基于聚合物/SiO_2纳米复合乳液制备三维有序多孔材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机-无机复合材料兼具有两组分的优势,并赋予材料新的结构和性能。聚合物乳液与纳米SiO2结合,是提高聚合物性能的重要途径。文献中对聚合物/SiO2纳米复合乳液的制备方法、复合粒子形态、复合涂层的性能等方面进行了大量研究。但人们的兴趣主要集中在以上三个方面,且复合乳液的成膜温度一般为环境温度。本论文基于聚合物/SiO2纳米复合乳液,将其直接在不同的温度下干燥,分别得到三维有序大孔聚合物膜和表面形貌梯度材料,并进一步利用该乳液为二元粒子体系,将其用作模板,采用原位自组装法制备了多级有序多孔材料,从而为传统的聚合物/SiO2纳米复合乳液开发了新的用途。具体的研究内容和结果如下:
     (1)采用无皂乳液聚合法和分散聚合法制备一系列单分散的聚合物微球分散液,再与SiO2纳米粒子混合均匀,得到稳定的纳米复合乳液。将此复合乳液直接在较高的温度下强迫干燥,成功制备了三维有序大孔聚合物膜,制备过程无需去除模板,方法简单、价廉且环境友好,可进行大量制备。然而,要得到有序大孔结构的聚合物膜,必须首先保证复合乳液的稳定性,聚合物微球和二氧化硅纳米粒子之间的强的静电排斥作用是制备稳定纳米复合乳液的必要条件。在此基础上,详细考察了形成大孔结构的条件和影响因素,研究发现,聚合物玻璃化转变温度(Tg)、聚合物微球壳层亲水组分的含量、SiO2纳米粒子的粒径、聚合物微球的粒径、分散介质的挥发速度以及聚合物微球的结构对孔的形成和结构都有重要的影响,而采用聚合物空球则有望制备相互连通的大孔结构。SEM的形貌观察和USAXS的晶面衍射结果表明,得到的有序大孔膜属于典型的面心立方(FCC)结构。调整乳液的干燥程序,综合XPS、TGA和SEM等实验结果,大孔结构可能的形成机理为:复合乳液的干燥从气-液的界面开始,孔的形成也从膜的表面开始,随着介质的蒸发,孔的形成逐层进行,并一层层向基材推进,最终形成三维有序的大孔结构。制得的有序大孔聚合物膜具有光子晶体效应,呈现结构色,并对不同折光指数的溶剂和乙醇/水介质具有光学响应性。该技术为有序多孔膜的制备提供了新的范例,所得到的有序多孔膜可应用于光子晶体、生物传感、模板、催化剂载体等。
     (2)基于聚合物/SiO2纳米复合乳液,进一步控制复合乳液的干燥条件,直接在较低的温度下干燥,可直接得到有序多孔的表面形貌梯度,制备过程简单快速,不需精确控制梯度参数。聚合物的Tg、分散介质、复合乳液的干燥温度以及SiO2的含量对表面形貌都有显著影响。当聚合物的Tg相对较低时,在室温或稍高的温度下干燥均可制备形貌梯度表面;而当聚合物的Tg较高时,则不能形成形貌梯度表面。而当干燥温度较高时,得到的复合膜为三维有序的大孔结构,而不能形成表面形貌梯度。干燥温度对复合膜形貌的影响可能是由于不同的成膜机理造成的:当成膜温度较低时,成膜过程遵循对流自组装机理;而在较高的温度下干燥时,成膜过程主要遵循气-液界面自组装机理,而在中间温度干燥时,则这两种机理同时发挥作用。该方法提出了一种制备聚合物表面形貌梯度的新方法,该方法有望用来制备其它功能性有机和无机组分的表面形貌梯度材料。
     (3)基于聚合物/SiO2纳米复合乳液的二元粒子体系,以蔗糖为碳源,硫酸为碳化催化剂,采用原位自组装法制备多级有序多孔炭材料。该方法将纳米复合乳液在程序升温过程中,历经干燥成膜、初步碳化和最终碳化过程得到三维有序大孔碳/SiO2复合膜,最后除去SiO2纳米粒子,得到有序大孔/介孔炭材料。与常用的其它模板法相比,该方法既不需预先合成多级有序多孔硬模板或胶体晶体模板,也不需额外的反填,聚合物胶体晶体的形成过程和碳源的填充在同一体系中同时完成。因此,制备过程非常简单快捷,大孔和介孔的尺寸可分别进行调节,其中,介孔的尺寸可以在整个介孔的范围内进行调节。BET结果表明,所制得多孔炭材料具有较高的比表面积和孔容;XRD和R(?)an光谱分析表明,该多孔炭材料具有部分石墨化的结构。为检验其载体效应,用甲酸还原法将制得的多级有序多孔炭用作Pt-Ru合金催化剂载体,与商业Pt-Ru合金催化剂相比,在甲醇燃料电池中对甲醇的氧化反应具有更优异的催化性能。
Organic-inorganic composite materials combine the advantages of the two components, and have novel structures and properties. Combination of polymer latex with SiO2 particles is an important strategy to improve the properties of polymeric materials. Recently, researchers have done a lot of work on the preparation of polymer/SiO2 nanocomposite latex, morphology of composite particles, and properties of composite coating. But most of the researches only focus on the above three fields, and on the film-formation at ambient temperature. In this dissertation, when polymer/SiO2 nanocomposite latex was forced-dried at different high temperatures,3-dimensional-ordered-macroporous (3-DOM) film and surface morphology gradient can be directly obtained, respectively. We also use the nanocomposite latex as binary particle system, and prepared hierarchically ordered porous carbon via in-situ self-assembly of polymer spheres and silica particles with carbon source. All the research content and results are as follows:
     (1)A series of colloidal polymers with various Tg, composition, and sphere size were synthesized by surfactant-free emulsion polymerization and dispersion polymerization methods and then blended with colloidal silica particles to obtain stable polymer/silica nanocomposite latexes. When these nanocomposite latexes were forced dry at relatively high temperature (e.g.,110℃) for 2 h, a 3-DOM structure was directly obtained. Neither complex processes nor removal of any templates like in a templating method was needed. Therefore, it is really feasible, inexpensive, and environmentally friendly. More importantly, this process can be used for a large-scale fabrication of ordered porous polymer films. However, the strong repulsive force between polymer sphere and colloidal silica particles is necessary to successfully prepare the stable nanocomposite latex and then the ordered porous film. In addition, we investigated the effects of some key parameters, e.g., polymers with various glass transition temperature (Tg), composition, hydrophilic component, structure and sphere size, solvent with different volatility and silica particle size on the formation of ordered porous film, and tried to really understand the formation mechanism of this ordered porous structure via the forced-drying strategy, these ordered pores should form from the top surface and then propagate layer by layer from the top surface to substrate. The films are typical faced-centered-cubic structure, and show structure colors, and can be used as solvent sensors.
     (2) The second part presents a novel and feasible approach for fabrication of morphological gradient surfaces based on the film-formation of nanocomposite polymer latex. In this method, when the polymer latex with relatively low Tg was blended with colloidal silica and then dried at certain temperatures, a morphological evolution with deeper pores from the center to the edge could be directly obtained on polymer surface. Neither careful control of experimental conditions nor any complex processes are needed. The Tg of polymer, the silica content, the solvent and the drying temperature have significant influences on this surface morphology. The film-formation mechanisms at different drying temperatures are also discussed.
     (3) The third part presents an one-pot method to synthesize hierarchically ordered porous carbons with interconnected macropores and mespores, via in-situ self-assembly of colloidal polymer and silica spheres with sucrose as carbon source. Compared with other techniques, this procedure is veritably simple, neither pre-synthesis of the macropore/mesopore or crystal templates nor additional infiltration is needed, the self-assembly of polymer spheres into crystal template and the infiltration are finished in-situ in the same system. The sizes of macropores and mesopores can be independently tuned by the sizes of polymer and silica spheres, respectively. The obtained bimodal porous carbons have large BET surface areas, large pore volumes, and partially graphitized frameworks. And they show very good supports of Pt-Ru alloy catalyst in direct methanol fuel cell.
引文
[1]Schottner, G. Hybrid Sol-Gel-Derived Polymers:Applications of Multifunctional Materials [J]. Chem. Mater.,2001,13:3422-3435.
    [2]Chen, Y.; Zhou, S.; Gu, G.; Wu, L. Microstructure and Properties of Polyester-based Polyurethane/Titania Hybrid Films Prepared by Sol-Gel Process [J]. Polymer,2006,47:1640-1648.
    [3]Tiarks, F.; Landfester, K.; Antonietti, M. Silica Nanoparticles as Surfactants and Fillers for Latexes Made by Miniemulsion Polymerization [J]. Langmuir,2001,17: 5775-5780.
