冷弯薄壁型钢轴压构件畸变及与局部相关的失稳机理和设计理论
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对冷弯薄壁型钢轴压构件畸变屈曲、畸变与局部相关屈曲的力学机理和设计理论进行了研究,主要包括轴压构件畸变屈曲的试验研究、理论分析和设计理论,轴压构件畸变与局部相关屈曲的试验研究、理论分析和设计理论。以上述系统研究为基础,对冷弯薄壁轴压构件已有的设计理论进行深入研究后提出了失稳系数法设计理论。
     进行了9个腹板加劲窄翼缘卷边槽形截面和9个腹板及翼缘均加劲宽翼缘卷边槽形截面的轴压构件畸变屈曲性能试验研究,试验主要参数为构件长度。分析了试件的破坏模式,分析了试件的荷载-应变关系曲线、荷载-畸变位移关系曲线、荷载-轴向压缩位移曲线,分析了试件长度、板件加劲、宽窄翼缘、初始缺陷对轴压构件畸变屈曲性能的影响。建立了薄壁轴压构件的有限元分析模型,对试件进行了模拟分析,基于有限元模型进行了冷弯薄壁型钢轴压构件参数化分析。以试验研究和有限元分析为基础,对畸变屈曲的变形模式、板件边缘加劲和中间加劲作用进行了理论分析,揭示了畸变屈曲模式的失稳力学机理,解释了畸变屈曲后极限承载力较局部屈曲为低的根本原因,分析了构件尺寸、初始缺陷和边界条件对构件极限承载力的影响。
     对国内外弹性畸变屈曲临界应力分析的数值计算方法和简化模型计算方法进行了归纳总结。深入研究了目前国际上广泛使用的两个畸变屈曲极限承载力设计公式,这两条计算曲线均为悉尼大学Hancock基于相同试验结果提出,分别作为直接强度法和有效宽度法畸变屈曲极限承载力计算公式,被北美规范、澳洲规范和中国规程所使用。但是,为中国规程和澳洲规范所采用的有效宽度法畸变屈曲极限承载力计算公式与直接强度法计算公式存在较大误差,而且计算曲线较短。本文基于试验和Hancock等人畸变屈曲试验结果,提出了一条新的畸变屈曲极限承载力计算公式,解决了不同规范计算误差较大的问题,并延伸了计算曲线长度。基于试验结果,对直接强度法畸变屈曲计算公式的非弹性段进行了修正。
     进行了9个腹板加劲卷边较小槽形截面和9个腹板加劲卷边较大槽形截面的轴压构件畸变屈曲与局部屈曲相互作用性能试验研究,试验主要参数为构件长度。分析了试件的破坏模式,分析了试件的荷载-应变关系曲线、荷载-畸变位移关系曲线、荷载-轴向压缩位移曲线,分析了试件长度、板件加劲、大小卷边、初始缺陷对轴压构件畸变与局部相关屈曲性能的影响,研究了畸变-局部相关屈曲和局部-畸变相关屈曲两类不同的失稳力学行为。建立了薄壁轴压构件的有限元分析模型,对试件进行了模拟分析,基于有限元模型进行了冷弯薄壁型钢轴压构件参数化分析。以试验研究和有限元分析为基础,对畸变与局部相关屈曲的耦合变形模式、板件边缘加劲和中间加劲作用进行了理论分析,揭示了畸变与局部相关屈曲模式的失稳力学机理,解释了畸变与局部相关屈曲极限承载力较畸变屈曲和局部屈曲为低的根本原因,分析了构件尺寸、初始缺陷和边界条件对构件极限承载力的影响。
     深入研究了直接强度法畸变与局部相关屈曲极限承载力的NLD和NDL两个计算公式,提出了与我国规范相协调的有效宽度法畸变与局部相关屈曲极限承载力的ELD和EDL两个计算公式,并采用本文和国内外试验结果对这4个公式进行了计算准确性分析。提出了畸变屈曲、畸变与局部相关屈曲的设计理论,提出了检查识别畸变屈曲和畸变-局部相关屈曲、检查识别局部屈曲和局部-畸变相关屈曲的判定准则,给出了相应的判定公式,采用本文和国内外试验结果对该判定准则进行了计算准确性分析。
     深入研究了冷弯薄壁型钢轴压构件极限承载力计算的有效宽度法、直接强度法和折减强度法,提出了冷弯薄壁型钢轴压构件承载力计算的失稳系数法。提出了单个板件以及构件的失稳系数概念,推导了失稳系数计算公式,给出了局部、畸变、整体及其之间相关屈曲的失稳系数公式,给出了局部、畸变、整体3种基本屈曲模式的失稳系数表。提出了失稳模式判定理论,对构件可能发生的屈曲行为及其相关屈曲模式进行判定识别,给出了失稳系数法计算步骤。采用本文和国内外试验结果对失稳系数法进行了计算准确性分析。
     本文的主要创新点如下:
     (1)通过试验研究、有限元参数分析、理论分析相结合的方法,深入研究了畸变屈曲性能,揭示了畸变屈曲模式的失稳力学机理,阐明了畸变屈曲后极限承载力较局部屈曲为低的根本原因。提出了与中国规范有效宽度法相协调一致的畸变屈曲极限承载力计算公式。
     (2)通过试验研究、有限元参数分析、理论分析相结合的方法,深入研究了畸变与局部相关屈曲性能,揭示了畸变与局部相关屈曲模式的失稳力学机理,阐明了畸变与局部相关屈曲后极限承载力较畸变屈曲和局部屈曲为低的根本原因,明确了畸变-局部相关屈曲和局部-畸变相关屈曲的不同力学行为。
     (3)提出了与中国规范有效宽度法相协调一致的畸变与局部相关屈曲极限承载力计算公式ELD和EDL。首次提出了检查识别畸变屈曲和畸变-局部相关屈曲、检查识别局部屈曲和局部-畸变相关屈曲的判定准则,并给出了物理意义明确的判定公式。
     (4)首次提出了冷弯薄壁型钢轴压构件局部屈曲、畸变屈曲、整体屈曲及其之间相关屈曲的极限承载力统一设计理论—失稳系数法。采用本文提出的失稳模式判定理论以及局部、畸变和整体屈曲共3套基本失稳系数表,确定构件的屈曲模式后通过查表得到相应的失稳系数,该失稳系数与钢材屈服承载力相乘即为构件失稳行为的极限承载力。失稳系数法能统一考虑3种基本屈曲模式及其相关屈曲模式的极限承载力,并且以简单的失稳系数进行计算。
Instability mechanism and design theory of the distortional buckling, and the interaction buckling of distortional and local modes of cold-formed thin-walled steel columns under axial compression have been studied in the thesis, including experimental study, theoretical analysis and design theory of the distortional buckling, and the interaction buckling of distortional and local modes of columns. Based on these systematic studies, and a research on the existing design methods for cold-formed thin-walled steel columns, a novel design theory is proposed, namely instability coefficient method.
