考虑局部稳定的铝合金构件及板件的承载力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新型建筑结构材料,铝合金具有重量轻、耐腐蚀、易于维护、施工方便等优点,能够适应现代工程结构向大跨和轻质方向发展以及承受恶劣条件的需要。国内对铝合金结构的研究已经开始,相关规范的制订也正在进行,这些工作将极大地促进铝合金结构在中国的推广应用。
     本文依托国家建设部《铝合金结构设计规范》编制项目和山东省建设厅《钢结构建筑节能体系及铝镁锰合金墙板技术研究》科研项目,对易于发生局部屈曲的薄壁铝合金轴压构件、铝合金工字形组合板件及铝合金面板的稳定承载力进行研究。
     本文对薄壁铝合金轴压构件、铝合金工字形组合板件进行理论分析,在国外试验研究的基础上确定正确的有限元分析模型,在参数分析的基础上提出一系列可供指导设计的实用计算公式。此外,本文系统地提出了铝合金面板的设计方法及计算公式,并依托试验研究验证了各项铝合金面板设计公式的准确性。以下是本文工作的主要研究成果:
     1)将直接强度法应用于薄壁铝合金轴压构件的稳定承载力计算,解决目前有效截面理论求解薄壁铝合金构件的某些缺陷。
     2)利用国外试验数据建立正确的有限元模型,对薄壁铝合金轴压构件进行非线性有限元分析,为后续的参数分析提供可靠的数值结果。
     3)建议基于直接强度法的薄壁铝合金轴压构件承载力计算公式,并与有限元计算结果、国外试验数据及欧洲规范计算结果进行数值比对,验证公式的正确性。
     4)对目前工字形组合板件抗剪承载力的各种计算方法进行分析,针对铝合金材料弹性模量低,易发生局部剪切屈曲的力学特性建议合适的计算方法。
     5)利用国外试验数据建立正确的有限元模型,对铝合金工字形组合板件进行非线性有限元分析,并进行相应的参数分析。
     6)给出考虑腹板剪切屈曲后强度和翼缘抗剪作用的铝合金工字形组合板件的抗剪承载力计算公式,并与国外相应试验结果、有限元计算结果及欧洲规范计算结果进行数值比对,验证公式的正确性。
     7)对国内外常用的铝合金屋面、墙面系统及其特点进行了介绍。
As a new-style structural material, aluminium alloy has the characteristic of lightweight, uncorruptness, convenient for maintenance and assembly, and fits need of development of modern engineering structures to long-span, lightweight and high-durability. The study for aluminium alloy structure already began in China, and the concerned design code is being established now. Those researches will boost the application of aluminium alloy structure in China.
    Supporting by projects of and , the paper studies thin walled aluminium alloy members under axial force, aluminium alloy girders under shear, and the resistance of aluminium alloy plates.
    The paper presents the theory analysis for thin walled aluminium alloy members under axial force and aluminium alloy girders under shear. Based on experimental data, the finite element models were established and confirmed. Based on parameter analysis, a series of design formulas were proposed. Moreover, The paper presents the whole design method and design formulas for aluminium alloy plates. Based on experimental research, those design formulas were confirmed. The main productions of this paper can be found in the following list:
    1) The direct strength method is introduced for calculating the resistance of thin walled aluminium alloy members under axial force. It will solve the disadvantages of the effective section theory.
    2) Ansys software was adopted to do the non-linear analysis of thin walled aluminium alloy members under axial force. The calculation results of finite element model have been verified by comparison with experimental results. The accurate data was provided by the finte element analysis for the parameter analysis later.
    3) The design formulas based on direct strength method were proposed for calculating the resistance of thin walled aluminum alloy members under axial force, and were verified by comparison with experimental results, finite element results and
引文
[1] 中华人民共和国国家标准.GB/T16474-1996变形铝及铝合金牌号表示方法.北京:中国标准出版社,1996
    [2] 中华人民共和国国家标准.GB50017-2003钢结构设计规范.北京:中国计划出版社,2003
    [3] 中华人民共和国国家标准,GB50018-2002冷弯薄壁型钢结构技术规范,北京:中国计划出版社,2002
    [4] Mazzolani F M. Aluminium Structural Design, New York: Springer Wien New York, 2003.
    [5] 陈爱军,邵旭东.铝合金在桥梁工程中的应用.建筑技术开发,2005,Vol.32(11):64-66
    [6] 张竹荪.铝合金幕墙板技术经济分析,建筑技术开发,1998,Vol.25(3):29-30
    [7] 王祝堂,田荣璋.铝合金及其加工手册.长沙:中南大学出版社,2000.