    [4]Bourgeat-Lami, E.; Espiard, P.; Guyot, A. Poly(ethyl acrylate) Latexes Encapsulating Nanoparticles of Silica:1. Functionalization and Dispersion of Silica [J]. Polymer,1995,36:4385-4389.
    [5]You, B.; NangengWen; Cao, Y.; Zhou, S.; Wu, L. Preparation and Properties of Poly[styrene-co-(butyl acrylate)-co-(acrylic acid)]/Silica Nanocomposite Latex Prepared Using an Acidic Silica Sol [J]. Polym. Int.,2009,58:519-529.
    [6]Chai, G. S.; Shin, I. S.; Yu, J. S. Synthesis of Ordered, Uniform, Macroporous Carbons with Mesoporous Walls Templated by Aggregates of Polystyrene Spheres and Silica Particles for Use as Catalyst Supports in Direct Methanol Fuel Cells [J]. Adv. Mater.,2004,16:2057-2061.
    [7]Wang, Z.; Li, F.; SErgang, N.; Stein, A. Effects of Hierarchical Architecture on Electronic and Mechanical Properties of Nanocast Monolithic Porous Carbons and Carbon-Carbon Nanocomposites [J]. Chem. Mater.,2006,18:5543-5553.
    [8]Wang, J.; Li, Q.; Knoll, W.; Jonas, U. Preparation of Multilayered Trimodal Colloid Crystals and Binary Inverse Opals [J]. J. Am. Chem. Soc.,2006,128: 15606-15607.
    [9]Espiard, P.; Guyot, A. Poly(ethyl acrylate) Latexes Encapsulating Nanoparticles of Silica:2. Grafting Process onto Silica [J]. Polymer,1995,36:4391-4395.
    [10]Reculusa, S.; Mingotaud, C.; Bourgeat-Lami, E.; Duguet, E.; Ravaine, S. Synthesis of Daisy-Shaped and Multipod-like Silica/Polystyrene Nanocomposites [J]. Nano Lett.,2004,4:1677-1682.
    [11]Reculusa, S.; Poncet-Legrand, C.; Ravaine, S.; Mingotaud, C.; Duguet, E.; Bourgeat-Lami, E. Syntheses of Raspberrylike Silica/Polystyrene Materials [J]. Chem. Mater.,2002,14:2354-2359.
    [12]Zeng, Z.; Yu, J.; Guo, Z. X. Preparation of Epoxy-Functionalized Polystyrene/Silica Core-Shell Composite Nanoparticles [J]. J. Polym. Sci., Part A: Polym. Chem.,2004,42:2253-2262.
    [13]Ding, X.; Wang, Z.; Han, D.; Zhang, Y.; Shen, Y.; Wang, Z.; Niu, L. An effective Approach to Synthesis of Poly(methyl methacrylate)/Silica Nanocomposites [J]. Nanotechnology,2006,17:4796-4801.
    [14]Perro, A.; Reculusa, S.; Bourgeat-Lami, E.; Duguet, E.; Ravaine, S. Synthesis of Hybrid Colloidal Particles:From Snowman-like to Raspberry-like Morphologies [J]. Colloids Surf., A,2006,284-285:78-83.
    [15]Luna-Xavier, J. L.; Bourgeat-Lami, E.; Guyot, A. The role of Initiation in the Synthesis of Silica/Poly(methyl methacrylate) Nanocomposite Latex Particles Through Emulsion Polymerization [J]. Colloid. Polym. Sci.,2001,279:947-958.
    [16]Barthet, C.; Hickey, A. J.; Cairns, D. B.; Armes, S. P. Synthesis of Novel Polymer-Silica Colloidal Nanocomposites via Free-Radical Polymerization of Vinyl Monomers [J]. Adv. Mater.,1999,11:408-410.
    [17]Percy, M. J.; Barthet, C.; Lobb, J. C.; Khan, M. A.; Lascelles, S. F.; Vamvakaki, M.; Armes, S. P. Synthesis and Characterization of Vinyl Polymer-Silica Colloidal Nanocomposites [J]. Langmuir,2000,16:6913-6920.
    [18]Percy, M. J.; Armes, S. P. Surfactant-Free Synthesis of Colloidal Poly(methyl methacrylate)/Silica Nanocomposites in the Absence of Auxiliary Comonomers [J]. Langmuir,2002,18:4562-4565
    [19]Chen, M.; Wu, L.; Zhou, S.; You, B. Synthesis of Raspberry-like PMMA/SiO2 Nanocomposite Particles via a Surfactant-Free Method [J]. Macromolecules,2004,37: 9613-9619.
    [20]Chen, M.; Zhou, S.; You, B.; Wu, L. A Novel Preparation Method of Raspberry-like PMMA/SiO2 Hybrid Microspheres [J]. Macromolecules,2005,38: 6411-6417.
    [21]Zeng, Z.; Yu, J.; Guo, Z. X. Preparation of Polymer/Silica Composite Nanoparticles Bearing Carboxyl Groups on the Surface via Emulsifier-free Emulsion Copolymerization [J]. J. Polym. Sci., Part A:Polym. Chem.,2005,43:2826-2835.
    [22]曹同玉;刘庆普;胡金生.聚合物乳液合成原理性能及应用[M].北京:化学工业出版社,2007:128-132.
    [23]Luna-Xavier, J. L.; Guyot, A.; Bourgeat-Lami, E. Synthesis and Characterization of Silica/Poly (Methyl Methacrylate) Nanocomposite Latex Particles through Emulsion Polymerization Using a Cationic Azo Initiator [J]. J. Colloid Interface Sci., 2002,250:82-92.
    [24]Zhang, S. W.; Zhou, S. X.; Weng, Y. M.; Wu, L. M. Synthesis of SiO2/Polystyrene Nanocomposite Particles via Miniemulsion Polymerization [J]. Langmuir,2005,21:2124-2128.
    [25]Zhang, S. W.; Zhou, S.-X.; Weng, Y.-M.; Wu, L. M. Synthesis of Silanol-Functionalized Latex Nanoparticles through Miniemulsion Copolymerization of Styrene and γ-Methacryloxypropyltrimethoxysilane [J]. Langmuir,2006,22: 4674-4679.
    [26]Qiao, X.; Chen, M.; Zhou, J.; Wu, L. Synthesis of Raspberry-like Silica/Polystyrene/Silica Multilayer Hybrid Particles via Miniemulsion Polymerization [J]. J. Polym. Sci., Part A:Polym. Chem.,2007,45:1028-1037.
    [27]Qiang, W.; Wang, Y.; He, P.; Xu, H.; Gu, H.; Shi, D. Synthesis of Asymmetric Inorganic/Polymer Nanocomposite Particles via Localized Substrate Surface Modification and Miniemulsion Polymerization [J]. Langmuir,2008,24:606-608.
    [28]Bourgeat-Lami, E.; Lang, J. Encapsulation of Inorganic Particles by Dispersion Polymerization in Polar Media:1. Silica Nanoparticles Encapsulated by Polystyrene [J]. J. Colloid Interface Sci.,1998,197:293-308.
    [29]Corcos, F.;Bourgeat-Lami, E.; Novat, C.; Lang, J. Poly(styrene-b-ethylene oxide) Copolymers as Stabilizers for the Synthesis of Silica/Polystyrene Core/Shell Particles [J]. Colloid Polym.Sci.,1999,277:1142-1151.
    [30]Schmid, A.; Fujii, S.; Armes, S. P. Synthesis of Micrometer-Sized Silica-Stabilized Polystyrene Latex Particles [J]. Langmuir,2005,21:8103-8105.
    [31]Schmid, A.; Fujii, S.; Armes, S. P. Polystyrene-Silica Nanocomposite Particles via Alcoholic Dispersion Polymerization Using a Cationic Azo Initiator [J]. Langmuir, 2006,22:4923-4927.
    [32]Monteil, V.; Stumbaum, J.; Thomann, R.; Mecking, S. Silica/Polyethylene Nanocomposite Particles from Catalytic Emulsion Polymerization [J]. Macromolecules,2006,39:2056-2062.
    [33]Yang, Z.; Qiu, D.; Li, J. Waterborne Dispersions of a Polymer-Encapsulated Inorganic Particle Nanocomposite by Phase-Inversion Emulsification [J]. Macromol. Rapid Commun.,2002,23:479-483.
    [34]Xia, H.; Zhang, C.; Wang, Q. Study on Ultrasonic Induced Encapsulating Emulsion Polymerization in the Presence of Nanoparticles [J]. J. Appl. Polym. Sci., 2001,80:1130-1139.
    [35]Xiong, M.; Wu, L.; Zhou, S.; You, B. Preparation and Characterization of Acrylic Latex/nano-SiO2 Composites [J]. Polym. Int.,2002,51:693-698.
    [36]Sertchook, H.; Elimelech, H.; Makarov, C.; Khalfin, R.; Cohen, Y.; Shuster, M.; Babonneau, F.; Avnir, D. Composite Particles of Polyethylene @ Silica [J]. J. Am. Chem. Soc.,2006,129:98-108.
