广义N=1,2超Virasoro代数的超双代数结构及表示
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,Virasoro代数作为一类无限维李代数,是线性微分算子(ti+1d/(dt)|i∈Z)组成的无限维复李代数(Witt代数)的普遍中心扩张,其结构和表示在数学和理论物理的许多方面具有重要应用.在数学方面,Virasoro代数的表示对研究仿射Kac-Moody代数,moonshine模,顶点算子代数等都有重要作用.在理论物理方面,可参看Francesco, Mathieu和Senechal所著的共形场论[30]一书.超Virasoro代数及N=2超Virasoro代数可以分别看成是Virasoro代数的非平凡(?)2扩张和N=2超对称扩张,同样受到数学家和物理学家的广泛关注.
     在量子群理论中,构造既非交换又非余交换的Hopf代数是一个核心问题.我们知道,从Yang-Baxter方程的解得出的量子群是统计量子力学中最令人感兴趣的.对李代数(?)而言,经典Yang-Baxter方程的解(r-矩阵)对应(?)上的一个“三角的”李双代数结构.因此,对带有“三角”结构的李双代数进行量子化就变得非常有意义.2000年,Ng和Taft证明了Virasoro代数上的李双代数结构都是三角上边缘的.本文的第一章从Virasoro代数的一个二维子代数出发,构造出Drinfel'd twist,利用Virasoro代数的普遍包络代数上的标准Hopf代数结构,得到一个新的非交换非余交换的Hopf代数.与传统的量子化不同,我们这里所用的二维子代数是由两个非局部有限元生成的.
     量子超群是随着量子可逆散射理论推广到超系统[58]而自然出现的,李超双代数同样在其发展中占有重要地位.本文的第二章考虑超Virasoro代数(即N=1超Virasoro代数)及广义超Virasoro代数上的李超双代数结构.证明了超Virasoro代数上的李超双代数结构都是三角的.而对广义超Virasoro代数SVir[Γ, s]而言,因为其在SVir[Γ, s](?)SVir[Γ, s]上的一阶上同调未必是平凡的,所以它的李超双代数结构并不一定是三角的,我们给出了其成为三角的一个充分必要条件.
     N=2超Virasoro代数是近些年由数学家和物理学家共同提出的一类代数.在本文的第三章,我们考虑N=2超Virasoro代数上的李超双代数结构,主要是Ramond N= 2超Virasoro代数(?),得到了其一阶上同调群是平凡的,从而证明了(?)上的李超双代数都是三角的.第四章我们对Topological N= 2超Virasoro代数的中间序列模进行了讨论.
The Virasoro algebra can be regarded as the universal central extension of the complex Lie algebra (Witt algebra) of the linear differential operators{ti+1d/(dt)|i∈Z). It is well known that the structure of Virasoro algebra together with their representations play important roles in many branches in both mathematics and theoretical physics. In mathematics, the representations of the Virasoro algebra have many important applications in the construction and the analysis of the struc-ture of affinc Kac-Moody algebras, the moonshine modules and the vertex operator algebras. A book on conformal field theory by Di Francesco, Mathieu and Senechal [30] gives a great detail on the connection between the Virasoro algebra and physics. The super-Virasoro and N= 2 super-Virasoro algebra are the nontrivial Z2-graded extension and N= 2 super-symmetric extension of the Virasoro algebra, respec-tively, which are also paid more attention by mathematician and physicist.
     In the theory of quantum groups, it is a central problem to construct the non-commutative and noncocommutative Hopf algebra. We all know that the quantum groups obtained from the solutions of Yang-Baxter equation are very interesting. Let G be a Lie algebra, there is a one to one correspondence between "triangular" Lie bialgebra structures and the skew-symmetric solutions of the classical Yang-Baxter equation. Thus it is naturally to consider the quantizations of the triangular Lie bialgebras. In 2000, Ng and Taft proved that the Lie bialgebra structures on the Virasoro algebra are triangular coboundary. The thesis contains of four chapters. In chapter one, we consider the quantization of the Virasoro algebra W. From a non-abelian two dimensional Lie subalgebra of W, we construct a Drinfel'd twist and obtain a noncommutative and noncocommutative Hopf algebra by using the standard Hopf algebra structure on the universal enveloping algebra U(W). Differ- ent from the conventional methods of quantazation, the two-dimensional subalgbra is generated by two nonlocal finite elements.
