinase CK2 facilitates repair of chromosomal DNA single-strand breaks. Cell,117(1):17-28
    110 Jon P., Daniel Z.,Jin H.H., Tracy B. (2007) DNA demethylation in the Arabidopsisgenome. PNAS 104(16):6752-6757
    111.Jorge D., et al (2007) Genome Plasticity a Key Factor in the Success of Polyploid Wheat Under Domestication. Science 316:1862-1866
    112.Kalendar R., Grob T., Regina M., Suoniemi A. and Schulman A. (1999) IRAP and REMAP:two new retrotransposon-based DNA fingerprinting techniques. Theor.Appl.Genet.98(5):704-711
    113.Kanazin V., Marek L.F., Shoemaker R. C. (1996) Resistance gene analogs are conserved and clustered in soybean.PNAS,93(21)11746-11750
    114.Kao K.N., Michayluk M.R. (1974) A method for high-frequency intergeneric fusion of plant protoplasts. Planta 115:335-367
    115.Kashkush K., Feldman M.& Levy A. A. (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nature Genetics,33,102-106
    116.Kashkusha K., Feldmana M., and Levy A. A. (2002) Gene Loss, Silencing and Activation in a Newly Synthesized Wheat Allotetraploid. Genetics,160: 1651-1659
    117.Kathleen D., Tao F., Theresa G., Yan Q., and Muegge K. (2001) Lsh, a member of the SNF2 family, is required for genome-wide methylation.Genes & Dev.15:2940-2944
    118.Kato M., Miura A., Bender J., Jacobsen S.E., Kakutani T. (2003.) Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis. Curr Biol 13:421
    119.Koch A., Agyei R., Galicia S. (2004) Xree4 physically links DNA end processing by polynucleotide kinase to DNA ligation by DNA ligaso Ⅳ.EMBO J.23(19):3874-3885
    120.Kole C., Kole P., Vogelzang R., Osbom T. C. (1997) Genetic Linkage Map of a Brassica rapa Recombinant Inbred Population J Hered 88 (6):553-557
    121.Lee H.S., Chen Z.J (2001) Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. Proc Natl Acad Sci USA 98:6753-6758
    122.Levy, A.A., and Feldman, M. (2002). The impact of polyploidy on grass genome evolution. Plant Physiol.130:1587-1593.
    123.Levy, A.A., and Feldman, M. (2004). Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biol. J.Lin. Soc.82:607-613.
    124.Li L.C and Dahiya R. MethPrimer:designing primers for methylation PCRs. Bioinformatics.2002 Nov; 18(11):1427-31
    125.Li X., Wang X., He K., Ma Y., Su N., He, Hang V.S., Waraporn T., Jin W., Jiang J., Terzaghi W., Li S. and Deng X. (2008) High-Resolution Mapping of Epigenetic Modifications of the Rice Genome Uncovers Interplay between DNA Methylation, Histone Methylation, and Gene Expression. The Plant Cell 20:259-276
    126.LiY.G., Stoutjestijk P.A., Larkin P.J.. (1999) Somatic hybridization for plant improvement. In:Soh W—Y, Bhojwani SS(eds). Morphogenesis in plant tissue cultures.Kluwer Academic Publishers, Dordrecht,363-418.
    127.Lianna M.J., Cao X. and Jacobsen S.E. (2002) Interplay between Two Epigenetic Marks.Current Biology,12(6):1360-1367
    128.Liu, B. and Wendel, J.F. (2000) Retrotransposon activation followed by rapid repression in introgressed rice plants. Genome,43,874-880.
    129.Liu, B., and Wendel, J.F. (2002). Non-mendelian phenomena in allopolyploid genome evolution. Curr. Genomics 3:489-505.
    130.Liu, B., and Wendel, J.F. (2003). Epigenetic phenomena and the evolution of plant allopolyploids. Mol. Phylogenet. Evol.29:365-379
    131.Liu, B., Vega, J.M., and Feldman, M. (1998b). Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops.Ⅱ.Changes in low-copy coding DNA sequences. Genome 41:535-542.
    132.Liu, B., Vega, J.M., Segal, G., Abbo, S., Rodova, M., and Feldman, M.(1998a). Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops.Ⅰ. Changes in low-copy noncoding DNA sequences.Genome 41: 272-277.