    [8] 张士林,任颂赞.简明铝合金手册.上海:上海科学技术文献出版社,2001
    [9] Mazzolani F M. Aluminium Alloy Structures (Second Edition). London: Chapman & Hall, 1995
    [10] Templin R L, Strum R G, Hartman E C, Holt M. Column strength of various aluminum alloys, ARL Technical Paper No.1, ALCOA 1938.
    [11] Osgood W R, Holt M. The column strength of two extruded aluminum alloy H-sections. NACA Report 656, 1939: 289~312.
    [12] Holt M. Tests on built-up columns of tructural alumunum alloys. ASCE. Trans. 105, 1940: 196-219.
    [13] Marshall E and Leary J. R., The Column Strength of Aluminum Alloy 75 S-T Extruded Shapes, National Advisory Committee For AeronNautics, Report No. 1004. 1946.
    [14] Clark J W and Rolf R L. Design of aluminum tubular members, J. Struct. Div., ASCE, ST6, December 1964:259~89.
    [15] Mazzolani F M.铝合金结构.谭祝梅译.北京:冶金工业出版社,1992
    [16] Bernard A, Frey F, Janss J, Massonnet C H. Research on the buckling behavior of aluminum columns. Report CIDA, IABSE Mem., Vol. 33-Ⅰ, Zurich, 1971.
    [17] Bernard A. Study on the Buckling of Aluminium Industrial Bars. ECCS Committee 16, Doc.1.1-73-3, 1973.
    [18] Faella C. and Mazzolani F. M., On the post-buckling behavior of bars under generic loads. 2nd National Congress AIMETA, Naples, October 1974.
    [19] Faella C, Mazzolani F M. Simulation of the behavior of inelastic industrial bars under axial load. Construction Metal, 1974.
    [20] Flahaux M. and Frey F., Study of a series of problems for plane buckling of aluminum alloy industrial columns, Travail de Fin d'Etudes, University of Liege, 1974.
    [21] Valtinat G. and Muller R., Alu-alloy welded column buckling research program: numerical computations, ECCS Committee 16, Doe. 16-76-3, 1976.
    [22] Frey F., Alu-alloy welded column buckling research program: test results, ECCS Committee 16, Doc. 16-77-3, 1977.
    [23] Valtinat G, Muller R. Ultimate load of beam-column in aluminium alloy with longitudinal and transversal welds. Proceedings of the 2nd International Colloquium on Stability of Steel Structures, Liege, 1977
    [24] Faella C. and Mazzolani F. M., Buckling behavior of aluminum alloy welded columns, ECCS Committee 16, Doc. 16-78-2, June 1978.
    [25] Mazzolani F. M., Inelastic Buckling of Metal Bars, Stavebnicky Casopis, September 1975.
    [26] Mazzolani F. M., Shape effect on buckling of alu-alloy columns, ECCS Committee 16, Doc. 16-75-2, 1975.
    [27] Faella C. Influence of geometrical imperfections on the buckling behavior of aluminum compression bars. La Ricerca, 1976.
    [28] Mazzolani F M, Frey F. Buckling behavior of aluminum alloy extruded members. Pro of the Second International Colloquium on Stability of Steel Structures, Liege, 1977.
    [29] Mazzolani F M. Working Proposal to the European Buckling Curves for Aluminum Alloy Profiles. Annual Meeting of ECCS Chairman, Puteaux, December 1971.
    [30] Valtinat G. Outstandings of compressed aluminum profiles, ECCS Committee 16 Report, November 1976.
    [31] ECCS, European Recommendations for Aluminum Alloy Structures. London. 1978.
    [32] 吴亚舸,张其林.考虑相关屈曲的轴压铝合金板件有效截面计算,建筑结构,2006,36(2):55-59
    [33] Building Structures Standards Committee,BS8118-1, Structural use of aluminium. Code of practice for design. London. 1991
    [34] CEN. prEN1999-1-1:2000, Eurocode9: Design ofaluminium structures-General rules and rules for buildings. 2000.