     An experimental research was conducted to investigate the distortional buckling behavior and failure modes of cold-formed thin-walled steel columns under concentrically load. Nine web-stiffened lipped channel sections with narrow flanges and nine web-stiffened and flange-stiffened lipped channel sections with wide-flange were tested. The effect of the columns length, plates with intermediate stiffener, web to flange ratio, initial geometrical imperfections were studied. Axial compressive load vs. strains curves, axial compressive load vs. distortional displacement curves and axial compressive load vs. axial shortening curves were experimentally measured and analyzed. A three-dimensional finite element analytical model of cold-formed thin-walled steel columns was developed by using ABAQUS software to analyze those specimens. A parametric analysis employing the FEA model for cold-formed steel columns was performed. Theoretical analysis for the deformation modes and the performance of plate-stiffened of cold-formed thin-walled steel columns undergoing distortional buckling was conducted on the basis of the experimental results and the finite element analysis results. Instability mechanism of distortional buckling mode is revealed by the studies. The main cause that the post-buckling strength of the distortional buckling mode is compared lower with the local buckling mode is explained. The influence of geometries, initial imperfections and boundary conditions to the ultimate load-carrying capacity of steel columns are researched.
     Numerical methods and simplified analysis models for the elastic distortional buckling analysis were summarized. The source, evolution and performance of the formulas and test data for the two strength design curves developed by Hancock are studied, for predicting the load-carrying capacity in the distortional mode. A proposed strength design curve based on available test data and Hancock's strength design curves are then compared with the current design methods, the Direct Strength Method and the Effective Width Method, which are incorporated in the "North American specification for the design of cold-formed steel structural members"(AISI-NAS:2007),"cold-formed steel structures"(AS/NAS4600:2005), and the Chinese "Technical specification for low-rise cold-formed thin-walled steel buildings"(JGJ227-2011). The results indicate that the current design standards adopted the two strength design curves for the DSM and EWM, but they have some differences at the partial extent. A novel formula is proposed for dealing with this problem. The range of applicability of the proposed strength equation is extended from that in AS/NZS4600and is shown to be more accurate than AS/NZS4600when compared with that in the NAS S100. Based on the recent test results, the strength design curve of distortional mode in inelastic buckling range in the DSM is modified.
     An experimental research was conducted to investigate the interaction of distortional and local buckling behavior and failure modes of cold-formed thin-walled steel columns under concentrically load. Nine web-stiffened lipped channel sections with smaller edge stiffeners and nine web-stiffened lipped channel sections with larger edge stiffeners were tested. The effect of the columns length, plates with intermediate stiffener, the size of edge stiffeners, initial geometrical imperfections were studied. Axial compressive load vs. strains curves, axial compressive load vs. distortional displacement curves and axial compressive load vs. axial shortening curves were experimentally measured and analyzed. The local-distortional and distortional-local interaction modes, which are dissimilar structural behavior, were analyzed. A three-dimensional finite element analytical model of cold-formed thin-walled steel columns was developed by using ABAQUS software to analyze those specimens. A parametric analysis employing the FEA model for cold-formed steel columns was performed. Theoretical analysis for the coupled deformation modes and the performance of plate-stiffened of cold-formed thin-walled steel columns experiencing the interaction of distortional and local buckling was conducted on the basis of the experimental results and the finite element analysis results. Instability mechanism of the interaction of distortional and local mode is revealed by the studies. The main cause that the post-buckling strength of the interaction of distortional and local modes is compared lower with the distortional and/or local buckling mode is explained. The influence of geometries, initial imperfections and boundary conditions to the ultimate load-carrying capacity of steel columns undergoing the interaction behavior are researched.
     The two design formulae NLD and NDL of load-carrying capacity in the direct strength method for the interaction of distortional and local buckling are studied in depth. The two design formulae ELD and EDL of load-carrying capacity for the interaction of distortional and local buckling, which is in harmony with the effective width method, are proposed. The four design formulae are then compared with the experimental results undergoing the interaction of distortional and local buckling in this work and collecting from the literature. Design theory concerning the load-carrying capacity of the distortional and the interaction between distortional and local modes is developed. A criterion for identifying the buckling mode between distortional and distortional-local, and between local and local-distortional is established. According to the criterion, two formulae to check the buckling modes are presented. The two formulae are then compared with the experimental results experiencing the interaction between distortional and local buckling in this work and collecting from the literature. An accuracy of determination concerning the criterion is analyzed.