    [37]Tissot, I.; Reymond, J. P.; Lefebvre, F.; Bourgeat-Lami, E. SiOH-Functionalized Polystyrene Latexes. A Step toward the Synthesis of Hollow Silica Nanoparticles [J]. Chem. Mater.,2002,14:1325-1331.
    [38]Graf, C.; Vossen, D. L. J.; Imhof, A.; van Blaaderen, A. A General Method To Coat Colloidal Particles with Silica [J]. Langmuir,2003,19:6693-6700.
    [39]Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. A new Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates [J]. J. Am. Chem. Soc.,1992,114:10834-10843.
    [40]Imhof, A.; Pine, D. J. Ordered Macroporous Materials by Emulsion Templating [J]. Nature,1997,389:948-951.
    [41]Velev, O. D.; Jede, T. A.; Lobo, R. F.; Lenhoff, A. M. Porous Silica via Colloidal Crystallization [J]. Nature,1997,389:447-448.
    [42]Widawski, G.; Rawiso, M.; Francois, B. Self-organized Honeycomb Morphology of Star-polymer Polystyrene Films [J]. Nature,1994,369:387-389.
    [43]Pitois, O.; Francois, B. Formation of Ordered Micro-porous Membranes [J]. Eur. Phys.J.B,1999,8:225-231.
    [44]Pitois, O.; Francois, B. Crystallization of Condensation Droplets on a Liquid Surface [J]. Colloid Polym. Sci.,1999,277:574-578.
    [45]Bunz, U. H. F. Breath Figures as a Dynamic Templating Method for Polymers and Nanomaterials [J]. Adv. Mater.,2006,18:973-989.
    [46]Vohra, V.; Yunus, S.; Attout, A.; Giovanella, U.; Scavia, G.; Tubino, R.; Bottaab, C.; Bolognesi, A. Bifunctional Microstructured Films and Surfaces Obtained by Soft Lthography from Breath Figure Arrays [J]. Soft Matter,2009,5:1656-1661.
    [47]Hayakawa, T.; Horiuchi, S. From Angstroms to Micrometers:Self-Organized Hierarchical Structure within a Polymer Film [J]. Angew. Chem. Int. Ed.,2003,42: 2285-2289.
    [48]Ejima, H.; Iwata, T.; Yoshie, N. Morphology-Retaining Carbonization of Honeycomb-Patterned Hyperbranched Poly(phenylene vinylene) Film [J]. Macromolecules,2008,41:9846-9848.
    [49]Connal, L. A.; Vestberg, R.; Hawker, C. J.; Qiao, G. G. Dramatic Morphology Control in the Fabrication of Porous Polymer Films [J]. Adv. Funct. Mater.,2008,18: 3706-3714.
    [50]Jiang, P.; McFarland, M. J. Large-Scale Fabrication of Wafer-Size Colloidal Crystals, Macroporous Polymers and Nanocomposites by Spin-Coating [J]. J. Am. Chem. Soc.,2004,126:13778-13786.
    [51]Stein, A.; Li, F.; Denny, N. R. Morphological Control in Colloidal Crystal Templating of Inverse Opals, Hierarchical Structures, and Shaped Particles [J]. Chem. Mater.,2008,20:649-666.
    [52]Bogush, G. H.; Tracy, M. A.; Zukoski Iv, C. F. Preparation of Monodisperse Silica Particles:Control of Size and Mass Fraction [J]. J. Non-Cryst. Solids,1988, 104:95-106.
    [53]Stober, W.; Fink, A.; Bohn, E. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range [J]. J. Colloid Interface Sci.,1968,26:62-69.
    [54]Miguez, H.; Meseguer, F.; Lopez, C.; Blanco, A.; Moya, J. S.; Requena, J.; Mifsud, A.; Fornes, V. Control of the Photonic Crystal Properties of fcc-Packed Submicrometer SiO2 Spheres by Sintering [J]. Adv. Mater.,1998,10:480-483.
    [55]Wijnhoven, J. E. G. J.; Vos, W. L. Preparation of Photonic Crystals Made of Air Spheres in Titania [J]. Science,1998,281:802-804.
    [56]Vickreva, O.; Kalinina, O.; Kumacheva, E. Colloid Crystal Growth under Oscillatory Shear [J]. Adv. Mater.,2000,12:110-112.
    [57]Salvarezza, R. C.; Vazquez, L.; Miguez, H.; Mayoral, R.; Lopez, C.; Meseguer, F. Edward-Wilkinson Behavior of Crystal Surfaces Grown By Sedimentation of SiO2 Nanospheres [J]. Phys. Rev. Lett.,1996,77:4572-4575.
    [58]Jiang, P.; Bertone, J. F.; Hwang, K. S.; Colvin, V. L. Single-Crystal Colloidal Multilayers of Controlled Thickness [J]. Chem. Mater.,1999,11:2132-2140.
    [59]Im, S. H.; Kim, M. H.; Park, O. O. Thickness Control of Colloidal Crystals with a Substrate Dipped at a Tilted Angle into a Colloidal Suspension [J]. Chem. Mater., 2003,15:1797-1802.
    [60]Gu, Z. Z.; Fujishima, A.; Sato, O. Fabrication of High-Quality Opal Films with Controllable Thickness [J]. Chem. Mater.,2002,14:760-765.
    [61]Zhou, Z.; Zhao, X. S. Flow-Controlled Vertical Deposition Method for the Fabrication of Photonic Crystals [J]. Langmuir,2003,20:1524-1526.
    [62]Im, S. H.; Lim, Y. T.; Suh, D. J.; Park,O. O. Three-Dimensional Self-Assembly of Colloids at a Water-Air Interface:A Novel Technique for the Fabrication of Photonic Bandgap Crystals [J]. Adv. Mater.,2002,14:1367-1369.
    [63]Goldenberg, L. M.; Wagner, J.; Stumpe, J.; Paulke, B.-R.; Gornitz, E. Simple Method for the Preparation of Colloidal Particle Monolayers at the Water/Alkane Interface [J]. Langmuir,2002,18:5627-5629.
    [64]Wang, J.; Cao, Y.; Feng, Y.; Yin, F.; Gao, J. Multiresponse Inverse-opal Hydrogels [J]. Adv. Mater.,2007,19:3865-3871.
    [65]Cheng, W.; Wang, J. J.; Jonas, U.; Fytas, G.; Stefanou, N. Observation and Tuning of Hypersonic Bandgaps in Colloidal Crystals [J]. Nat. Mater.,2006,5: 830-836.
    [66]Bartlett, P. N.; Dunford, T.; Ghanem, M. A. Templated Electrochemical Deposition of Nanostructured Macroporous PbO2 [J]. J. Mater. Chem.,2002,12: 3130-3135.
    [67]Chen, J. I. L.; Freymann, G. V.; Kitaev, V.; Ozin, G. A. Effect of Disorder on the Optically Amplified Photocatalytic Efficiency of Titania Inverse Opals [J]. J. Am. Chem. Soc.,2007,129:1196-1202.
    [68]Schroden, R. C.; Al-Daous, M.; Blanford, C. F.; Stein, A. Optical Properties of Inverse Opal Photonic Crystals [J]. Chem. Mater.,2002,14:3305-3315.
    [69]Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Cui, C.; Khayrullin, I.; O.Dantas, S.; Marti, J.; Ralchenko, V. G. Carbon structures with three-diemnsional periodicity at optical wavelengths [J]. Science,1998,282:897-901.
    [70]Golubev, V. G.; Hutchison, J. L.; Kosobukin, V. A.; Kurdyukov, D. A.; Medvedev, A. V.; Pevtsov, A. B.; Sloan, J.; Sorokin, L. M. Three-dimensional ordered silicon-based nanostructures in opal matrix:preparation and photonic properties [J]. J. Non-Cryst. Solids,2002,299-302:1062-1069.
    [71]Yu, A.; Meiser, F.; Cassagneau, T.; Caruso, F. Fabrication of Polymer-Nanoparticle Composite Inverse Opals by a One-Step Electrochemical Co-deposition Process [J]. Nano lett.,2004,4:177-181.
    [72]Braun, P. V.; Wiltzius, P. Electrochemical Fabrication of 3D Microperiodic Porous Materials [J]. Adv. Mater.,2001,13:482-485.
    [73]Wang, J.; Ahl, S.; Li, Q.; Kreiter, M.; Neumann, T.; Burkert, K.; Knolla, W.; Jonas, U. Structural and Optical Characterization of 3D Binary Colloidal Crystal and Inverse Opal Films Prepared by Direct Co-deposition [J]. J. Mater. Chem.,2008,18: 981-988.