     Quantum supergroups appeared naturally when the quantum inversescattering method was generalized to the super-systems. Related Lie super-bialgebra are also important. In chapter two, we consider the Lie super-bialgebra structures on the super-Virasoro algebra (i.e., the N= 1 super-Virasoro algebra) and the generalized super-Virasoro algebra. It is proved that all Lie super-bialgebras on the super-Virasoro algebra are triangular. But to the generalized super-Virasoro algebra SVir[Γ, s], it is not the case because the first cohomology group of SVir[Γ, s] with coefficients in SVir[Γ, s](?)SVir[Γ, s] is not always trivial. A sufficient and necessary condition is given.
     The N= 2 super-Virasoro algebra are obtained by mathematician and physi-cist. In chapter three, Lie bialgebra structures on the N= 2 super-Virasoro algebra are studied, especitively on the Ramond N= 2 super-Virasoro algebra, they are shown to be triangular by utilizing the first cohomology group. In chapter four, we discuss the modules of the intermediate series over Topological N= 2 super-Virasoro algebra.
引文
[1]M. Ademollo, et al. Supersymmetric strings and colour confinement. Phys. Lett.B 62 (1976),105.
    [2]N. Andruskiewitsch, Lie superbialgebras and Poisson-Lie supergroups, Abh. Math. Sem. Univ. Hamburg 63 (1993) 147-163.
    [3]S. Berman, Y. Billig, Irreducible representations for toroidal Lie algebras, J. Algebra 221 (1999),188-231.
    [4]V. Bekkert, G. Benkart, V. Futorny, Weight modules forWeyl algebras, in:Kac-Moody Lie Algebras and Related Topics, in:Contemp. Math., vol.343, Amer. Math. Soc. Providence, RI,2004, pp.17-42.
    [5]W. Boucher, D. Friedan, Kent, A. Determinant formulae and unitarity for the N= 2 superconformal algebras in two-dimensions or exact results on string compactification. Phys. Lett. B172 (1986),316-322.
    [6]Y. Billig, K. Zhao, Weight modules over exp-polynomial Lie algebras, J. Pure Appl. Algebra 191 (2004),23-42.
    [7]S. Cheng, V.G. Kac, A new N= 6 superconformal algebra, Commun. Math. Phys.186 (1997),219-231.
    [8]V. Chari, A. Pressley, Unitary representations of the Virasoro algebra and a conjecture of Kac, Compositio Math.67 (1988),315-342.
    [9]V. Chari, A. Pressley, A Guide to Quantum Groups,1st paperback ed., with corrections, Cambridge University Press, Cambridge,1995.
    [10]V.G. Drinfel'd, Hamiltonian structures on Lie groups, Lie bialgebras and the geomet-ric meaning of classical Yang-Baxter equations,(Russian) Dokl. Akad. Nauk SSSR 268 (1983),285-287.
    [11]V.G. Drinfel'd, Quantum groups, In:Proceeding of the International Congress of Mathe-maticians, Vol.1,2, Berkeley, Calif.1986, (Amer. Math. Soc., Providence, RI,1987), pp. 798-820.
    [12]V.G. Drinfel'd, On Some Unsolved Problems in Quantum Group Theory, Lecture Notes in Math., vol.1510, Springer, Berlin,1992.
    [13]V. G. Drinfel'd, On constant quasiclassical solutions of the Yang-Baxter quantum equa-tion, Soviet Math. Dokl.28 (1983),667-671.
    [14]M. Dorrzapf, Analytical Expressions for Singular Vectors of the N=2 Superconformal Algebra, Commun. Math. Phys.180 (1996),195-231.
    [15]R. Dijkgraaf, E. Verlinde, H. Verlinde, Topological strings in d< 1. Nucl. Phys. B352 (1991),59.
    [16]V.K. Dobrev, Characters of the unitarizable highest weight modules over the N= 2 superconformal algebras. Phys. Lett. B186 (1987),43.