     The Effective Width Method, Direct Strength Method and Strength-reduction Method for calculation of the load-carrying capacity of cold-formed thin-walled steel columns under axial compression are studied in depth. A novel design theory, Instability Coefficient Method, is then developed. A conception of instability coefficient for an element and member is put forward. A general formula for calculation the load-carrying capacity of cold-formed steel columns is presented. Several instability coefficients concerning the local, distortional, Euler buckling and interaction buckling between them are derived. Three Tables of the local, distortional and Euler buckling are given according to the corresponding instability coefficients. A theory checking buckling mode and failure mode, which can identify if the pure buckling mode or mixed mode will be occurred for a given column, is presented. A calculation process of the Instability Coefficient Method is also given. The calculated results on the basis of the Instability Coefficient Method are then compared with the experimental results in this work and collecting from the literature. An accuracy of determination concerning the method is analyzed.
     The following is a summary of the main creative points of this thesis.
     1. Through the experimental research, finite element parametric analysis and theoretical analysis, the mechanical performance of the distortional buckling is studied systematically and in-depth. The instability mechanism of the distortional buckling mode is revealed. The root causes, which the post-buckling strength of the distortional mode is lower than the local mode, are clarified. A proposed EWM design formula for predicting the load-carrying capacity in the distortional mode is presented.
     2. Through the experimental research, finite element parametric analysis and theoretical analysis, the mechanical performance of the interaction of distortional and local buckling mode is studied systematically and in-depth. The instability mechanism of the interaction of distortional and local buckling mode is revealed. The root causes, which the post-buckling strength of the interaction of distortional and local buckling mode is lower than the distortional and/or local mode, are clarified. The experimental clearly evidence of the occurrence of the local-distortional and distortional-local interaction modes, which are dissimilar structural behavior, is provided and analyzed.
     3. The two design formulae ELD and EDL of load-carrying capacity of cold-formed thin-walled steel columns experiencing the interaction of distortional and local modes are developed in the shape of effective width method. A criterion for identifying the buckling mode between distortional and distortional-local, and between local and local-distortional is established for the first time. According to the criterion, two formulae to check the buckling and failure modes are also presented with clear physical meaning.
     4. A unified design theory, Instability Coefficient Method, is presented for the first time for predicting the load-carrying capacity of cold-formed thin-walled steel columns. The method deals with the local, distortional, Euler buckling and the interaction buckling between them at the same time. The three tables of the local, distortional and Euler buckling are given according to the corresponding instability coefficients. A theory checking buckling mode and failure mode, which can identify if the pure buckling mode or mixed mode will be occurred for a given column, is presented. Based on these available conditions, the load-carrying capacity of a given column will be determined by the instability coefficient multiplying yielding carrying capacity of steel.
引文
[1]Yu WW. Cold-Formed Steel Design (3rd Edition) [M]. New York:John Wiley & Sons,2002.
    [2]周绪红,王世纪.薄壁构件稳定理论及其应用[M].北京:科学出版社,2009.
    [3]王世纪.开口薄壁压杆的弯扭屈曲理论与试验研究[R].全国钢结构标准技术委员会钢结构研究论文报告集,第一册,1982,191-207.
    [4]吕烈武,沈世钊,沈祖炎,胡学仁.钢结构构件稳定理论[M].北京:中国建筑工业出版社,1983.
    [5]郭耀杰,方山峰.钢结构构件弯扭屈曲问题的计算和分析[J].建筑结构学报,1990,11(3):38-44.
    [6]周绪红.开口薄壁型钢压弯构件中板件屈曲后性能与板组屈曲后相关作用的研究[D].湖南大学,1992.
    [7]陈绍蕃.卷边槽钢的局部相关屈曲和畸变屈曲[J].建筑结构学报,2002,23(1):27-31.
    [8]周绪红,莫涛,周期石,刘永健.边缘加劲板件有效宽厚比设计方法中的板组效应研究[J].建筑结构学报,2002,23(3):37-43.
    [9]Rondal J. Cold Formed Steel Members and Structures General Report [J]. Journal of Constructional Steel Research.2000,55(1-3):155-158.
    [10]Davies JM. Recent Research Advances in Cold-Formed Steel Structures [J]. Journal of Constructional Steel Research.2000,55(1-3):267-288.
    [11]Chilver AH. The Behavior of Thin-walled Structural Members in Compression [J]. The Engineering,1951,281-282.
    [12]Dwight JB. Aluminum Sections with Lipped Flanges and Their Resistance to Local Buckling [A]. Symposium on aluminum in structural engineering, London:1963,67-74.
    [13]Sharp ML. Longitudinal Stiffeners for Compression Members [J]. Journal of the Structural Engineering,1966, Vol.92(ST5):187-211.
    [14]Desmond TP, Pekoz T, Winter G Edge Stiffeners for Thin-walled Members [J]. Journal of Structural Engineering (ASCE) 1981,107(2):329-353.
    [15]Desmond TP, Pekoz T, Winter G. Intermediate Stiffeners for Thin-walled Members [J]. Journal of Structural Engineering (ASCE) 1981,107(4):627-648.
    [16]Thomasson P. Thin-walled C-shaped Panels in Axial Compression [R]. Report Dl, Swedish Council for Building Research,1978.
    [17]Sridharan S. A Semi-analytical Method for the Post-local-torsional Buckling Analysis of Prismatic Plate Structures [J]. Int. J. Numer. Methods Engrg.,18,1685-1697.
    [18]Mulligan GP. The Influence of Local Buckling on the Structural Behavior of Singly-Symmetric Cold-Formed Steel Columns [D]. Cornell University, Ithaca, NY,1983.