    [74]Subramanian, G.; Manoharan, V. N.; Thorne, J. D.; Pine, D. J. Ordered Macroporous Materials by Colloidal Assembly:A Possible Route to Photonic Bandgap Materials [J]. Adv. Mater.,1999,11:1261-1265.
    [75]Velev, O. D.; Kaler, E. W. Structured Porous Materials via Colloidal Crystal Templating:From Inorganic Oxides to Metals [J]. Adv. Mater.,2000,12:531-534.
    [76]Braun, P. V.; Wiltzius, P. Macroporous Materials--Electrochemically Grown Photonic Crystals [J]. Curr. Opin. Colloid Interface Sci.,2002,7:116-123.
    [77]Gundiah, G.; Govindaraj, A.; Rao, C. N. R. Macroporous Carbons Prepared by Templating Silica Spheres [J]. Mater. Res. Bull.,36:1751-1757.
    [78]Gates, B.; Yin, Y.; Xia, Y. Fabrication and Characterization of Porous Membranes with Highly Ordered Three-Dimensional Periodic Structures [J]. Chem. Mater.,1999, 11:2827-2836.
    [79]Park, S. H.; Xia, Y. Fabrication of Three-Dimensional Macroporous Membranes with Assemblies of Microspheres as Templates [J]. Chem. Mater.,1998,10: 1745-1747.
    [80]Park, S. H.; Xia, Y. Macroporous Membranes with Highly Ordered and Three-Dimensionally Interconnected Spherical Pores [J]. Adv. Mater.,1998,10: 1045-1048.
    [81]Jiang, P.; Hwang, K. S.; Mittleman, D. M.; Bertone, J. F.; Colvin, V. L. Template-Directed Preparation of Macroporous Polymers with Oriented and Crystalline Arrays of Voids [J]. J. Am. Chem. Soc.,1999,121:11630-11637.
    [82]Sumioka, K.; Kayashima, H.; Tsutsui, T. Tuning Optical Properties of Inverse Opal Photonic Crystal by Deformation [J]. Adv. Mater.,2002,14:1284-1286.
    [83]Bu, H.; Rong, J.; Yang, Z. Template Synthesis of Polyacrylonitrile-Based Ordered Macroporous Materials and Their Derivatives [J]. Macromol. Rapid Commun.,2002,23:460-464.
    [84]Tian, S.; Wang, J.; Jonas, U.; Knoll, W. Inverse Opals of Polyaniline and Its Copolymers Prepared by Electrochemical Techniques [J]. Chem. Mater.,2005,17: 5726-5730.
    [85]Yang, L. Y.; Liau, W. B. Chemical Synthesis of Polyaniline Inverse Opals by Templating Colloidal Crystals in the Presence of Dodecylbenzenesulfonic Acid [J]. Macromol. Chem. Phys.,2007,208:994-1001.
    [86]Deutsch, M.; Vlasov, Y. A.; Norris, D. J. Conjugated-Polymer Photonic Crystals [J]. Adv. Mater.,2000,12:1176-1180.
    [87]Cassagneau, T.; Caruso, F. Semiconducting Polymer Inverse Opals Prepared by Electropolymerization [J]. Adv. Mater.,2002,14:34-38.
    [88]Cassagneau, T.; Caruso, F. Inverse Opals for Optical Affinity Biosensing [J]. Adv. Mater.,2002,14:1629-1633.
    [89]Barry, R. A.; Wiltzius, P. Humidity-Sensing Inverse Opal Hydrogels [J]. Langmuir,2006,22:1369-1374.
    [90]Lee, Y. J.; Pruzinsky, S. A.; Braun, P. V. Glucose-Sensitive Inverse Opal Hydrogels:Analysis of Optical Diffraction Response [J]. Langmuir,2004,20: 3096-3106.
    [91]Nakayama, D.; Takeoka, Y.; Watanabe, M.; Kataoka, K. Simple and Precise Preparation of a Porous Gel for a Colorimetric Glucose Sensor by a Templating Technique [J]. Angew. Chem. Int. Ed.,2003,42:4197-4200.
    [92]Xu, X.; Goponenko, A. V.; Asher, S. A. Polymerized PolyHEMA Photonic Crystals:pH and Ethanol Sensor Materials [J]. J. Am. Chem. Soc.,130,130: 3113-3119.
    [93]Lee, Y. J.; Braun, P. V. Tunable Inverse Opal Hydrogel pH Sensors [J]. Adv. Mater.,2003,15:563-566.
    [94]Hu, X.; An, Q.; Li, G.; Tao, S.; Liu, J. Imprinted Photonic Polymers for Chiral Recognition [J]. Angew. Chem. Int. Ed.,2006,45:8145-8148.
    [95]Stein, A.; Wang, Z.; Fierke, M. A. Functionalization of Porous Carbon Materials with Designed Pore Architecture [J]. Adv. Mater.,2009,21:265-293.
    [96]Perpall, M. W.; Perera, K. P. U.; DiMaio, J.; Ballato, J.; Foulger, S. H.; Jr, D. W. S. Novel Network Polymer for Templated Carbon Photonic Crystal Structures [J]. Langmuir,2003,19:7153-7156.
    [97]Su, F.; Zhao, X. S.; Wang, Y.; Zeng, J.; Zhou, Z.; Lee, J. Y Synthesis of Graphitic Ordered Macroporous Carbon with a Three-Dimensional Interconnected Pore Structure for Electrochemical Applications [J]. J. Phys. Chem. B,2005,109: 20200-20206.
    [98]Li, H.; Chang, L.; Wang, J.; Yang, L.; Song, Y. A Colorful Oil-sensitive Carbon Inverse Opal [J]. J. Mater. Chem.,2008,18:5098-5103.
    [99]Yoon, S. B.; Chai, G. S.; Kang, S. K.; Yu, J. S.; Gierszal, K. P.; Jaroniec, M. Graphitized Pitch-Based Carbons with Ordered Nanopores Synthesized by Using Colloidal Crystals as Templates [J]. J. Am. Chem. Soc.,2005,127:4188-4189.
    [100]Fang, B.; Kim, J. H.; Kim, M.; Yu, J. S. Ordered Hierarchical Nanostructured Carbon as a Highly Efficient Cathode Catalyst Support in Proton Exchange Membrane Fuel Cell [J]. Chem. Mater.,2009,21:789-796.
    [101]Kim, P.; Joo, J. B.; Kim, W.; Kang, S. K.; Song, I. K.; Yi, J. A Novel Method for theFabrication of Ordered and Three Dimensionally Interconnected Macroporous Carbon with Mesoporosity [J]. Carbon,2006,44:381-392.
    [102]Tang, F.; Uchikoshi, T.; Sakka, Y. A Practical Technique for the Fabrication of Highly Ordered Macroporous Structures of Inorganic Oxides [J]. Mater. Res. Bull., 2006,41:268-273.
    [103]Li, S.; Zheng, J.; Yang, W.; Zhao, Y.; Liu, Y. Preparation and Characterization of Three-dimensional Ordered Macroporous Rare Earth Oxide-CeO2 [J]. J. Porous Mater.,2008,15:589-592.
    [104]Yan, H.; Blanford, C. F.; Holland, B. T.; Smyrl, W. H.; Stein, A. General Synthesis of Periodic Macroporous Solids by Templated Salt Precipitation and Chemical Conversion [J]. Chem. Mater.,2000,12:1134-1141.
    [105]Vlasov, Y. A.; Yao, N.; Norris, D. J. Synthesis of Photonic Crystals for Optical Wavelengths from Semiconductor Quantum Dots [J]. Adv. Mater.,1999,11:165-169.
    [106]Stein, A. Sphere Templating Methods for Periodic Porous Solids [J]. Micropor. Mesopor. Mat.,2001,44-45:227-239.
    [107]Jiang, P.; Cizeron, J.; Bertone, J. F.; Colvin, V. L. Preparation of Macroporous Metal Films from Colloidal Crystals [J]. J. Am. Chem. Soc.,1999,121:7957-7958.
    [108]Tessier, P. M.; Velev, O. D.; Kalambur, A. T.; Rabolt, J. F.; Lenhoff, A. M.; Kaler, E. W. Assembly of Gold Nanostructured Films Templated by Colloidal Crystals and Use in Surface-Enhanced Raman Spectroscopy [J]. J. Am. Chem. Soc.,2000,122: 9554-9555.
    [109]Blanco, A.; Chomski, E.; Grabtchak, S.; Ibisate, M.; John, S.; Leonard, S. W.; Lopez, C.; Meseguer, F.; Miguez, H.; Mondia, J. P.; Ozin, G. A.; Toader, O.; Driel, H. M. v. Large-scale Synthesis of a Silicon Photonic Crystal with a Complete Three-dimensional Bandgap Near 1.5 Micrometres [J]. Nature,2000,405:437-440.
    [110]Busch, K.; John, S. Photonic Band Gap Formation in Certain Self-organizing Systems [J]. Phys. Rev. E,1998,58:3896-3908.