    [17]D.Z. Djokovic, K. Zhao, Derivations, isomorphisms, and second cohomology of gen-eral-ized Witt algebras, Trans. Amer. Math. Soc.350 (1998),643-664.
    [18]D.Z. Djokovic, K. Zhao, Some simple subalgebras of generalized Block algebras, J. Algebra 192 (1997),74-101.
    [19]D.Z. Djokovic, K. Zhao, Some infinite-dimensional simple Lie algebras in characteristic 0 related to those of Block, J. Pure Appl. Algebra 127(2) (1998),153-165.
    [20]D.Z. Djokovic, K. Zhao, Generalized Cartan type W Lie algebras in characteristic zero, J. Algebra 195 (1997),170-210.
    [21]D.Z. Djokovic, K. Zhao, Generalized Cartan type S Lie algebras in characteristic zero, J. Algebra 193 (1997),144-179.
    [22]D.Z. Djokovic, K. Zhao, Second cohomology of generalized Cartan type S Lie algebras in characteristic zero, J. Pure Appl. Algebra 136 (1999),101-126.
    [23]D.Z. Djokovic, K. Zhao, Derivations, Isomorphisms,and Second Cohomology of General-ized Witt Algebras, Trans. Amer. Math. Soc.350 (1998),643-664.
    [24]P. Etingof, D. Kazhdan, Quantization of Lie bialgebras, I, Selecta Math.2(1) (1996), 1-41.
    [25]W. Eholzer, M.R. Gaberdiel, Unitarity of rational N= 2 superconformal theories, Com-mun. Math. Phys.186 (1997),61-85.
    [26]P. Etingof, D. Kazhdan, Quantization of Lie bialgebras I, Selecta Math.2(1) (1996), 1-41.
    [27]P. Etingof, O. Schiffmann, Lectures on Quantum Groups,2ed, International Press, USA, 2002.
    [28]P. Etingof, T. Schedler, Schiffmann, Explicit quantization of dynamical r-matrices for finite dimensional semisimple Lie algebras, J. Amer. Math. Soc.13 (2000),595-609.
    [29]J. Fu, Q. Jiang, Y. Su, Classification of modules of the intermediate series over Ramond N= 2 superconformal algebras, J. Math. Phy.48 (2007),1-15.
    [30]P. Di Francesco, P. Mathieu, D. Senechal, Conformal field theory, Spring, New York, 1997.
    [31]B. Gato-Rivera and J.I. Rosado, Interpretation of the Determinant Formulae for the Chi-ral Representations of the N= 2 Superconformal Algebra, IMAFF-FM-96/38, NIKHEF-96-007, hep-th/9602166 (1996).
    [32]B. Gato-Rivera and J.I. Rosado, Families of Singular and Subsingular Vectors of the Topological N=2 Superconformal Algebra, Nucl. Phys. B514 [PM] (1998),477.
    [33]B. Gato-Rivera and J.I. Rosado, Chiral Determinant Formulae and Subsingular Vectors for the N=2 Superconformal Algebras, Nucl. Phys. B503 (1997),447.
    [34]C. Grunspan, Quantizations of the Witt algebra and of simple Lie algebras in character-istic p, J. Algebra 280 (2004),145-161.
    [35]B. Gato-Rivera, J.I. Rosado, The Other Spectral Flow, Mod. Phys. Lett. All (1996) 423.
    [36]B. Gato-Rivera, The Even and the Odd Spectral Flows on the N=2 Superconformal Algebras, Nucl. Phys. B512 (1998),431-444.
    [37]B. Gato-Rivera, Construction formulae for singular vectors of the topological and of the Ramond N=2 superconformal algebras, Int. J.Mod.Phys. A17 (2002),4515-4541.
    [38]A. Giaquinto, J. Zhang, Bialgebra action, twists and universal deformation formulas, J. Pure Appl. Algebra 128 (1998),133-151.
    [39]N. Hu, X. Wang, Quantizations of generalized-Witt algebra and of Jacobson-Witt algebra in modular case, J. Algebra 312 (2007),902-929.
    [40]J. Hu, X. Wang, K. Zhao, Verma modules over generalized Virasoro algebras Vir[Γ], J. Pure Appl. Algebra 177 (2003),61-69.