    [19]Hancock GJ. Distortional Buckling of Steel Storage Rack Columns [J]. Journal of Structural Engineering (ASCE) 1985,111(12):2770-2783.
    [20]Lau SCW, Hancock GJ. Distortional Buckling Formulas for Channel Columns [J]. Journal of Structural Engineering (ASCE) 1987,113(5):1063-1078.
    [21]Lau SCW, Hancock GJ. Distortional Buckling Tests of Cold-Formed Channel Sections [A]. Ninth International Specialty Conference on Cold-Formed Steel Structures, St Louis, Missouri,1988:45-73.
    [22]Lau SCW, Hancock GJ. Inelastic buckling of channel columns in the distortional mode [J]. Thin-Walled Structures 1990,10(3):59-84.
    [23]Kwon YB, Hancock GJ. Test of cold-formed channels with local and distortional buckling [J]. Journal of Structural Engineering (ASCE) 1992; 117(7):1786-1803.
    [24]Kwon YB, Hancock GJ. Post-buckling analysis of thin-walled channel sections undergoing local and distortional buckling [J]. Computer & Structures 1993; 49(3):507-516.
    [25]Bernard ES, Bridge RQ, Hancock GJ. Tests on profiled steel decks with V-stiffeners [J]. Journal of Structural Engineering (ASCE) 1993; 119(8):2277-2293.
    [26]Hancock GJ, Kwon YB, Bernard ES. Strength design curves for thin-walled sections undergoing distortional buckling [J]. Journal of Constructional Steel Research 1994; 31(2-3): 169-186.
    [27]Bernard ES, Bridge RQ, Hancock GJ. Tests on profiled steel decks with flat hat stiffeners [J]. Journal of Structural Engineering (ASCE) 1995; 121(8):1175-1182.
    [28]Papangelis JP, Hancock GJ. Computer analysis of thin-walled structural members [J]. Computer & Structures 1995; 56(1):157-176.
    [29]Papangelis JP, Hancock GJ. THIN-WALL 2.0 [CP]. Center for advanced structural engineering, Department of civil engineering, University of Sydney, Sydney, Australia,1998.
    [30]Bernard ES, Bridge RQ, Hancock GJ. Design methods for profiled steel decks with intermediate stiffeners [J]. Journal of Constructional Steel Research 1996; 38(1):61-88.
    [31]Hancock GJ, Rogers CA, Schuster RM. Comparison of the distortional buckling method for flexural members with tests [A]. Proceedings of the thirteenth international specialty conference on cold-formed steel structures, St. Louis MO,1996.
    [32]Hancock GJ. Design for distortional buckling of flexural members [J]. Thin-Walled Structures 1997; 27(1):3-12.
    [33]Hikosaka H, Takami K, Maruyama Y. Analysis of Elastic Distortional Instability of Thin-Walled Members with Open Polygonal Cross Section [A]. Proceedings of Japan Society of Civil Engineers, Struct. Eng./Earthquake Eng.1987; 4(1):31-40.
    [34]Seah LK. Buckling behaviour of edge stiffeners in thin-walled sections [D]. Strathclyde University, Glasgow,1989.
    [35]Seah LK, Rhodes J. Simplified Buckling Analysis of Plate with Compound Edge Stiffeners [J]. Journal of Engineering Mechanics (ASCE) 1993,119(1):19-38.
    [36]Seah LK, Rhodes J, Lim BS. Influence of lips on thin-walled sections [J]. Thin-Walled Structures 1993; 16(1-4):145-178.
    [37]Chou SW, Seah LK, Rhodes J. Accuracy of Some Codes of Practice in Predicting the Local Capacity of Cold-Formed Columns [J]. Journal of Constructional Steel Research 1996; 37(2): 137-172.
    [38]Polyzois D, and Sudharmapal AR. Cold-Formed Steel Z-Section with Sloping Edge Stiffness under Axial Load [J]. Journal of Structural Engineering (ASCE) 1990,116(2):392-406.
    [39]Polyzois D, Charnvarnichborikarn P. Web-Flange Interaction in Cold-Formed Steel Z-Section Column[J]. Journal of Structural Engineering (ASCE) 1993,119(9):2607-2628.
    [40]Serrette RL, Pekoz T. Distortional Buckling of Thin-Walled Beams/Panels, I:Theory [J]. Journal of Structural Engineering (ASCE) 1995,121(4):757-766.
    [41]Serrette RL, Pekoz T. Distortional Buckling of Thin-Walled Beams/Panels, Ⅱ:Design Methods [J]. Journal of Structural Engineering (ASCE) 1995,121(4):767-776.
    [42]Serrette RL, Pekoz T. Bending Strength of Standing Seam Roof Panels [J]. Thin-Walled Structures 1997,27(1):55-64.
    [43]Rogers CA, Schuster RM. Flange/web distortional buckling of cold-formed steel sections in bending [J]. Thin-Walled Structures 1997,27(1):13-29.
    [44]Jiang C, Davies JM. Design of Thin-Walled Purlins for Distortional Buckling [J]. Thin-Walled Structures 1997,29(1-4):189-202.
    [45]Davies JM, Jiang C. Design for Distortional Buckling [J]. Journal of Constructional Steel Research 1998,46(1-3):174-175.
    [46]Kesti J, Davies JM. Local and Distortional Buckling of Thin-Walled Short Columns [J]. Thin-Walled Structures 1999,34(2):115-134.
    [47]Schafer BW, Pekoz T. Geometric imperfections and residual stresses for use in the analytical modeling of cold-formed steel members [A]. Thirteenth International Specialty Conference on Cold-Formed Steel Structures, St. Louis, MO:1996,649-664.