    [111]Dong, W.; Marlow, F. Tuning of Ordered Porous Skeleton Structures [J]. Micropor. Mesopor. Mat.,2007,99:236-243.
    [112]Hung, D.; Liu, Z.; Shah, N.; Hao, Y.; Searson, P. C. Finite Size Effects in Ordered Macroporous Electrodes Fabricated by Electrodeposition into Colloidal Crystal Templates [J]. J. Phys. Chem. C,2007,111:3308-3313.
    [113]Aliev, A. E.; Lee, S. B.; Zakhidov, A. A.; Baughman, R. H. Superconductivity in Pb Inverse Opal [J]. Physica C:Superconductivity,2007,453:15-23.
    [114]Rugge, A.; Becker, J. S.; Gordon, R. G.; Tolbert, S. H. Tungsten Nitride Inverse Opals by Atomic Layer Deposition [J]. Nano Lett.,2003,3:1293-1297.
    [115]Liu, B.; Jin, Z.; Qu, X.; Yang, Z. A General Approach toward Opal-Inverse Opal Interlocked Materials [J]. Macromol. Rapid Commun.,2007,28:322-328.
    [116]Dong, W.; Bongard, H.; Tesche, B.; Marlow, F. Inverse Opals with a Skeleton Structure:Photonic Crystals with Two Complete Bandgaps [J]. Adv. Mater.,2002,14: 1457-1460.
    [117]Dong, W.; Bongard, H. J.; Marlow, F. New Type of Inverse Opals:Titania With Skeleton Structure [J]. Chem. Mater.,2003,15:568-574.
    [118]King, J. S.; Gaillot, D. P.; Graugnard, E.; Summers, C. J. Conformally Back-Filled, Non-close-packed Inverse-Opal Photonic Crystals [J]. Adv. Mater.,2006, 18:1063-1067.
    [119]Wang, Z.; Stein, A. Morphology Control of Carbon, Silica, and Carbon/Silica Nanocomposites:From 3D Ordered Macro-/Mesoporous Monoliths to Shaped Mesoporous Particles [J]. Chem. Mater.,2007,20:1029-1040.
    [120]Deng, Y.; Liu, C.; Yu, T.; Liu, F.; Zhang, F.; Wan, Y.; Zhang, L.; Wang, C.;Tu, B.; Webley, P. A.; Wang, H.; Zhao, D. Facile Synthesis of Hierarchically Porous Carbons from Dual Colloidal Crystal/Block Copolymer Template Approach [J]. Chem. Mater.,2007,19:3271-3277.
    [121]Li, F.; Wang, Z.; Ergang, N. S.; Fyfe, C. A.; Stein, A. Controlling the Shape and Alignment of Mesopores by Confinement in Colloidal Crystals:Designer Pathways to Silica Monoliths with Hierarchical Porosity [J]. Langmuir,2007,23:3996-4004.
    [122]Woo, S. W.; Dokko, K.; Sasajima, K.; Takeia, T.; Kanamura, K. Three-dimensionally Ordered Macroporous Carbons Having Walls Composed of Hollow Mesosized Spheres [J]. Chem. Commun.,2006:4099-4101.
    [123]Ruhl, T.; Spahn, P.; Hermann, C.; Jamois, C.; Hess, O. Double-Inverse-Opal Photonic Crystals:The Route to Photonic Bandgap Switching [J]. Adv. Funct. Mater., 2006,16:885-890.
    [124]Chen, X.; Wang, L.; Wen, Y.; Zhang, Y.; Wang, J.; Song, Y.; Jiang, L.; Zhu, D. Fabrication of Closed-cell Polyimide Inverse Opal Photonic Crystals with Excellent Mechanical Properties and Thermal Stability [J]. J. Mater. Chem.,2008,18: 2262-2267.
    [125]Qian, W.; Gu, Z. Z.; Fujishima, A.; Sato, O. Three-Dimensionally Ordered Macroporous Polymer Materials:An Approach for Biosensor Applications [J]. Langmuir,2002,18:4526-4529.
    [126]Yang, L.; Yang, Z.; Cao, W.; Chen, L.; Xu, J.; Zhang, H. Luminescence 3D-Ordered Porous Materials Composed of CdSe and CdTe Nanocrystals [J]. J. Phys. Chem. B,2005,109:11501-11504.
    [127]Schroden, R. C.; Al-Daous, M.; Sokolov, S.; Melde, B. J.; Lytle, J. C.; Stein, A.; Carbajo, M. C.; Fernandezb, J. T.; Rodriguezb, E. E. Hybrid Macroporous Materials for Heavy Metal Ion Adsorption [J]. J. Mater. Chem.,2002,12:3261-3267.
    [128]Stein, A.; Schroden, R. C. Colloidal Crystal Templating of Three-dimensionally Ordered Macroporous Solids:Materials for Photonics and Beyond [J]. Curr. Opin. Solid State Mater. Sci.,2001,5:553-564.
    [129]Chai, G. S.; Yoon, S. B.; Yu, J. S.; Choi, J. H.; Sung, Y E. Ordered Porous Carbons with Tunable Pore Sizes as Catalyst Supports in Direct Methanol Fuel Cell [J]. J. Phys. Chem. B,2004,108:7074-7079.
    [130]Yu, J. S.; Kang, S.; Yoon, S. B.; Chai, G. Fabrication of Ordered Uniform Porous Carbon Networks and Their Application to a Catalyst Supporter [J]. J. Am. Chem. Soc,2002,124:9382-9383.
    [131]Kim, P.; Joo, J. B.; Kim, W.; Kim, H.; Song, I. K.; Yi, J. Direct Fabrication of Pt-supported Macroporous Carbon with Nanoporous Walls [J]. Carbon,2005,43: 2397-2429.
    [132]Lee, K. T.; Lytle, J. C.; Ergang, N. S.; Oh, S. M.; Stein, A. Synthesis and Rate Performance of Monolithic Macroporous Carbon Electrodes for Lithium-ion Secondary Batteries [J]. Adv. Funct. Mater.,2005,15:547-556.
    [133]Liu, H. J.; Cui, W. J.; Jin, L. H.; Wang, C. X.; Xia, Y.Y. Preparation of Three-dimensional Ordered Mesoporous Carbon Sphere Arrays by a Two-step Templating Route and Their Application for Supercapacitors [J]. J. Mater. Chem., 2009,19:3661-3667.
    [1]Harold, M. P.; Lee, C.; Burgraaf, A. J.; Keizder, K.; Zaspalis, V. T.; Lange, R. S. A. d. Catalysts with Inorganic Membranes [J]. MRS Bulletin,1994,19:34-39.
    [2]Bhave, R. R. Inorganic Membranes Synthesis, Characteristics, and Applications [M].1991.
    [3]Litovsky, E. S., M.; Shavit, A Gas Pressure and Temperature Dependances of Thermal Conductivity of Porous Materials. Part 2. Refractories and Ceramics with Porosity Exceeding 30 Percent [J]. J. Am. Ceram. Soc,1996,79:1366-1376.
    [4]Wu, M.; Fujiu, T.; Messing, G L. Synthesis of Cellular Inorganic Materials by Foaming Sol-gels [J]. J. Non-Cryst Solids,1990,121:407-412.
    [5]Subramanian, G.; Manoharan, V. N.; Thorne, J. D.; Pine, D. J. Ordered Macroporous Materials by Colloidal Assembly:A Possible Route to Photonic Bandgap Materials [J]. Adv. Mater.,1999,11:1261-1265.
    [6]Waterhouse, G. I. N.; Metson, J. B.; Idriss, H.; Sun-Waterhouse, D. Physical and Optical Properties of Inverse Opal CeO2 Photonic Crystals [J]. Chem. Mater.,2008, 20:1183-1190.
    [7]Xu, X.; Goponenko, A. V.; Asher, S. A. Polymerized PolyHEMA Photonic Crystals:pH and Ethanol Sensor Materials [J]. J. Am. Chem. Soc.,2008,130: 3113-3119.
    [8]Holland, B. T.; Blanford, C. F.; Stein, A. Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids [J]. Science,1998, 281:538-540.
    [9]Fan, J. W.; Deng, J. Y.; Xing, C. M.; Yang, W. T. Fabrication of a Pore-Connected, Macroporous, Crosslinked Polystyrene Monolith with Anhydride Groups Bonded onto a Pore Surface [J]. J. Polym. Sci. A, Polym. Chem.,2006,44:653-658.
    [10]Yan, F.; Goedel, W. A. Polymer Membranes with Two-Dimensionally Arranged Pores Derived from Monolayers of Silica Particles [J]. Chem. Mater.,2004,16: 1622-1626.
    [11]Martina, H. S.; Barner-Kowollik, C.; Thomas, P. D. Formation of Honeycomb-Structured, Porous Films via Breath Figures with Different Polymer Architectures [J]. J. Polym. Sci. A, Polym. Chem.,2006,44:2363-2375.