    133.Liu, H., Liu, S.W. and Xia, G.M. (2009) Generation of high frequency of novel alleles of the high molecular weight glutenin in somatic hybridization between bread wheat and tall wheatgrass. Theor. Appl. Genet.118, 1193-1198.
    134.Liu, S.W., Zhao, S.Y., Chen, F.G. and Xia, G.M. (2007) Generation of novel high quality HMW-GS genes in two introgression lines of Triticum aestivum/Tall wheatgrass. BMC Evol. Biol.7,76.
    135.Liu, Z., and Adams, K.L. (2007). Expression partitioning between genes duplicated by polyploidy under abiotic stress and during organ development. Curr. Biol.17:1669-1674.
    136.Lorincz, M.C., Dickerson, D.R., Schmitt, M., and Groudine, M. (2004).Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat. Struct. Mol. Biol.11:1068-1075.
    137.Ma, X.F., and Gustafson, J.P. (2005). Genome evolution of allopolyploids:a process of cytological and genetic diploidization. Cytogenet. Genome Res. 109:236-249.
    138.Ma, X.F., and Gustafson, J.P. (2006). Timing and rate of genome variation in triticale following allopolyploidization. Genome 49:950-958.
    139.Ma, X.F., and Gustafson, J.P. (2008). Allopolyploidization-accommodated genomic sequence changes in triticale. Ann. Bot.101:825-832.
    140.Madlung A., Masuelli R.W., Watson B., Reynolds S.H., Davison J., Comai L. (2002) Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol 129:733-746
    141.Madlung, A., Tyagi, A.P., Watson, B., Jiang, H., Kagochi, T., Doerge,R.W., Martienssen, R., and Comai, L. (2005). Genomic changes in synthetic Arabidopsis polyploids. Plant J.41:221-230.
    142.Magali L., Patrice D., Gert T., Kathleen M., Yves M., Yves V. de Peer, Pierre R. and Stephane R. (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences Nucleic Acids Res.30(1):325-327.
    143.Mahmoud W. F. Y, Peng M.,and Rothstein S.J. (2009)AtMBD9 modulates Arabidopsis development through the dual epigenetic pathways of DNA methylation and histone acetylation.The Plant Journal 59,123-135
    144.Margaret G. K. and Damon L. (1997) Transposable elements as sources of variation in animals and□plants.PNAS 94(15):7704-7711
    145.Mark W. K., Douglas E. R., Trevor L. S., Susan K. F., Jeremy R. H., Jeffrey A. J., Nicole C. R., Michelle L.V., and Eric J.R. (2003) Arabidopsis MET1 Cytosine Methyltransferase Mutants. Genetics (163): 1109-1122
    146.Martel V., Filhol O., Nueda A., Gerber D., Benitez M.J., Cochet C. (2001) Visualization and molecular analysis of nuclear import of protein kinase CK2 subunits in living cells. Mol Cell Biochem 227:81-90
    147.Martienssen, R.A., Colot, V.,(2001)DNA methylation and epigeneti inheritance in plants and filamentous fungi. Science 293,1070-1074.
    148.Matthew H. and Simon H. (2007) Polyploidy:Doubling up for Evolutionary Success. Current Biology,17(21):R927-R929
    149.Matthew W. V., Milos Tanurdzic, Zachary L., Jiang H., Robert C., Pablo D. R., Neilay D., McCombie W. R., Nicolas A., Agnes B., Vincent C., Doerge R.W., Martienssen R. A. (2007) Epigenetic Natural Variation in Arabidopsis thaliana. Plos biology.5
    150.Matzke M., Kanno T., Huettel B., Daxinger L., Matzke A.J. (2007.) Targets of RNA-directed DNA methylation. Curr Opin Plant Biol 10:512-519
    151.McClintock B. (1984) The significance of responses of the genome to challenge. Science 226:792-801
    152.Meggio F., Boldyreff B., Issinger O.G., Pinna L.A. (1994) Casein kinase 2 down-regulation and activation by polybasic peptides are mediated by acidic residues in the 55-64 region of the betasubunit. A study with calmodulin as phosphorylatable substrate. Biochemistry 33:4336-4342
    153.Michael P., Bai J., Laudencia-Chingcuanco D., Anderson O. and Bikram S. Gill (2009) Nonadditive Expression of Homoeologous Genes Is Established Upon Polyploidization in Hexaploid Wheat. Genetics,181:1147-1157
    154.Moshe F., Avraham A. L. (2009) Genome evolution in allopolyploid wheat—a revolutionary reprogramming followed by gradual changes. Genet. Genomics 36:511-518
    155.Murray M.G., Thompson W.F. (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321-4325
    156.Nathalie C.,Jerome S.,Francois S.,Sadequr R.,Arnaud B. (2005) Molecular Basis of Evolutionary Events That Shaped the Hardness Locus in Diploid and Polyploid Wheat Species (Triticum and Aegilops). The Plant Cell 17:1033-1045
    157.Nemoto Y.S.T, (2000) Specific expression of glucose-6-phosphate dehydrogenase (G6PDH) gene by salt stress in wheat. Plant Sci 158:53-60
    158.Okitsu, C.Y., and Hsieh, C.-L. (2007). DNA methylation dictates histone H3K4 methylation. Mol. Cell. Biol.27:2746-2757.