    [41]A. P. Isaev, O.V. Ogievetsky, On Quantization of r-matrices for Belavin-Drinfeld Triples, Physics of Atomic Nuclei 64(12) (2001),2126-2130.
    [42]K. Iohara, Y. Koga, Representation theory of Neveu-Schwarz and Ramond algebras I:Verma modules, Adv. in Math.178 (2003),1-65.
    [43]K. Iohara, Y. Koga, Representation theory of N=2 super Virasoro algebra:twisted sector, J. Functional Analysis 214 (2004),450-518.
    [44]N. Jacobson, Lie algebras, Wiley(Interscience), New York,1962.
    [45]C. Juszczak, Contractions of bialgebras and super-bialgebras. Quantum groups and inte-grable systems, Ⅱ(Prague,1996), Czechoslovak J. Phys.471 (1997),25-31.
    [46]C. Juszczak, J. T. Sobczyk, Classification of low-dimensional Lie super-bialgebras, J. Math. Phys.399 (1998),4982-4992.
    [47]V. G. Kac, Simple irreducible graded Lie algebras of infinite-dimensional Lie algebras of finite growth, Izv. Akad. Nauk SSSR 32 (1968),1323-1367. English translation:Math. UssR Izv.2(1968),1271-1311.
    [48]V. G. Kac, J.W. van de Leuer, On classification of superconformal algebras, Strings 88, Sinapore:World Scientific,1988.
    [49]V. G. Kac, Superconformal algebras and transitive groups actions on quadrics, Commun. Math. Phys.186 (1997),233-252.
    [50]V. G. Kac, Lie superalgebras, Adv. Math.26 (1977),8-96.
    [51]C. Kassel, Quantum groups, GTM,155 Berlin:Springer2verlag, (1995),167-179.
    [52]M. Kato, S. Matsuda, Null Field Construction and Kac Formulae of N= 2 Super-conformal Algebras in two Dimensions, Phys. Lett. B184 (1987),184-190.
    [53]P. P. Kulish, A. I. Mudrov, Universal R-matrix for esoteric quantum groups. Lett. Math. Phys.47(2) (1999),139-148.
    [54]E. B. Kiritsis, Structure of N=2 Superconformally Invariant Unitary Minimal Theories: Operator Algebra and Correlation Functions, Phys. Rev. D36 (1987),3048-3065.
    [55]E. B. Kiritsis, Character Formulae and the Structure of the Representations of the N-1,N= 2 Superconformal Algebras, Int. J. Mod. Phys A3 (1988),1871-1906.
    [56]V. G. Kac and K. A. Raina, Bombay lectures on highest weight representations of infinite dimensional Lie algebras, World Sci., Singapore,1987.
    [57]Y. Kazama, H. Suzuki, New N= 2 superconformal field theories and superstring com-pactification. Nucl. Phys.B 321 (1989),232-268.
    [58]P. P. Kulich, E. K. Skylanin, In " Integrable quantum field theories ", J. Hietarinta and Montonen(eds); Lect. Notes Phys 151 (1982),61-119.
    [59]I. Kaplansky, L. J. Santharoubane, Harish-Chandra modules over the Virasoro algebra, Math. Sci. Res. Inst. Publ.4 (1985),217-231.
    [60]S. M. Khoroshkin, A. A. Stolin, V. N. Tolstoy, Deformation of Yangian Y(sl2). Comm. Algebra 26(4) (1998),1041-1055.
    [61]S. M. Khoroshkin, V. N. Tolstoy, Universal R-matrix for quantized (super)algebras, Comm. Math. Phys.141(3) (1991),599-617.
    [62]W. Lin, S. Tan, Nonzero level Harish-Chandra modules over the Virasoro-like algebra, J. Pure Appl. Algebra 204 (2006),90-105.
    [63]R. Lu, K. Zhao, Classification of irreducible weight modules over higher rank Virasoro algebras. Adv. Math.206 (2006),630-656.
    [64]W. Michaelis, A class of infinite-dimensional Lie bialgebras containing the Virasoro alge-bras, Adv. Math.107 (1994),365-392.
    [65]W. Michaelis:Lie coalgebras, Adv. Math.38 (1980),1-54.