    [35] Bulson P S. The Treatment of Thin-Walled Aluminium Sections in Eurocode 9. Thin-walled Structures, 1997:Vol29(4): 3-12
    [36] Paul Bezkorovainy, Tim Burns, and Kim J. R. Rasmussen. Strength Curves for Metal Plates in Compression. J of struct engrg, 2003.vol 129(11): 1433-1440
    [37] Aalberg A, Langseth M, Larsen P K. Stiffened aluminium panels subjected to axial compression. Thin-Walled Structures 2001; vol, 39, pp861-885
    [38] 李明,陈扬骥,钱若军,等.圆管形铝合金轴心压杆稳定系数的试验研究.空间结构,2000,6(1):59-64
    [39] 李明,陈扬骥,钱若军,等.工字形铝合金轴心压杆稳定系数的试验研究.工业建筑,2001,31(1):52-54
    [40] 沈祖炎,郭小农.对称截面铝合金挤压型材压杆的稳定系数.建筑结构学报,2001,22(4):31-36
    [41] 罗永峰,季跃,芮渊,等.铝合金结构轴心压杆稳定性研究.同济大学学报,2001,29(4):401-405
    [42] 杨联萍,姚念亮,邱枕戈,等.铝合金轴心受压杆件的稳定系数研究.建筑结构,2001,31(4):28-29
    [43] 金鑫.单轴对称截面铝合金压杆极限承载力研究:[博士学位论文].上海:同济大学,2005
    [44] 郭小农.铝合金结构构件理论和试验研究:[博士学位论文].上海:同济大学,2006
    [45] 吴亚舸.铝合金受压板件局部屈曲与受弯构件弯扭屈曲承载力研究:[博士学位论文].上海:同济大学,2005
    [46] 张铮.铝合金结构压弯构件稳定承载力研究:[博士学位论文].上海:同济大学,2006
    [47] Schafer B W. Local, Distortional, and Euler Buckling in Thin-walled Columns.ASCE, Journal of Structural Engineering. 2002.vol128 (3): 289-299.
    [48] Schafer B W. Thin-Walled Column Design Considering Local, Distortional and Euler Buckling.Structural Stability Research Council Annual Technical Session and Meeting. 2001
    [49] Schafer B W, Pekoz T. Laterally Braced Cold-Formed Steel Flexural Members with Edge Stiffened Flanges.ASCE, Journal of Structural Engineering. 1999:vol125 (2) 118-127.
    [50] Schafer B W, Pekoz T P. Computational modeling of cold-formed steel: Characterizing geometric imperfections and residual stresses. J. Const. Steel Res. 1998,vol47(3): 193-210
    [51] Schafer B W. Cold-formed steel behavior and design: Analytical and numerical modeling of elements and members with longitudinal stiffeners:[PhD dissertation], Cornell Univ., Ithaca, 1997
    [52] Schafer B W, Pekoz T. The Behavior and Design of Longitudinally Stiffened Thin-Walled Compression Elements.Thin-walled Structures. 1997.Vol 27(1):65-78
    [53] Hancock G J. Design for distortional buckling of flexural members. Proc., 3rd Int. Conf. on Steel and Aluminum Struct., 1995: 275-284.
    [54] Hancoak G J. Design for Distortional Buckling of Flexural Members, Thin-Walled Structures 1997,27(1): 3-12
    [55] Hancock G J, Kwon Y B, and Bernard E S. Strength design curves for thin-walled sections undergoing distortionai buckling. J.Constr. Steel Res. 1994. vol31 (2-3): 169-186
    [56] Lau C W, Hancock G J. Distortional Buckling Formulas for Channel Columns. J. of Struct Eng, ASCE. 1987. vol113(5): 1063-1078
    [57] Lau C W, Hancock G J. Distortional Buckling Formulas for thin-walled Channel Columns. Research Report NO.R521.School of Civil and Mining Engineering, Univ.of Sydney, Australia. 1986
    [58] Hancock G J. Cold-Formed Steel Structures to the AISI Specification. Atlanta, Georgia NewYork. 2001
    [59] AISI. North American Specification for the Design of Cold-Formed Steel Structural Members(2004Edition).2004
    [60] Timoshenko S P, Gere J M. Theory of Elastic Stability. MCGraw-Hill, 1961
    [61] Aluminum Association. Aluminum Design Manual, Part1-A: Specifications for Aluminum Structures Allowable Stress Design[S]. Sixth Edition, Washington, DC, 1994
    [62] CEN. ENV1999-1 Design of aluminium alloy structures: general rules., Brussels, 1998
    [63] Standards Australia. AS/NZS 4600:1996, Cold-formed Steel Structures. 1996.