    [12]Zhang, Y.; Wang, C. Micropatterning of Proteins on 3D Porous Polymer Film Fabricated by Using the Breath-Figure Method [J]. Adv. Mater.,2007,19:913-916.
    [13]Christopher, B. K.; Helen, D.; Thomas, P. D.; Martina, H. S. Nano-and Micro-Engineering of Ordered Porous Blue-Light-Emitting Films by Templating Well-Defined Organic Polymers Around Condensing Water Droplets 13 [J]. Angew. Chem. Int. Ed.,2003,42:3664-3668.
    [14]Meng, Y.; Gu, D.; Zhang, F.; Shi, Y.; Yang, H.; Li, Z.; Yu, C.; Tu, B.; Zhao, D. Ordered Mesoporous Polymers and Homologous Carbon Frameworks:Amphiphilic Surfactant Templating and Direct Transformation 13 [J]. Angew. Chem. Int. Ed.,2005, 44:7053-7059.
    [15]Magbitang, T.; Lee, V. Y.; Cha, J. N.; Wang, H. L.; Chung, W. R.; Miller, R. D.; Dubois, G.; Volksen, W.; Kim, H. C.; Hedrick, J. L. Oriented Nanoporous Lamellar Organosilicates Templated from Topologically Unsymmetrical Dendritic-Linear Block Copolymers13 [J]. Angew. Chem. Int. Ed.,2005,44:7574-7580.
    [16]Jiang, P.; McFarland, M. J. Large-Scale Fabrication of Wafer-Size Colloidal Crystals, Macroporous Polymers and Nanocomposites by Spin-Coating [J]. J. Am. Chem. Soc.,2004,126:13778-13786.
    [17]Norris, D. J.; Arlinghaus, E. G.; Meng, L.; Heiny, R.; Scriven, L. E. Opaline Photonic Crystals:How Does Self-Assembly Work? [J]. Adv. Mater.,2004,16: 1393-1399.
    [18]Holland, B. T.; Blanford, C. F.; Do, T.; Stein, A. Synthesis of Highly Ordered, Three-Dimensional, Macroporous Structures of Amorphous or Crystalline Inorganic Oxides, Phosphates, and Hybrid Composites [J]. Chem. Mater.,1999,11:795-805.
    [19]Schroden, R. C.; Al-Daous, M.; Blanford, C. F.; Stein, A. Optical Properties of Inverse Opal Photonic Crystals [J]. Chem. Mater.,2002,14:3305-3315.
    [20]Wang, J.; Li, Q.; Knoll, W.; Jonas, U. Preparation of Multilayered Trimodal Colloid Crystals and Binary Inverse Opals [J]. J. Am. Chem. Soc.,2006,128: 15606-15607.
    [21]Wang, Y J.; Tang, Y.; Ni, Z.; Hua, W. M.; Yang, W L.; Wang, X. D.; Tao, W. C.; Gao, Z. Synthesis of Macroporous Materials with Zeolitic Microporous Frameworks by Self-Assembly of Colloidal Zeolites; [J]. Chem. Lett.,2000,29:510-511.
    [22]Huang, L.; Wang, Z.; Sun, J.; Miao, L.; Li, Q.; Yan, Y.; Zhao, D. Fabrication of Ordered Porous Structures by Self-Assembly of Zeolite Nanocrystals [J]. J. Am. Chem. Soc.,2000,122:3530-3531.
    [23]You, B.; Wen, N.; Zhou, S.; Wu, L.; Zhao, D. Facile Method for Fabrication of Nanocomposite Films with an Ordered Porous Surface [J]. J. Phys. Chem. B,2008, 112:7706-7712.
    [24]You, B.; Shi, L.; Wen, N.; Liu, X.; Wu, L.; Zi, J. A Facile Method for Fabrication of Ordered Porous Polymer Films [J]. Macromolecules,2008,41:6624-6626.
    [25]Zhang, S.; Zhou, S.; You, B.; Wu, L. Fabrication of Ordered Porous Polymer Film via a One-Step Strategy and Its Formation Mechanism [J]. Macromolecules, 2009,42:3591-3597.
    [26]Lopez, C. Materials Aspects of Photonic Crystals [J]. Adv. Mater.,2003,15: 1679-1704.
    [27]Holl, Y. K., J. L.; McDonald, P. J.; Winnik, W. A. Film Formation in Coatings: Mechanisms, Properties and Morphology; Provder, T., Urban, M. W. Eds.; ACS Symposium Series 790; [M].2001.
    [28]Woodcock, L. V. Entropy Difference Between the Face-centered Cubic and Hexagonal Close-packed Crystal Structures [J]. Nature,1997,385:141-143.
    [29]Dimitrov, A. S.; Nagayama, K. Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces [J]. Langmuir,1996,12: 1303-1311.
    [30]Stamou, D.; Duschl, C.; Johannsmann, D. Long-Range Attraction Between Colloidal Spheres at the Air-Water Interface:The Consequence of an Irregular Meniscus [J]. Phys. Rev. E,2000,62:5263-5272.
    [31]Song, M.; Hourston, D. J.; Silva, G. G.; Machado, J. C. Effect of Residual Water and Free Volume on the Glass-Transition Temperature and Heat Capacity in Polystyrene/Poly(vinyl acetate-co-butyl acrylate) Structured Latex Films [J]. J. Polym. Sci. B, Polym. Phys.,2001,39:1659-1664.
    [32]Schroden, R. C.; Al-Daous, M.; Blanford, C. F.; Stein, A. Optical Properties of Inverse Opal Photonic Crystals [J]. Chem. Mater.,2002,14:3305-3315.
    [1]Daniel, S.; Chaudhury, M. K.; Chen, J. C. Fast Drop Movements Resulting From the Phase Change on a Gradient Surface [J]. Science,2001,291:633-636.
    [2]Morgenthaler, S.; Zink, C.; Spencer, N. D. Surface-Chemical and-Morphological Gradients [J]. Soft Matter,2008,4:419-434.
    [3]Kim, M. S.; Khang, G.; Lee, H. B. Gradient Polymer Surfaces for Biomedical Applications [J]. Progr. Polym. Sci.,2008,33:138-164.
    [4]Plummer, S. T.; Wang, Q.; Bohn, P. W. Electrochemically Derived Gradients of the Extracellular Matrix Protein Fibronectin on Gold [J]. Langmuir,2003,19:7528-7536.
    [5]Lee, J. H.; Lee, S. J.; Khang, G.; Lee, H. B. The Effect of Fluid Shear Stress on Endothelial Cell Adhesiveness to Polymer Surfaces with Wettability Gradient [J]. J. Colloid Interface Sci.,2000,230:84-90.
    [6]Zaari, N.; Rajagopalan, P.; Kim, S. K.; Engler, A. J.; Wong, J. Y. Photopolymerization in Microfluidic Gradient Generators:Microscale Control of Substrate Compliance to Manipulate Cell Response [J]. Adv. Mater.,2004,16: 2133-2137.
    [7]Zhang, J.; Han, Y. A Topography/Chemical Composition Gradient Polystyrene Surface:Toward the Investigation of the Relationship between Surface Wettability and Surface Structure and Chemical Composition [J]. Langmuir,2007,24:796-801.
    [8]Morgenthaler, S.; Lee, S.; Zurcher, S.; Spencer, N. D. A Simple, Reproducible Approach to the Preparation of Surface-Chemical Gradients [J]. Langmuir,2003,19: 10459-10462.
    [9]Wu, T.; Efimenko, K.; Vlcek, P.; Subr, V.; Genzer, J. Formation and Properties of Anchored Polymers with a Gradual Variation of Grafting Densities on Flat Substrates [J]. Macromolecules,2003,36:2448-2453.
    [10]Sehayek, T.; Vaskevich, A.; Rubinstein, I. Preparation of Graded Materials by Laterally Controlled Template Synthesis [J]. J. Am. Chem. Soc.,2003,125: 4718-4719.
    [11]Chaudhury, M. K.; Whitesides, G. M. How to Make Water Run Uphill? [J]. Science,1992,256 1539-1541.
    [12]Liedberg, B.; Tengvall, P. Molecular Gradients of.omega.-Substituted Alkanethiols on Gold:Preparation and Characterization [J]. Langmuir,1995,11: 3821-3827.
    [13]Jeong, B. J.; Lee, J. H.; Lee, H. B. Preparation and Characterization of Comb-like PEO Gradient Surfaces [J]. J. Colloid Interface Sci.,1996,178:757-763.
    [14]Lee H. B, K. M. S., Cho Y. H, Khang G. Preparation of Gradient Polymer Surface and Their Pluripotent Biomedical Applications [J]. Polymer,2005,29:423-432.