    [66]O. Mathieu, Classification of Harish-Chandra modules over the Virasoro algebra, Invent. Math.107 (1992),225-234.
    [67]V. Mazorchuk, Classification of simple Harish-Chandra modules over Q-Virasoro algebra, Math. Nachr.209 (2000),171-177.
    [68]V. Mazorchuk, Verma modules over generalized Witt algebras, Compositio Math.115 (1999),21-35.
    [69]S. Montgomery, Hopf algebras and their actions on rings, CBMS 2 (1992),1-27.
    [70]C. Martin, A. Piard, Indecomposable modules over the Virasoro Lie algebra and a con-jecture of V. Kac, Comm. Math. Phys.137 (1991),109-132.
    [71]G. Mussardo, G. Sotkov, M. Stanishkov, N= 2 Superconformal Minimal Models, Int. J. Mod. Phys. A4 (1989),1135-1206.
    [72]S. Majid,, Physics for algebraists:non-commutative and non-cocomutative Hopf algebras by a bicrossproduct construction, J. Algebra 130 (1990),17-64.
    [73]J. Y. Magnusson, M. Samsonov, A. Stolin, Classical quasi-trigonometric r-matrices of Cremmer-Gervais type and their quantization, Journal of Nonlinear Mathematical Physics 13 (2006),129-136.
    [74]S. H. Ng, E. J. Taft, Classification of the Lie bialgebra structures on the Witt and Virasoro algebras, J. Pure Appl. Algebra 151 (2000),67-88.
    [75]W. D. Nichols, The structure of the dual Lie coalgebra of the Witt algebra, J. Pure Appl. Algebra 68 (1990),395-364.
    [76]P. Neveu, J. H. Schwarz, Factorizable dual model of pions, Nucl. Phys. B31 (1971), 86-112.
    [77]H. T. Ozer, S. Salihoglu, Nonlinear Schrodinger equations and Virasoro algebra, Chaos Solitons& Fractals 30 (2006),363-366.
    [78]J. M. Osborn, New simple infinite-dimensional Lie algebras of characteristic 0, J. Algebra 185 (1996),820-835.
    [79]J. M. Osborn, K. Zhao, Generalized Cartan type K Lie algebras in characteristic 0, Comm. Algebra 25 (1997),3325-3360.
    [80]J. M. Osborn, K. Zhao, Infinite dimensional Lie algebras of type L, Comm. Algebra 31 (2003),2445-2469.
    [81]J. M. Osborn, K. Zhao, Infinite dimensional Lie algebras of generalized Block type, Proc. Amer. Math. Soc.127 (6) (1999),1641-1650.
    [82]J. M. Osborn, K. Zhao, Generalized Poisson bracket and Lie algebras of type H in char-acteristic 0, Math. Z.230 (1999),107-143.
    [83]D. S. Passman, Simple Lie algebras of Witt type, J. Algebra 206(1998),682-692.
    [84]J. Patera and H. Zassenhaus, The higher rank Virasoro algebras, Comm. Math. Phys. 136(1991),1-14.
    [85]R. Ree, On generalized Witt algebras, Trans. Amer. Math. Soc.83 (1956),510-546.
    [86]P. Ramond, Dual theory for free fermions, Phys. Rev. D3 (1971),2415-2418.
    [87]Y. Su, Harish-Chandra modules of the intermediate series over the high rank Virasoro algebras and high rank super-Virasoro algebras, J. Math. Phys.35 (1994),2013-2023.
    [88]Y. Su, Simple modules over the high rank Virasoro algebras, Commun. Alg.29 (2001), 2067-2080.
    [89]Y. Su, Classification of Harish-Chandra modules over the higher rank Virasoro algebras, Comm. Math. Phys.240 (2003),539-551
    [90]Y. Su, Harish-Chandra modules of the intermediate series over the high rank Virasoro algebras and high rank super-Virasoro algebras, J. Math. Phys.35 (1994),2013-2023.
    [91]Y. Su, A classification of indecomposable sl2(C)-modules and a conjecture of Kac on Irreducible modules over the Virasoro algebra, J. Algebra 161 (1993),33-46.
    [92]Y. Su, Classification of Harish-Chandra modules over the super-Virasoro algebras, Comm. Algebra 23 (1995),3653-3675.