    [48]Schafer BW, Pekoz T. Computational modeling of cold-formed steel:Characterizing geometric imperfections and residual stresses [J]. Journal of Constructional Steel Research 1998,47(3):193-210.
    [49]Schafer BW, Pekoz T. Cold-formed steel members with multiple longitudinal intermediate stiffeners [J]. Journal of Structural Engineering (ASCE) 1998; 124(10):1175-1181.
    [50]Schafer BW, Pekoz T. Stiffened elements with multiple intermediate stiffeners and edge stiffened elements with intermediate stiffeners [A]. Sixteenth International Specialty Conference on Cold-Formed Steel Structures, Orlando, FL:2002,41-52.
    [51]Schafer BW, Pekoz T. Direct strength prediction of cold-formed steel members using numerical elastic buckling solutions [A]. Proceedings of the fourteenth international specialty conference on cold-formed steel structures, St. Louis, MO:1998,69-76.
    [52]Schafer BW, Pekoz T. Laterally braced cold-formed steel flexural members with edge stiffened flanges [J]. Journal of Structural Engineering (ASCE) 1999; 125(2):118-127.
    [53]Schafer BW. Distortional buckling of cold-formed steel columns [R]. Research report RP00-1, Committee on Specifications for the Design of Cold-Formed Steel Structural Members, American Iron and Steel Institute, Revision 2006, August 2000.
    [54]Schafer BW. Local, distortional, and Euler buckling in thin-walled columns [J]. Journal of Structural Engineering (ASCE) 2002; 128(3):289-299.
    [55]Yu C, Schafer BW. Distortional buckling tests on cold-formed steel beams [A]. Proceedings of the seventeenth international specialty conference on cold-formed steel structures, Orlando FL,2004,1-27.
    [56]Yu C, Schafer BW. Distortional buckling tests on cold-formed steel beams [J]. Journal of Structural Engineering (ASCE) 2006; 132(4):515-528.
    [57]Schafer BW, Sarawit A, Pekoz T. Complex edge stiffeners for thin-walled members [J]. Journal of Structural Engineering (ASCE) 2006; 132(2):212-226.
    [58]Adany S, Schafer BW. Buckling mode decomposition of single-branched open cross-section members via finite strip method:Derivation [J]. Thin-Walled Structures 2006,44(5):563-584.
    [59]Adany S, Schafer BW. Buckling mode decomposition of single-branched open cross-section members via finite strip method:Application and examples [J]. Thin-Walled Structures 2006,44(5):585-600.
    [60]Adany S, Schafer BW. A full modal decomposition of thin-walled, single-branched open cross-section members via the constrained finite strip method [J]. Journal of Constructional Steel Research 2008; 64(1):12-29.
    [61]Moen CD, Schafer BW. Experiments on cold-formed steel columns with holes [J]. Thin-Walled Structures 2008,46(3):1164-1182.
    [62]Moen CD, Schafer BW. Direct strength method for design of cold-formed steel columns with holes [J]. Journal of Structural Engineering (ASCE) 2011; 137(5):559-570.
    [63]Schafer BW, Li A, Moen CD. Computational modeling of cold-formed steel [J]. Thin-Walled Structures 2010,48(5):752-762.
    [64]Schafer BW. CUFSM 4.05-Elastic buckling analysis of thin-walled members by the finite strip method and constrained finite strip method for general end boundary conditions [CP]. Department of Civil Engineering, Johns Hopkins University,2012. (http://www.ce.jhu.edu/bschafer)
    [65]Silvestre N, Camotim D. Distortional buckling formulae for cold-formed steel C and Z-section members:Part Ⅰ-Derivation [J]. Thin-Walled Structures 2004; 42(11):1567-1597.
    [66]Silvestre N, Camotim D. Distortional buckling formulae for cold-formed steel C and Z-section members:Part Ⅱ-Validation and application [J]. Thin-Walled Structures 2004; 42(11):1599-1629.
    [67]Silvestre N, Camotim D. Local-plate and distortional post-buckling behavior of cold-formed steel lipped channel columns with intermediate stiffeners [J]. Journal of Structural Engineering (ASCE) 2006; 132(4):529-540.
    [68]Basaglia C, Camotim D, Silvestre N. Post-buckling analysis of thin-walled steel frames using generalised beam theory (GBT) [J]. Thin-Walled Structures 2013; 62(1):229-242.
    [69]Landesmann A, Camotim D. On the Direct Strength Method (DSM) design of cold-formed steel columns against distortional failure [J]. Thin-Walled Structures 2013; 67(6):168-187.
    [70]苏明周,陈绍蕃.卷边槽钢梁受压翼缘畸变屈曲时的屈曲系数[J].西安建筑科技大学学报,1997;29(2):119-124.
    [71]陈绍蕃.卷边槽钢的局部相关屈曲和畸变屈曲[J].建筑结构学报,2002;23(1):27-32.
    [72]石宇,周绪红,苑小丽,等.冷弯薄壁卷边槽钢轴心受压构件承载力计算的折减强度法[J].建筑结构学报,2010,31(9):78-86.
    [73]陈骥.受压的冷弯卷边槽钢畸变屈曲强度和其相关屈曲承载力[J].钢结构(增刊),2008;302-310.
    [74]何保康,蒋路,姚行友等.高强冷弯薄壁型钢卷边槽形截面轴压柱畸变屈曲试验研究[J].建筑结构学报,2006;27(3):10-17.
    [75]蒋路.卷边槽形冷弯薄壁型钢轴压柱畸变屈曲的试验和理论研究[D].西安:西安建筑科技大学,2007.
    [76]姚行友,李元齐,沈祖炎.高强冷弯薄壁型钢卷边槽形截面轴压构件畸变屈曲性能研究[J].建筑结构学报,2010;31(11):1-9.