    [64] AISC. Load and Resistance Factor Design Specification for Structural Steel Buildings. 1999
    [65] AISI. North American Specification for the Design of Cold-Formed Steel Structural Members.2002
    [66] Building Structures Standards Committee.BS 5950-5. Structural use of steelwork in building. London. 1998
    [67] European Committee for Standardization. ENV1993-1 Design of steel structures: general rules, Brussels, 1993
    [68] Basler K. Strength of plate girders in shear. Journal of Structural Division, 1961, vol87(6):pl51-180
    [69] Porter D M, Rocky K C. The collapse behaviors of plate girders loaded in shear. Structural Engineering, 1975, vol53(8):313-315
    [70] Calladine C R. A plastic theory for collapse of plate girders under combined shearing force and bending moment. Structural Engineer, 1973,vol51 (4): 147-154
    [71] Hoglund T. Shear Buckling Resistance of Steel and Aluminium Plate Girders. Thin-walled structures, 1997 Vol.29( 1 -4): 13-30
    [72] Davies A W, Bhogal A S, Roberts T M. Shear strength of welded aluminium alloy plate girders. Proceedings of the Institution of Civil Engineers. Structures and Buildings. 1998. Vol. 128(3):308-314.
    [73] Davies A W. Griffith D S C. Shear strength of steel plate girders. Proceedings of the Institution of Civil Engineers. Structures and buildings. 1999,.vol 134(2): 147-157
    [74] Evans H R, Moussef S. Designed for plate girders. Proc Inst Civ Eng (London), 1988, vol85 89-104
    [75] Evens H R, Lee A Y N, An appraisal, by comparison with experimental data, of new design procedures for aluminium plate girders, Proceedings of the Institution of Civil Engineers. Structures and buildings, 1995,Vol.110(11): 34-49
    [76] Song C L, Chai H.Y. Strength of plate girder web panels under pure shear. Journal of Structure engineering, 1998.vol 124(2): p184-194
    [77] Song C L, Chai H.Y. Experimental Study on Ultimate Shear Strength of Web Panels. Journal of Structural Engineering, 1999.vol. 125(8): 838-846
    
    [78] 陈绍蕃.钢结构稳定设计指南.北京:中国建筑工业出版,2004
    
    [79] Sharp M L. Longitudinal stiffeners for compression members. AMERICAN SOCIETY OF CIVIL ENGINEERS, STRUCTURAL DIVISION. 1966.Vol92(5): 187-211
    
    [80] Pekoz T. Current research on thin-walled steel and aluminum structures at Cornell university. Singapore. International conference on steel and Aluminium structures. 1991
    
    [81] Serrette R L, PekOz T. Distortional Buckling of Thin-Walled Beams/Panels. I: Theory. Journal of Structural Engineering, 1995.vol121(4):757-766
    
    [82] Serrette R L, PekOz T. Distortional Buckling of Thin-Walled Beams/Panels. II: Design Methods. Journal of Structural Engineering, 1995.vol121 (4):767-776
    [83] Serrette R L, Pekoz T. Bending Strength of Standing Seam Roof Panels. Thin-Walled Structures. 1997.vol27(1):55-64
    [84] Schroter R C. Air pressure testing of sheet metal roofing. Proceedings of second international symposium on roofing and technology. Gaithersburg, MD, 1985: 1-6.
    [85] Sinno R R, Nail J B, Fowler S. Simulation of nonuniform unsteady wind pressures Report No. MBMA 98-01 (First Draft), USA: Mississippi State University, 2001.
    [86] Hosam M A, Paul E S. Models for standing seam roofs. Journal of wind engineering and industrial aerodynamics, 2003.vol91: 1689-1702
    [87] CEN. Eurocode9.Design of aluminium alloy structures part1.4: Supplementary rules for thin walled aiuminium sheeting. 2002
    [88] 高轩能,吴丽丽.拱型波纹钢屋盖结构局部板组相关屈曲的试验研究.钢结构工程研究论文集(4).北京:钢结构编辑部,2002.262-267
    [89] 高轩能,吴丽丽.拱型波纹钢屋盖结构均匀受压局部屈曲的有限元分析.钢结构工程研究论文集(4).北京:钢结构编辑部,2002.47~52
    [90] 吴丽丽.拱型波纹钢屋盖结构局部相关屈曲的有限元分析与试验研究[硕士学位论文]江西:南昌大学,2002.
    [91] 汤海林.波纹槽形截面板组局部相关屈曲的有限元分析[硕士学位论文],江西:南昌大学,2002.