    159.Otto, S.P. (2007). The evolutionary consequences of polyploidy. Cell 131: 452-462.
    160.Ozkan H., Tuna M., Arumuganathan K. (2003) Nonadditive changes in genome size during allopolyploidization in the wheat (Aegilops-Triticum) group. J Heredity 94(3):260-264
    161.Ozkan, H., Levy, A.A., and Feldman, M. (2001). Allopolyploidy-induced rapid genome evolution in the wheat(Aegilops-Triticum) group. Plant Cell 13: 1735-1747.
    162.Parokonny A.S., Marshall J.A., Bennett M.D., Cocking E.C., Davey M.R., Brian P.J. (1997) Homoeologous pairing and recombination in backcross derivatives of tomato somatic hybrids [Lycopersicon esculentum (+) L. peruvianum]. Theor Appl Genet 94:713-723
    163.Paul A., Ferl R.J. (1988) Assays for studing chromatin structure. Plant Mol Biol Man 2:1-11
    164.Peter M.W.,Clare S.,Jenny S.,Christoph G.,John R. M. and Susan J. C. (2002) Identification and resolution of artifacts in bisulfite sequencing. Methods 27(2) 101-107
    165.Pfeiffer, P., Goedecke, W. and Obe, G. (2000) Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis,15,289-302.
    166.Pieter V.,Rene H.,Marjo B.,Martin R. (1995) AFLP:a new technique for DNA fingerprinting. Nucl. Acids Res.23 (21):4407-4414
    167.Pikaard, C. S., and Lawrence R. J..2002. Uniting the path to gene silencing. Nat. Genet.32:1-2
    168.Puthoff D.P., Sardesai N., Subramanyam S., Nemacheck J.A., Williams C.E. (2005) Hfr-2, a wheat cytolytic toxin-like gene, is up-regulated by virulent Hessian fly larval feedingdouble dagger..Mol Plant Pathol.6(4):411-23.
    169.Richards, E.J., Elgin, S.C.R., (2002)Epigenetic codes for heterochromatin formation and silencing:rounding up the usual suspects. Cell 108,489-500.
    170.Rieseberg, L.H. (2001). Polyploid evolution:Keeping the peace at genomic reunions. Curr. Biol.11:R925-R928.
    171.Roder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P. and Ganal, M.W. (1998) A microsatellite map of wheat. Genetics,149, 2007-2023.
    172.Romero-O.F, Jacob G., Allende J.E. (2003) Dual effect of lysinerich polypeptides on the activity of protein kinase CK2. J Cell Biochem 89:348-355
    173.Rountree, M.R., and Selker, E.U. (1997). DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes Dev. 11:2383-2395.
    174.Ryan L., Ronan C. O'Malley, Julian T.F., Brian D.G., Charles C.B., Millar A. H., Joseph R.E. (2008) Highly Integrated Single-Base Resolution Maps of the Epigenome in Arabidopsis. Cell,133,523-536
    175.Salmon, A., Ainouche, M.L., and Wendel, J.F. (2005). Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol. Ecol.14:1163-1175
    176.Santy P.E., Virginia A.,Herrera-V. and Kay A.J. (2001) Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP).Plant Science 161(2):359-367
    177.Shaked, H., Kashkush, K., Ozkan, H., Feldman, M., and Levy, A.A. (2001). Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749-1759.