    [77]李元齐,王树坤,沈祖炎,姚行友.高强冷弯薄壁型钢卷边槽形截面轴压构件试验研究 及承载力分析[J].建筑结构学报,2010;31(11):17-25.
    [78]李元齐,刘翔,沈祖炎,姚行友.高强冷弯薄壁型钢卷边槽形截面偏压构件试验研究及承载力分析[J].建筑结构学报,2010;31(11):26-35.
    [79]李元齐,刘翔,沈祖炎等.高强冷弯薄壁型钢卷边槽形截面轴压构件畸变屈曲控制试验研究[J].建筑结构学报,2010;31(11):10-16.
    [80]姚行友.冷弯薄壁型钢开口截面构件畸变屈曲性能与设计方法研究[D].上海:同济大学,2012.
    [81]Teng JG, Yao J, Zhao Y. Distortional buckling of channel beam-columns [J]. Thin-Walled Structures 2003; 41(7):595-617.
    [82]张兆宇.冷弯薄壁C形槽钢畸变屈曲的试验研究[D].杭州:浙江大学,2005.
    [83]姚谏,滕锦光.冷弯薄壁卷边槽钢弹性畸变屈曲分析中的转动约束刚度[J].工程力学,2008;25(4):65-69.
    [84]程婕,姚谏.弯曲应力作用下的腹板转动约束刚度研究[J].工程力学,2010;27(11):94-98,105.
    [85]姚谏,滕锦光.冷弯薄壁卷边槽钢的弹性畸变屈曲荷载简化计算公式[J].浙江大学学报(工学版),2008;42(9):1494-1501.
    [86]姚谏.普通卷边槽钢的弹性畸变屈曲荷载[J].工程力学,2008;25(12):30-34.
    [87]姚谏,程婕,邢丽.冷弯薄壁卷边槽钢梁的弹性畸变屈曲荷载简化计算公式[J].工程力学,2011;28(10):21-26.
    [88]姚谏,程婕,卢哲刚.冷弯薄壁卷边Z形钢梁的弹性畸变屈曲荷载[J].工程力学,2013;30(1):81-86.
    [89]顾建飞,姚谏,钱国桢.冷弯薄壁槽钢柱畸变屈曲的有限元分析及一种控制措施[J].科技通报,2007;23(1):111-115.
    [90]杨晓通,姚谏.加连杆的冷弯薄壁卷边槽钢受压性能试验研究与有限元分析[J].科技通报,2007;23(5):729-735.
    [91]孙觅,王广,姚谏.加设隔板的卷边槽钢受压弹性畸变屈曲[J].低温建筑技术,2008;124(4):79-81.
    [92]郑建灿,姚谏.受弯卷边槽钢的畸变屈曲及加固[J].低温建筑技术,2008;125(5):67-69.
    [93]Yaochun Zhang, Chungang Wang, Zhuangnan Zhang. Tests and finite element analysis of pin-ended channel columns with inclined simple edge stiffeners [J]. Journal of Constructional Steel Research 2007; 63(3):383-395.
    [94]王春刚,张耀春,张壮南.冷弯薄壁斜卷边槽钢受压构件的承载力试验研究[J].建筑结构学报,2006;27(3):1-9.
    [95]王春刚,张耀春.冷弯薄壁斜卷边槽钢轴压构件的稳定性分析[J].哈尔滨工业大学学报,2009;41(12):14-19.
    [96]张壮南,张耀春,王春刚.斜卷边槽钢偏心受压构件的稳定性分析[J].哈尔滨工业大学学报,2010;42(12):1866-1869,1976.
    [97]王春刚,宋代军,张壮南.冷弯薄壁复杂卷边槽钢轴压固支构件稳定性能分析[J].工业建筑,2012;42(2):120-124.
    [98]王春刚,张壮南,张耀春.冷弯薄壁斜卷边槽钢轴压构件承载力计算的直接强度法研究[J].工程力学,2012;29(3):75-82.
    [99]王春刚,张壮南,贾连光,马平.板件中间V形加劲复杂卷边槽钢轴压构件的稳定性能 研究[J].工程力学,2012;29(12,增刊IT):113-116,121.
    [100]张耀春,王海明.冷弯薄壁型钢C形截面构件受弯承载力试验研究[J].建筑结构学报,2009;30(3):53-61.
    [101]Haiming Wang, Yaochun Zhang. Experimental and numerical investigation on cold-formed steel C-section flexural members [J]. Journal of Constructional Steel Research 2009; 65(5): 1225-1235.
    [102]王海明,张耀春.直卷边和斜卷边受弯构件畸变屈曲性能研究[J].工业建筑,2008;38(6):106-109.
    [103]王海明,张耀春.冷弯型钢C形截面受弯构件平面内稳定性能研究[J].建筑结构,2009;39(4):87-91.
    [104]王海明,张耀春.冷弯薄壁型钢受弯构件受弯承载力实用计算方法研究[J].建筑结构学报,2010;S1(增刊I):178-183.
    [105]张振宇.带缀板的冷弯薄壁卷边槽形截面受压构件稳定性能研究[D].西安:长安大学,2008.
    [106]常伟.高强冷弯薄壁卷边槽钢柱畸变屈曲非线性有限元分析[D].西安:长安大学,2008.
    [107]占冠元.冷弯薄壁卷边槽钢构件受压畸变屈曲性能及加固控制措施分析[D].合肥:合肥工业大学,2009.
    [108]陈伟,叶继红.卷边槽钢压弯构件弹性畸变屈曲研究[J].土木工程学报,2009;42(12):51-60.
    [109]姚永红,武振宇,成博,邓君宝.开孔冷弯薄壁卷边槽钢柱轴压性能的试验研究[J].华南理工大学学报(自然科学版),2011;39(9):61-67.