    [92] 高轩能,王健.槽型波纹板组结构的局部屈曲承载能力研究.南昌大学学报2004,Vol.26(3):68-71
    [93] 王小平.大跨度拱型波纹钢屋盖试验研究与有限元分析[博士学位论文].武汉:武汉工业大学,1999
    [94] 张勇.金属拱型波纹钢屋盖结构分析、设计理论与试验研究[博士学位论文].天津:天津大学.2000
    [95] 张勇,刘锡良,王元清等.拱型波纹钢屋盖结构足尺模型试验研究.土木工程学报,2003,36(2):26~32
    [96] 李文岭,何保康.帽形中间加劲肋纯压作用下加劲性能的有限条分析.西安建筑科技大学学报.2004.Vol36(4):424-429
    [97] 李文岭.帽形中间加劲肋加劲性能研究.[硕士学位论文].西安:西安建筑科技大学,2003
    [98] 高晓博.压型钢板截面特性及抗弯性能试验研究[硕士学位论文].西安:西安建筑科技大学:2004
    [99] 何保康,李风,丁国良.冷弯型钢在房屋建筑中的应用与发展.焊管.2002,vol5:8-11
    [100] 余红霞,王志骞.初始不平直铝合金板的屈曲.西安交通大学学报.2002.Vol36(3):325-327
    [101] 余红霞.铝合金薄板稳定的研究.[硕士学位论文]..西安:西安交通大学,2001
    [102] 刘文辉,王志骞.余红霞.铝合金板的弹塑性临界屈曲应力.煤炭工程.2003.vol11:67-69
    [103] Cheung Y K. Finite Strip Method in Structural Analysis.New York: Pergamon Press,1976
    [104] Hancock G J. Design of Cold-Formed steel Structural. Australia: Australian institute of steel Condtruction,1976
    [105] Landolfo R, Mazzolani F M, Different Approaches in The Design of Slender Aluminium Alloy Sections. Thin-Walled Structures, 1997,Vol.27(1):85~102
    [106] Mennink J. Cross-sectional stability of aluminium extrusions Prediction of the actual local buckling behaviour[PhD dissertation]. Tanzania: Geboren te Sumve:2002
    [107] Landolfo R., Piluso V., Langseth, M., Hopperstad, O.S., EC9 provisions for flat internal elements, comparison with experimental results, In: Lightweight Steel and Aluminium Structures, Espoo, Finland, 1999
    [108] 陈骥.钢结构稳定理论与设计(第二版),北京:科学出版社,2003
    [109] CEN. ENV1999-1.Eurocode9.Design of aluminium alloy structures: general rules, Brussels,1998
    [110] 中华人民共和国行业标准,铝合金结构设计规范(征求意见稿),2006
    [111] Bleich.F.Buckling Strength of Metal Structures. McGraw-Hill Book Co.,Ltd.NewYork. 1952
    [112] Hassinen P. Compression strength of aluminium columns——Experimental and numerical studies, In: Proceedings of the 3rd International Conference on Coupled Instabilities of Metal Structures, London, UK, 2000
    [113] Lyse I, Godfray H J. Investigation of web Buckling in steel Beams. Transactions ASCE, 1935, Vol100:695-706
    [114] Rocky K, Skaloud M. Influence of flange stiffeners upon the load carrying capacity of webs in shear. IABSE Final Report. Eighth Congress, New York, 1968
    [115] Skaloud M. Ultimate load and failure mechanism of webs in shea. In IABSE Colloquium, London, 1971, Vol11:115-130
    [116] Hamoodi M J. The behaiour of reinforced aluminium web plates in a shear loading[PhD dissertation]. University of Wales College of Cardiff, 1983
    [117] Burt C A. The ultimate strength of aluminium plate girders[PhD dissertation]. University of Wales College of Cardiff, 1987
    [118] Ramberg W, Osgood W R. Description of stress-strain curves by three parameters, NACA Techn. No. 902, 1943.
    [119] 周承倜.弹性稳定理论.四川:四川人民出版社,1981
    [120] 任涛.工字梁腹板在局部承压和剪力作用下的弹性屈曲及极限承载力:[博士学位论文].杭州:浙江大学建筑工程学院,2005
    [121] 中华人民共和国国家标准.GB/T 16474-1996变形铝及铝合金牌号表示方法.北京:中国标准出版社,1996
    [122] 中华人民共和国国家标准,GB/T 16865-1997.变形铝镁及其合金加工制品拉伸试验用试样.北京:中国标准出版社,1997
    [123] 中华人民共和国国家标准.GB/T 8544-1997.铝及铝合金冷轧带材.北京:中国标准出版社,1997
    [124] AISI. Commentary on the 2001Edition of the North American Specification for the Design of Cold-Formed Steel Structural Members.2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700