    [15]Dertinger, S. K. W.; Jiang, X.; Li, Z.; Murthy, V. N.; Whitesides, G M. Gradients of Substrate-Bound Laminin Orient Axonal Specification of Neurons [J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99: 12542-12547.
    [16]Dalby, M. J.; Gadegaard, N.; Tare, R.; Andar, A.; Riehle, M. O.; Herzyk, P.; Wilkinson, C. D. W.; Oreffo, R. O. C. The Control of Human Mesenchymal Cell Differentiation Using Nanoscale Symmetry and Disorder [J]. Nat. Mater.,2007,6: 997-1003
    [17]Vikhorev, P. G.; Vikhoreva, N. N.; Sundberg, M.; Balaz, M.; Albet-Torres, N.; Bunk, R.; Kvennefors, A.; Liljesson, K.; Nicholls, I. A.; Nilsson, L.; Omling, P.; Tagerud, S.; Montelius, L.; Mansson, A. Diffusion Dynamics of Motor-Driven Transport:Gradient Production and Self-Organization of Surfaces [J]. Langmuir,2008, 24:13509-13517.
    [18]Fuierer, R. R.; Carroll, R. L.; Feldheim, D. L.; Gorman, C. B. Patterning Mesoscale Gradient Structures with Self-Assembled Monolayers and Scanning Tunneling Microscopy Based Replacement Lithography [J]. Adv. Mater.,2002,14: 154-157.
    [19]Genzer, J.; Bhat, R. R. Surface-Bound Soft Matter Gradients [J]. Langmuir,2008, 24:2294-2317.
    [20]Genzer, J.; Efimenko, K.; Fischer, D. A. Formation Mechanisms and Properties of Semifluorinated Molecular Gradients on Silica Surfaces [J]. Langmuir,2006,22: 8532-8541.
    [21]Xu, C.; Wu, T.; Drain, C. M.; Batteas, J. D.; Fasolka, M. J.; Beers, K. L. Effect of Block Length on Solvent Response of Block Copolymer Brushes:Combinatorial Study with Block Copolymer Brush Gradients [J]. Macromolecules,2006,39: 3359-3364.
    [22]Tsai, I. Y.; Kimura, M.; Russell, T. P. Fabrication of a Gradient Heterogeneous Surface Using Homopolymers and Diblock Copolymers [J]. Langmuir,2004,20: 5952-5957.
    [23]Lu, X.; Zhang, J.; Zhang, C.; Han, Y. Low-Density Polyethylene (LDPE) Surface With a Wettability Gradient by Tuning its Microstructures [J]. Macromol. Rapid Commun.,2005,26:637-642.
    [24]Zhang, J.; Xue, L.; Han, Y. Fabrication Gradient Surfaces by Changing Polystyrene Microsphere Topography [J]. Langmuir,2004,21:5-8.
    [25]Blondiaux, N.; Morgenthaler, S.; Pugin, R.; Spencer, N. D.; Liley, M. Gradients of Topographical Structure in Thin Polymer Films [J]. Appl. Surf. Sci.,2008,254: 6820-6825.
    [26]Kunzler, T. P.; Drobek, T.; Sprecher, C. M.; Schuler, M.; Spencer, N. D. Fabrication of Material-Independent Morphology Gradients for High-Throughput Applications [J]. Appl. Surf. Sci.,2006,253:2148-2153.
    [27]Washburn, N. R.; Yamada, K. M.; Simon, C. G.; Kennedy, S. B.; Amis, E. J. High-Throughput Investigation of Osteoblast Response to Polymer Crystallinity: Influence of Nanometer-Scale Roughness on Proliferation [J]. Biomaterials,2004,25: 1215-1224.
    [28]You, B.; Wen, N.; Zhou, S.; Wu, L.; Zhao, D. Facile Method for Fabrication of Nanocomposite Films with an Ordered Porous Surface [J]. J. Phys. Chem. B,2008, 112:7706-7712.
    [29]You, B.; Shi, L.; Wen, N.; Liu, X.; Wu, L.; Zi, J. A Facile Method for Fabrication of Ordered Porous Polymer Films [J]. Macromolecules,2008,41:6624-6626.
    [30]Zhang, S.; Zhou, S.; You, B.; Wu, L. Fabrication of Ordered Porous Polymer Film via a One-Step Strategy and Its Formation Mechanism [J]. Macromolecules, 2009,42:3591-3597.
    [31]Zhang, S.; You, B.; Gu, G.; Wu, L. A Simple Approach to Fabricate Morphological Gradient on Polymer Surfaces [J]. Polymer,2009,50:6235-6244.
    [32]Deegan, R. D.; Bakajin, O.; Dupont, T.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary Flow as the Cause of Ring Stains From Dried Liquid Drops [J]. Nature, 1997,389:827-829.
    [33]Zeng, F.; Sun, Z.; Wang, C.; Ren, B.; Liu, X.; Tong, Z. Fabrication of Inverse Opal via Ordered Highly Charged Colloidal Spheres [J]. Langmuir,2002,18: 9116-9120.
    [34]Kralchevsky, P. A.; Denkov, N. D. Capillary Forces and Structuring in Layers of Colloid Particles [J]. Curr. Opin. Colloid Interface Sci.,2001,6:383-401.
    [35]Tirumkudulu, M. S.; Russel, W. B. Role of Capillary Stresses in Film Formation [J]. Langmuir,2004,20:2947-2961.
    [36]Dimitrov, A. S.; Nagayama, K. Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces [J]. Langmuir,1996,12: 1303-1311.
    [37]Stamou, D.; Duschl, C.; Johannsmann, D. Long-Range Attraction Between Colloidal Spheres at the Air-Water Interface:The Consequence of an Irregular Meniscus [J]. Phys. Rev. E,2000,62:5263-5272.
    [38]Song, M.; Hourston, D. J.; Silva, G. G.; Machado, J. C. Effect of Residual Water and Free Volume on the Glass-Transition Temperature and Heat Capacity in Polystyrene/poly(vinyl acetate-co-butyl acrylate) Structured Latex Films [J]. J. Polym. Sci. B, Polym. Phys.,2001,39:1659-1664.
    [1]Zhou, H.; Zhu, S.; Hibino, M.; Honma, I.; Ichihara, M. Lithium Storage in Ordered Mesoporous Carbon (CMK-3) with High Reversible Specific Energy Capacity and Good Cycling Performance [J]. Adv. Mater.,2003,15:2107-2111.
    [2]Chang, H.; Joo, S. H.; Pak, C. Synthesis and Characterization of Mesoporous carbon for Fuel Cell Applications [J]. J. Mater. Chem.,2007,17:3078-3088.
    [3]Liu, H. J.; Cui, W. J.; Jin, L.-H.; Wang, C. X.; Xia, Y. Y. Preparation of Three-Dimensional Ordered Mesoporous Carbon Sphere Arrays by a Two-Step Templating Route and Their Application for Supercapacitors [J]. J. Mater. Chem., 2009,19:3661-3667.
    [4]Fang, B.; Zhou, H.; Honma, I. Ordered Porous Carbon with Tailored Pore Size for Electrochemical Hydrogen Storage Application [J]. J. Phys. Chem. B,2006,110: 4875-4880.
    [5]Yu, J. S.; Kang, S.; Yoon, S. B.; Chai, G .Fabrication of Ordered Uniform Porous Carbon Networks and Their Application to a Catalyst Supporter [J]. J. Am. Chem. Soc.,2002,124:9382-9383.
    [6]Kim, J. Y.; Yoon, S. B.; Yu, J.-S. Template Synthesis of a New Mesostructured Silica from Highly Ordered Mesoporous Carbon Molecular Sieves [J]. Chem. Mater., 2003,15:1932-1934.
    [7]Dibandjo, P.; Bois, L.; Chassagneux, F.; Cornu, D.; Letoffe, J. M.; Toury, B.; Babonneau, F.; Miele, P. Synthesis of Boron Nitride with Ordered Mesostructure [J]. Adv. Mater.,2005,17:571-574.
    [8]Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Cui, C. X.; Khayrullin, I.; Dantas, S. O.; Marti, J.; Ralchenko, V. G. Carbon Strctures with Three-Dimensional Periodicity at Optical Wavelengths [J]. Science,1998,282:897-901.
    [9]Li, H.; Chang, L.; Wang, J.; Yanga, L.; Song., Y. A Colorful Oil-Sensitive Carbon Inverse Opal [J]. J. Mater. Chem.,2008,18:5098-5103.
    [10]Yoo, W. C.; Sandeep, K.; Zhiyong, W.; Ergang, N. S.; Wei, F.; Karanikolos, G. N.; McCormick, A. V.; Penn, R. L.; Michael, T.; Andreas, S. Nanoscale Reactor Engineering:Hydrothermal Synthesis of Uniform Zeolite Particles in Massively Parallel Reaction Chambers [J]. Angew. Chem. Int. Ed.,2008,47:9096-9099.