    178.Shan, X.H., Liu, Z.L., Dong, Z.Y., Wang, Y.M., Chen, Y., Lin, X.Y., Long, L.K., Han, F.P., Dong, Y.S. and Liu, B. (2005) Mobilization of the active MITE transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.). Mol. Biol. Evol.22,976-990.
    179.Shan, X.H., Ou, X.F., Liu, Z.L., Dong, Y.Z., Lin, X.Y., Li, X.W. and Liu, B. (2009) Transpositional activation of mPing in an asymmetric nuclear somatic cell hybrid of rice and Zizania latifolia was accompanied by massive element loss. Theor. Appl. Genet.119,1325-1333.
    180.Shawn J.C., Feng S., Zhang X., Chen Z., Merriman B., Haudenschild C.D., Sriharsa P., Stanley F. N.,Matteo P., and Steven E. J. (2009) Shotgun bisulfite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature,452
    181.Sigarava M.A., Earle E.D. (1997) Direct transfer of a cold-tolerant Ogura male-sterile cytoplasm into cabbage(Brassica oleracea ssp. Capitata) via protoplast fusion. Theor Appl Genet 94:213-220
    182.Singer T., Yordan C., Martienssen R.A., Robertson's (2001) Mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene decrease in DNA methylation (DDM1). Genes Dev.15 591-602.
    183.Song, K., Lu, P., Tang, K., and Osborn, T.C. (1995). Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc. Natl. Acad. Sci.92:7719-7723.
    184.Soppe W.J., Jacobsen S.E., Alonso-Blanco C., Jackson J.P., Kakutani T., Koornneef M., Peeters A.J., The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol. Cell 6 (2000) 791-802.
    185.Stigare J., Buddelmeijer N., Pigon A., Egyhazi E. (1993) A majority of CK2 alpha subunit is tightly bound to intranuclear compounds but not to the beta subunit. Mol Cell Biol 129:77-85
    186.Tang, Z.X., Fu, S.L., Ren, Z.L. and Zou, Y.T. (2009) Rapid evolution of simple sequence repeat induced by allopolyploidization. J. Mol. Evol.69, 217-228.
    187.Tang, Z.X., Fu, S.L., Ren, Z.L., Zhou, J.P., Yan, B.J. and Zhang, H.Q. (2008) Variations of tandem repeat, regulatory element, and promoter regions revealed by wheat-rye amphiploids. Genome,51,399-408.
    188.Tanksley S.D., Young N.D., Paterson A.H., Bonierbale M.W. (1989) RFLP Mapping in Plant Breeding:New Tools for an Old Science Nature Biotechnology 7,257-264
    189.Theresa M.G., Keith D.R. (2002) Chromatin remodeling, histone modifications, and DNA methylation—how does it all fit together? Journal of Cellular Biochemistry 87(2) 117-125
    190.Thomas V.,Carla S. and Zdenko H. (2008) Epigenetic interplay between histone modifications and DNA methylation in gene silencing.Mutation Research,659(1-2):40-48
    191.Tony K. (2007) Chromatin Modifications and Their Function.Cell.128(4) 693-705
    192.Vos P., Hogers R., Bleeker M. (1995) AFLP:A new technique for DNA figerprinting. Nucleic Acids Res 23:4407-4414
    193.Walbot V., Rudenko G.N., MuDR/Mu transposable elements of maize, in:N.L. Craig, R. Craigie, M. Gellert, A.R. Lambowitz (Eds.), Mobile DNA Ⅱ, ASM Press, Washington, DC,2002, pp.533-564
    194.Wang J., Xiang F.N., Xia G.M. (2004) Transfer of small chromosome fragments of Tall wheatgrass to wheat chromosome via asymmetric somatic hybridization. Sci China Series C 47(5):434-441
    195.Wang X., Axel A. E., Li X., Li N., Peng Z., He G.,Hui S., Qi Y., Liu X. S., and Deng X.W. (2009) Genome-Wide and Organ-Specific Landscapes of Epigenetic Modifications and Their Relationships to mRNA and Small RNA Transcriptomes in Maize. The Plant Cel,21:1053-1069
    196.Wang, J., Tian, L., Lee, H.-S., Wei, N.E., Jiang, H., Watson, B.,Madlung, A., Osborn, T.C., Doerge, R.W., Comai, L., and Chen,Z.J. (2006). Genomewide nonadditive gene regulation in arabidopsis allotetraploids. Genetics 172: 507-517.