    [93]Y. Su, Classification of quasifinite modules over the Lie algebras of Weyl type, Adv. Math. (2003),57-68.
    [94]Y. Su, Quasifinite representations of a family of Lie algebras of Block type, J.Pure Appl. Alg.192 (2004),293-305.
    [95]Y. Su, Quasifinite representations of a Lie algebra of Block type, J. Algbra 276 (2004), 117-128.
    [96]H. Strade, R. Pransteiner, Modular Lie Algebras and their Representations, Marcel Dekker Monographs 116, New York,1988.
    [97]M. Samsonov, Semi-classical Twists for sl3 and sl4 Boundary r-matrices of Cremmer-Gervais type, Lett. Math. Phys.72(3) (2005),197-210.
    [98]Y. Su, X. Xu, H. Zhang, Derivation-simple algebras and the structures of Lie algebras of Witt type, J. Algebra 233 (2000),642-662.
    [99]Y. Su, K. Zhao, Generalized Virasoro and super-Virasoro algebras and modules of inter-mediate series, J. Algebra 252 (2002),1-19.
    [100]Y. Su, K. Zhao, Simple Lie algebras of Weyl type, Sci. China A44 (2001),419-426.
    [101]G. Song, Y. Su, Lie bialgebras of generalized Witt type, Sci. China A49 (2006),533-544.
    [102]Reiho. Sakamoto, Explicit formula for singular vectors of the Virasoro algebra with central charge less than 1, Chaos Solitons& Fractals 25 (2005),147-151.
    [103]A. Schwimmer, N. Seiberg, Comments on the N=2,3,4 superconformal algebras in two dimensions, Phys. Lett. B184 (1986),191-196.
    [104]H. Strade, Representations of the Witt algebra, J. Algebra 49 (1977),595-605.
    [105]A. M. Semikhatov, I. Yu. Tipunin, The structure of Verma modules over the N=2 superconformal algebra, Commun. Math. Phys.195 (1998),129-173.
    [106]G. Song, Y. Wu, Y. Su, Quantization of generalized Virasoro-like algebras, to appear.
    [107]E.J. Taft, Witt and Virasoro algebras as Lie bialgebras, J. Pure Appl. Algebra 87 (1993), 301-312.
    [108]P. Di Vecchia, J. L. Petersen, H. Zheng, N=2 extended superconformal theories in two dimensions, Phys. Lett. B162 (1985),327-332.
    [109]R. L. Wilson, Classification of generalized Witt algebras over algebraically fields, Trans. Amer. Math. Soc.153 (1971),191-210.
    [110]Y. Wu, G. Song, Y. Su, Lie bialgebras of generalized Witt type. Ⅱ, Comm. Algebra 3 (2007),1992-2007.
    [111]Y. Wu, G. Song, Y. Su, Lie bialgebras of generalized Virasoro-like type, Acta Math. Sinica, English Series 22 (2006),1915-1922.
    [112]Y. Wu, G. Y. Su, Highest weight representations of a Lie algebra of Block type, Sci. China Ser. A50 (2007),549-560.
    [113]X. Wang, K. Zhao, Verma modules over the Virasoro-like algebra, J. Australia Math.80 (2006),179-191.
    [114]X. Xu, New generalized simple Lie algebras of Cartan type over a field with characteristic 0, J. Algebra 224 (2000),23-58.
    [115]B. Xin, G. Song, Yucai Su, Lie bialgebras of generalized Hamiltonian type, Science in China, to appear.
    [116]H. Yamane, Universal R-matrices for quantum groups associated to simple Lie superal-gebras, Proc. Japan Acad. Ser. A Math. Sci.67(4) (1991),108-112.
    [117]H. Yamane, Quantized enveloping algebras associated with simple Lie superalgebras and their universal R-matrices, Publ. Res. Inst. Math. Sci.30(1) (1994),15-87.
    [118]H. Zassenhaus, Ueber Lie'sche Ringe mit Primzahlcharakteristik, Hamb. Abh.13 (1939), 1-100.
    [119]K. Zhao, Highest weight irreducible representations of the Virasoro-like algebra, preprint, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700