    [11]Takashi, K. Control of Pore Structure in Carbon [J]. Carbon,2000,38:269-286.
    [12]Lee, J.; Kim, J.; Hyeon, T. Recent Progress in the Synthesis of Porous Carbon Materials [J]. Adv. Mater.,2006,18:2073-2094.
    [13]Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M. Ordered Mesoporous Carbons [J]. Adv. Mater.,2001,13:677-681.
    [14]Stein, A.; Wang, Z.; Fierke, M. A. Functionalization of Porous Carbon Materials with Designed Pore Architecture [J]. Adv. Mater.,2009,21:265-293.
    [15]Hou, P. X.; Orikasa, H.; Yamazaki, T.; Matsuoka, K.; Tomita, A.; Setoyama, N.; Fukushima, Y.; Kyotani, T. Synthesis of Nitrogen-Containing Microporous Carbon with a Highly Ordered Structure and Effect of Nitrogen Doping on H2O Adsorption [J]. Chem. Mater.,2005,17:5187-5193.
    [16]Ma, Z.; Kyotani, T.; Tomita, A. Preparation of a High Surface Area Microporous Carbon Having the Structural Regularity of Y Zeolite [J]. Chem. Comm.,2000: 2365-2366.
    [17]Lu, A.; Kiefer, A.; Schmidt, W.; Schuth, F. Synthesis of Polyacrylonitrile-Based Ordered Mesoporous Carbon with Tunable Pore Structures [J]. Chem. Mater.,2003, 16:100-103.
    [18]Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Ordered Nanoporous Arrays of Carbon Supporting High Dispersions of Platinum Nanoparticles [J]. Nature,2001,412:169-172.
    [19]Deng, Y.; Yu, T.; Wan, Y.; Shi, Y.; Meng, Y.; Gu, D.; Zhang, L.; Huang, Y.; Liu, C.; Wu, X.; Zhao, D. Ordered Mesoporous Silicas and Carbons with Large Accessible Pores Templated from Amphiphilic Diblock Copolymer Poly(ethylene oxide)-b-polystyrene [J]. J. Am. Chem. Soc.,2007,129:1690-1697.
    [20]Kosonen, H.; Valkama, S.; Nykanen, A.; Toivanen, M.; Brinke, G. T.; Ruokolainen, J.; Ikkala, O. Functional Porous Structures Based on the Pyrolysis of Cured Templates of Block Copolymer and Phenolic Resin [J]. Adv. Mater.,2006,18: 201-205.
    [21]Liang, C.; Kunlun, H.; Guiochon, G. A.; Mays, J. W.; Dai, S. Synthesis of a Large-Scale Highly Ordered Porous Carbon Film by Self-Assembly of Block Copolymers13 [J]. Angew. Chem. Int. Ed.,2004,43:5785-5789.
    [22]Lee, K. T.; Lytle, J. C.; Ergang, N. S.; Oh, S. M.; Stein, A. Synthesis and Rate Performance of Monolithic Macroporous Carbon Electrodes for Lithium-Ion Secondary Batteries [J]. Adv. Funct. Mater.,2005,15:547-556.
    [23]Lei, Z.; Zhang, Y.; Wang, H.; Ke, Y.; Li, J.; Li, F.; Xing, J. Fabrication of Well-Ordered Macroporous Active Carbon with a Microporous Framework [J]. J. Mater. Chem.,2001,11:1975-1977.
    [24]Zhou, Z.; Yan, Q.; Su, F.; Zhao, X. S. Replicating Novel Carbon Nanostructures with 3-D Macroporous Silica Template [J]. J. Mater. Chem.,2005,15:2569-2574.
    [25]Chai, G S.; Yoon, S. B.; Yu, J. S.; Choi, J. H.; Sung, Y. E. Ordered Porous Carbons with Tunable Pore Sizes as Catalyst Supports in Direct Methanol Fuel Cell [J]. J. Phys. Chem. B,2004,108:7074-7079.
    [26]Su, F.; Zhao, X. S.; Wang, Y.; Zeng, J.; Zhou, Z.; Lee, J. Y. Synthesis of Graphitic Ordered Macroporous Carbon with a Three-Dimensional Interconnected Pore Structure for Electrochemical Applications [J]. J. Phys. Chem. B,2005,109: 20200-20206.
    [27]BonYoon, S.; Chai, G. S.; Kang, S. K.; Yu, J. S.; Gierszal, K. P.; Jaroniec, M. Graphitized Pitch-Based Carbons with Ordered Nanopores Synthesized by Using Colloidal Crystals as Templates [J]. J. Am. Chem. Soc.,2005,127:4188-4189.
    [28]Baumann, T. F.; Satcher, J. H. Homogeneous Incorporation of Metal Nanoparticles into Ordered Macroporous Carbons [J]. Chem. Mater.,2003,15: 3745-3747.
    [29]Wang, Z.; Li, F.; Ergang, N. S.; Stein, A. Effects of Hierarchical Architecture on Electronic and Mechanical Properties of Nanocast Monolithic Porous Carbons and Carbon-carbon Nanocomposites [J]. Chem. Mater.,2006,18:5543-5553.
    [30]Chai, G. S.; Shin, I. S.; Yu, J. S. Synthesis of Ordered, Uniform, Macroporous Carbons with Mesoporous Walls Templated by Aggregates of Polystyrene Spheres and Silica Particles for Use as Catalyst Supports in Direct Methanol Fuel Cells [J]. Adv. Mater.,2004,16:2057-2061.
    [31]Fang, B.; Kim, J. H.; Kim, M.; Yu, J. S. Ordered Hierarchical Nanostructured Carbon as a Highly Efficient Cathode Catalyst Support in Proton Exchange Membrane Fuel Cell [J]. Chem. Mater.,2009,21:789-796.
    [32]Woo, S. W.; Dokko, K.; Nakano, H.; Kanamura, K. Preparation of Three Dimensionally Ordered Macroporous Carbon with Mesoporous Walls for Electric Double-Layer Capacitors [J]. J. Mater. Chem.,2008,18:1674-1680.
    [33]Deng, Y.; Liu, C.; Yu, T.; Liu, F.; Zhang, F.; Wan, Y.; Lijuan Zhang; Wang, C.; Tu, B.; Webley, P. A.; Wang, H.; Zhao, D. Facile Synthesis of Hierarchically Porous Carbons from Dual Colloidal Crystal/Block Copolymer Template Approach [J]. Chem. Mater.,2007,19:3271-3277.
    [34]Zhang, S.; Chen, L.; Zhou, S.; Zhao, D.; Wu, L. Facile Synthesis of Hierarchically Ordered Porous Carbon via in-situ Self-Assembly of Colloidal Polymer and Silica Spheres and Its Use as Catalyst Support [J]. Chem. Mater.,2010, Revised. Manuscript ID:cm-2010-002274.R1.
    [35]Chen, L.; Guo, M.; Zhang, H.-F.; Wang, X.-D. Characterization and Electrocatalytic Properties of Pt-Ru/C Catalysts Prepared by Impregnation-Reduction Method Using Nd2O3 as Dispersing Reagent [J]. Electrochim. Acta,2006,52: 1191-1198.
    [36]You, B.; Wen, N.; Shi, L.; Wu, L.; Zi, J. Facile Fabrication of a Three-Dimensional Colloidal Crystal Film with Large-Area and Robust Mechanical Properties [J]. J. Mater. Chem.,2009,19:3594-3597.
    [37]Kim, S. H.; Kim, S. H.; Yang, S. M. Patterned Polymeric Domes with 3-D and 2-D Embedded Colloidal Crystals using Photocurable Emulsion Droplets [J]. Adv. Mater.,2009,21:3771-3775.
    [38]Jiang, P.; McFarland, M. J. Large-Scale Fabrication of Wafer-Size Colloidal Crystals, Macroporous Polymers and Nanocomposites by Spin-Coating [J]. J. Am. Chem. Soc.,2004,126:13778-13786.
    [39]Iskandar, F.; Mikrajuddin; Okuyama, K. Controllability of Pore Size and Porosity on Self-Organized Porous Silica Particles [J]. Nano Lett.,2002,2:389-392.
    [40]Wang, J.; Li, Q.; Knoll, W.; Jonas, U. Preparation of Multilayered Trimodal Colloid Crystals and Binary Inverse Opals [J]. J. Am. Chem. Soc.,2006,128: 15606-15607.
    [41]Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Poschl, U. Raman Microspectroscopy of Soot and Related Carbonaceous Materials:Spectral Analysis and Structural Information [J]. Carbon,2005,43:1731-1742.
    [42]Wen, Z.; Liu, J.; Li, J. Core/Shell Pt/C Nanoparticles Embedded in Mesoporous Carbon as a Methanol-Tolerant Cathode Catalyst in Direct Methanol Fuel Cells [J]. Adv. Mater.,2008,20:743-747.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700