    197.Wang, Y.M., Dong, Z.Y., Zhang, Z.J., Lin, X.Y., Shen, Y., Zhou, D., and Liu, B. (2005). Extensive de novo genomic variation in rice induced by introgression from wild rice (Zizania latifolia Griseb.). Genetics 170: 1945-1956.
    198.Wayne P., Michele M., Chaz A., Michael H., Julie V., Scott T. and Antoni R. (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis.MOLECULAR BREEDING,2(3),225-23
    199.Wendel, J.F. (2000). Genome evolution in polyploids. Plant Mol. Biol.42: 225-249.
    200.Wicker, T., Buchmann, J.P. and Keller, B. (2010) Patching gaps in plant genomes results in gene movement and erosion of colinearity. Genome Res. 20,1229-1237.
    201.Wolffe, A.P. and Matzke, M.A. (1999) Epigenetics:regulation through repression. Science,286,481-486.
    202.Workman J.L., Kingston R.E. (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Ann Rev Biochem 67:545-579
    203.Xia G.M., Xiang F.N., Zhou A.F., Wang H., Chen H.M. (2003) Asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Tall wheatgrass (Host) Nevski. Theor Appl Genet 107:299-305
    204.Xiang F.N., Feng B.M., Xia G.M., Chen H.M. (2001) Agronomic trait and protein component of F2 hybrid originated from intergeneric somatic hybridization between Triticum aestivum and Tall wheatgrass. Acta Bot Sin 43(3):232-237
    205.Yana V. B., Zhang X., Cokus S., Pellegrini M., Jacobsen S.E. (2008) Genome-Wide Association of Histone H3 Lysine Nine Methylation with CHG DNA Methylation in Arabidopsis thaliana. PLoS ONE,3(9)| e3156
    206.Yi Q., He X., Wang X., Kohany O., Jurka J.& Hannon G.J. (2006) Distinct catalytic and non-catalytic roles of ARGON AUTE4 in RNA-directed DNA methylation.Nature 443:1008-1012
    207.Yu J. K, La R.M.,Kantety R. V. and Sorrells M. E. (2004)EST derived SSR markers for comparative mapping in wheat and rice. Molecular Genetics And Genomics271(6):742-751
    208.Zhang X., Yazaki J., Sundaresan A., Shawn C., Simon W.L., Chen H., Ian R. Henderson, Paul S., Matteo P., Steve E.J., Joseph R. E. (2006) Genome-wide High-Resolution Mapping and Functional Analysis of DNA Methylation in Arabidopsis. Cell.126,1189-1201
    209.Zhang X., Yazaki J., Sundaresan, Cokus A.S., Simon W.L.,Huaming Chen, Ian R. Henderson, Paul Shinn, Matteo Pellegrini, Steve E.Jacobsen, Joseph R. Ecker(2006). Genome-wide High-Resolution Mapping and Functional Analysis of DNA Methylation in Arabidopsis. Cell.126,1189-1201
    210.Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S.W., Chen, H., Henderson, I.R., Shinn, P., Pellegrini, M., Jacobsen, S.E., and Ecker, J.R. (2006). Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126,1189-1201.
    211.Zhou A.F., Xia G.M., Chen H.M., Hu H. (2001a) Comparative study of symmetric and asymmetric somatic hybridization between common wheat and Haynaldia villosa. Science in China(Ser. C).44(3):294-304
    212.Zhou A.F., Xia G.M., Zhang X. (2001b) Analysis of chromosomal and organellar DNA of somatic hybrids between Triticum aestivum and Haynaldia villosa Schur. Mol Gen Genet 265:387-393
    213.Zilberman, D., Cao, X., Johansen, L.K., Xie, Z., Carrington, J.C., and Jacobsen, S.E. (2004). Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr. Biol.14,1214-1220
    214.Zilberman, D., Gehring, M., Tran, R.K., Ballinger, T., and Henikoff, S. (2007). Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet.39, 61-69.
    215.Zimmermann U., Scheurich P. (1981) High frequency fusion of plant protoplasts by electric fields. Planta 151:26-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700