    [110]黄伟鑫,刘杰,王凤利.冷弯薄壁卷边槽钢畸变屈曲的数值分析[D].低温建筑技术,2008;123(3):78-79.
    [111]吴金秋,童根树.不同斜卷边檩条的局部屈曲和畸变屈曲[J].钢结构,2006;21(5):70-73.
    [112]金声.开口薄壁构件的单肢解析化分析[D].重庆:重庆大学,2009.
    [113]罗洪光.冷弯薄壁斜卷边槽钢弹性畸变屈曲计算研究[D].武汉:武汉大学,2011.
    [114]Hongguang Luo, Yaojie Guo, Shicheng Ma. Distortional buckling of thin-walled inclined lipped channel beams bending about the minor axis [J]. Journal of Constructional Steel Research 2011; 67(12):1884-1889.
    [115]Ziqi He, Xuhong Zhou. Strength design curves and an effective width formula for cold-formed steel columns with distortional buckling [J]. Thin-Walled Structures,2014,79(6):62-70.
    [116]Davies JM, Jiang C. Design of thin-walled beams for distortional buckling [A]. Proceedings of the thirteenth international specialty conference on cold-formed steel structures, St. Louis MO,1996,141-154.
    [117]Young B. The Behavior and design of cold-formed channel columns [D]. University of Sydney, Sydney, Australia,1997.
    [118]Yang D, Hancock GJ. Compression tests of cold-reduced high strength steel channel columns failing in the distortional mode [R]. Research report No. R825, School of civil and mining engineering, University of Sydney, Sydney, Australia,2003.
    [119]Yang D, Hancock GJ. Compression tests of high strength steel channel columns with interaction between local and distortional buckling [J]. Journal of Structural Engineering (ASCE)2004; 130(12):1954-1963.
    [120]Yap DCY, Hancock GJ. Compression tests of high strength cold-formed cross-shaped steel columns [R]. Research report No. R869, School of civil and mining engineering, University of Sydney, Sydney, Australia,2006.
    [121]Yap DCY, Hancock GJ. Experimental study of complex high-strength cold-formed cross-shaped steel sections [J]. Journal of Structural Engineering (ASCE) 2008; 134(8):1322-1333.
    [122]Kwon YB, Kim BS, Hancock GJ. Compression tests of high strength cold-formed steel channel columns with buckling interaction [J]. Journal of Constructional Steel Research 2009; 65(2):278-289.
    [123]Yap DCY, Hancock GJ. Experimental study of high strength cold-formed stiffened-web steel sections [R]. Research report No. R889, School of civil and mining engineering, University of Sydney, Sydney, Australia,2008.
    [124]Yap DCY, Hancock GJ. Experimental study of high-strength cold-formed stiffened-web C-sections in compression [J]. Journal of Structural Engineering (ASCE) 2011; 137(2):162-172.
    [125]Dinis PB, Camotim D, Silvestre N. FEM-based analysis of the local-plate/distortional mode interaction in cold-formed steel lipped channel columns [J]. Computer & Structures 2007; 85(19-20):1461-1474.
    [126]Silvestre N, Camotim D, Dinis PB. Direct strength prediction of lipped channel columns experiencing local-plate/distortional interaction [J]. Advanced Steel Construction 2009; 65(1): 45-67.
    [127]Dinis PB, Camotim D. Post-buckling behavior and strength of cold-formed steel lipped channel columns experiencing distortional/global interaction [J]. Computer & Structures 2011; 89(3-4):422-434.
    [128]Camotim D, Dinis PB. Coupled instabilities with distortional buckling in cold-formed steel lipped channel columns [J]. Thin-Walled Structures 2011; 49(2):562-575.
    [129]Dinis PB, Camotim D. Local/distortional/global mode interaction in simply supported cold-formed steel lipped channel columns [J]. International Journal of Structural Stability and Dynamics 2011; 11(5):877-902.
    [130]Dinis PB, Camotim D, Batista EM, Santos ES. Local/distortional/global mode interaction in fixed lipped channel columns:behavior and strength [J]. Advanced Steel Construction 2011; 7(4):113-130.
    [131]Silvestre N, Camotim D, Dinis PB. Post-buckling behavior and direct strength design of lipped channel columns experiencing local/distortional interaction [J]. Journal of Constructional Steel Research 2012; 73(6):12-30.
    [132]Santos ES, Batista EM, Camotim D. Experimental investigation concerning lipped channel columns undergoing local-distortional-global buckling mode interaction [J]. Thin-Walled Strucures 2012; 54(3):19-34.
    [133]Dinis PB, Batista EM, Camotim D, Santos ES. Local/distortional/global interaction in lipped channel columns:experimental results, numerical simulations and design considerations [J]. Thin-Walled Structures 2012; 61(12):2-13.
    [134]Young B, Silvestre N, Camotim D. Cold-formed steel lipped channel columns influenced by local-distortional interaction:strength and DSM design [J]. Journal of Structural Engineering (ASCE) 2013; 139(6):1059-1074.
    [135]Loughlan J, Yidris N, Jones K. The failure of thin-walled lipped channel compression members due to coupled local-distortional interaction and material yielding [J]. Thin-Walled structures 2012; 61(12):14-21.
    [136]Dubina D, Ungureanu V, Crisan A. Experimental Evidence of Erosion of Critical Load in Interactive Buckling [J]. Journal of Structural Engineering (ASCE) 2013; 139(5):705-716.
    [137]陶忠.腹板中间V型加劲卷边槽钢柱单波型和多波型相关屈曲性能分析和试验研究[D].西安:西安建筑科技大学,2000.
    [138]宋延勇.冷弯薄壁型钢偏压构件及自攻螺钉连接承载力试验研究[D].上海:同济大学,2008.
    [139]何子奇,周绪红,刘占科,陈明.冷弯薄壁卷边槽钢轴压构件畸变与局部相关屈曲试验研究[J].建筑结构学报,2013;34(11):98-108.
    [140]EN1993-1-3:2006. Eurocode 3-Design of steel structures-part 1-3:General rules-Supplementary rules for cold-formed members and sheeting [S]. European Committee for Standardization,2006.
    [141]NAS S136-2007. North American specification for the design of cold-formed steel structural members [S]. Washington DC:American Iron and Steel Institute (AISI); 2010.
    [142]AS/NZS 4600:2005. Cold-formed steel structures [S]. Sydney-Wellington:Standards of Australia and Standards of New Zealand; 2005.
    [143]GB 50018-2002冷弯薄壁型钢结构技术规范[S].北京:中国计划出版社,2003.
    [144]JGJ 227-2011低层冷弯薄壁型钢房屋建筑技术规程[S].北京:中国建筑工业出版社,2011.
    [145]GB/T 228.1-2010,金属材料拉伸试验室温试验方法[S].北京:中国标准出版社,2011.
    [146]Dubina D, Ungureanu V. Effect of imperfections on numerical simulation of instability behavior of cold-formed steel members [J]. Thin-Walled Structures,2002,40(3):239-262.
    [147]Young B, Rasmussen KJR. Design of lipped channel columns [J]. Journal of Structural Engineering (ASCE) 1998; 124(2):140-148.
    [148]Young B, Yan J. channel columns undergoing local, distortional and overall buckling [J]. Journal of Structural Engineering (ASCE) 2002; 128(6):728-736.
    [149]Bleich F. Buckling strength of metal structures [M]. New York:McGraw-Hill,1952.
    [150]钱伟长.变分法及有限元(上册)[M].北京:科学出版社,1980.
    [151]Cheung YK. Finite strip method in structural analysis [M]. New York:Robert Maxwell, 1976.
    [152]Cheung YK, Fan SC, Wu CQ. Spline finite strip in structural analysis [A]. Proceedings of the international conference on finite element method. Shanghai:Gordon and beach science publishers,1982.
    [153]Fan SC. Spline finite strip in structural analysis [M]. Hong Kong:University of Hong Kong, 1982.
    [154]Lau SCW, Hancock GJ. Buckling of thin flat-walled structures by a spline finite strip method [J]. Thin-walled structures,1986,4(4):269-294.
    [155]Lau SCW, Hancock GJ. Inelastic buckling analysis of beams, columns and plates using the spline finite strip method [J]. Thin-walled structures,1989,7(3-4):213-238.
    [156]Schafer BW. Cold-formed steel behavior and design:Analytical and numerical modeling of elements and members with longitudinal stiffeners [D]. Ithaca, New York:Cornell University, 1997.
    [157]Schardt R. Verallgemeinerte Technische Biegetheorie [M]. Springer-Verlag, Berlin,1989. [in German]
    [158]Schardt R. Generalized beam theory-an adequate method for coupled stability problems [J]. Thin-Walled structures 1994; 19(2-4):161-180.
    [159]Schardt R. Lateral torsional and distortional buckling of channel and hat-sections [J]. Journal of Constructional Steel Research 1994; 31(2-3):243-265.
    [160]Davies JM, Leach P. First-Order Generalised Beam Theory [J]. Journal of Constructional Steel Research 1994; 31(2-3):187-220.
    [161]Davies JM, Leach P, Heinz D. Second-Order Generalised Beam Theory [J]. Journal of Constructional Steel Research 1994; 31(2-3):221-242.
    [162]Silvestre N, Camotim D. Distortional buckling formulae for cold-formed steel rack-section members [J]. Steel & Composite Structures 2004; 4(1):49-75.
    [163]Longyuan Li, Jiangkang Chen. An analytical model for analysing distortional buckling of cold-formed steel sections [J]. Thin-Walled structures 2008; 46(12):1430-1436.
    [164]Pala M. A new formulation for distortional buckling stress in cold-formed steel members [J]. Journal of Constructional Steel Research 2006; 62(7):716-722.
    [165]Pala M, Caglar N. A parametric study for distortional buckling stress on cold-formed steel using a neural network [J]. Journal of Constructional Steel Research 2007; 63(5):686-691.
    [166]Pala M. Genetic programming-based formulation for distortional buckling stress of cold-formed steel members [J]. Journal of Constructional Steel Research 2008; 64(12):1495-1504.
    [167]Johnston BG. Guide to Stability Design Criteria for Metal Structures,3rd edition [M]. New York:John Wiley; 1976.
    [168]von Karman T, Sechler EE, Donnell LH. The strength of thin plates in compression [J]. Transactions of the ASME,1932,54:53-57.
    [169]Winter G. Strength of thin steel compression flanges [J]. Transactions of ASCE,1947, Paper No.2305, Trans.,112,1.
    [170]Hancock GJ, Murray TM, Ellifritt DS. Cold-Formed Steel Structures to the AISI Specification [M]. New York:Marcel Dekker; 2001.
    [171]Schafer BW. Review:the Direct Strength Method of cold-formed steel member design [J]. Journal of Constructional Steel Research 2008; 64(7-8):766-778.
    [172]Ziemian RD. Guide to Stability Design Criteria for Metal Structures,6th edition [M]. New Jersey:John Wiley & Sons; 2010.
    [173]NAS S136-2004. Commentary of design of cold-formed steel structural members using the Direct Strength Method, Appendix 1 of the NAS [S]. Washington DC:American Iron and Steel Institute (AISI); 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700