低驱动电压有机电致发光器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光器件具有低工作电压、高亮度、高效率、高对比度、厚度薄、重量轻、可视视角宽、工作温度范围宽、工艺简单、可制作在柔性衬底上等诸多优点,在新一代的显示和照明产品上有着广泛的应用前景。经过二十多年的快速发展,该类器件已经从单纯基础研究,逐渐转变到了大力开发产品的阶段。为了适应下一代平板显示器和白光照明面板的长寿命、高效率、低成本的开发要求,需要对有机电致发光器件的性能进行更深层次的优化。
     本论文从改善有机电致发光器件的性能以满足实用化需求的角度出发,探索制备低驱动电压发光器件的方法,满足发光器件与有源显示驱动电路工作条件和制备工艺相兼容的迫切要求;研究载流子传输和激子限制作用对白光有机电致发光器件的影响,分别设计和制备低驱动电压、高效率的底发射和顶发射结构的白光有机电致发光器件。主要研究成果包括以下几个方面:
     1.结合有机半导体p型电学掺杂的结构,分析不同电子传输层结构的电子传输和空穴阻挡能力对底发射有机电致发光器件的驱动电压、发光效率等性能的影响,’研究荧光染料C545T在主体材料Alq3中的载流子陷阱行为,结合软件模拟计算,得出了不同弱微腔结构中发光层的偶极子分布的简化模型。同时利用p型电学掺杂层厚度变化对器件的电学特性不敏感的特性,优化了适合有源显示器的发光器件结构,将低驱动电压的底发射有机电致发光器件成功地移植到基于低温多晶硅薄膜晶体管技术、分辨率为128×96×3的有源显示发光屏上,实现全屏的均匀发光。
     2.利用前面得出的偶极子分布的模型,对顶发射结构的有机电致发光器件的不同光学模式分布进行模拟,从应用到直视型器件的角度出发,最大程度地提高正向光耦合输出效率,结合p型电学掺杂技术,利用高效的荧光染料,制备了应用于有机电致发光微显示器的低工作电压(4.0和4.9 V下的亮度分别达到2500和10000 cd/rn2)、高效率(1000cd/m2亮度下的功率效率为28.8 lm/W)的单色荧光顶发射器件,同时研究了有机:无机电学掺杂层的热稳定性。从器件集成个工艺整合的角度出发,研究芯片表面Ag金属层的形貌对微显示器性能的影响,结合上述研究成果和相关的微电子电路技术,我们成功地开发了我国第一款QVGA硅上有机微显示器原型样机。
     3.通过在蓝色(mCP:FIrpic)和黄色(mCP:(F-BT)2Ir(acac))磷光发光层中间插入不同界面层的方法,仔细研究了白色有机电致发光器件中发光层内部的载流子传输特性和激子扩散行为,分析了p型导电的mCP、n型导电BPhen、双极传输型的mCP:BPhen等三种中间界面层结构对器件工作电压、发光特性的影响,比较NPB/mCP和Ir(ppz)3两种三线态激子阻挡结构的激子扩散、器件工作电压和发光特性的影响,结合p型电学掺杂技术制备了可用于白光照明的低驱动电压(4V下的亮度达到1333cd/m2)、高效率(100cd/m2亮度下的功率效率约为40lm/W)的结构简单的全磷光器件。
     4.从工艺实现路线和生产成本的角度考量,详细讨论了Cu电极在研制全彩色硅上有机微显示器应用上的必要性和可行性。在底发射白光器件结构设计的基础上,利用软件模拟的方法,优化顶发射白光器件的结构,分析顶发射结构中顶部光学覆盖层与白光耦合输出效率、光谱特性和对比度的关系。首次报道了基于Cu电极的低驱动电压(4.4V下的亮度达到1000cd/m2)、高效率(10mA/cm2的电流密度下,电流效率达到27.7cd/A,功率效率达到17.6lm/W)的顶发射白光有机电致发光器件。
     通过采用有机:无机p型电学掺杂技术,结合软件进行理论模拟,优化器件结构设计,在本论文中提供了解决有机电致发光器件在有源显示和白光照明应用方面的一些方法,同时对有机电致发光器件的光学特性和电学特性分别进行了细致的分析。本论文的主要创新点包括:1)合理地利用了稳定而且低成本的有机:无机(m-MTDATA:MoOx) p型电学掺杂技术,研究制备低驱动电压、高效率的有机电致发光器件的方法;2)通过实验对载流子阻挡和陷阱作用的表征,结合对有机电致发光器件的光学模式分布规律的模拟,得出对应于不同载流子阻挡和陷阱结构的偶极子分布规律,该结果对我们优化器件发光耦合输出特性有着重要的指导意义;3)将上述研究成果分别成功地应用到基于低温多晶硅薄膜晶体管技术的底发射结构有源驱动显示屏和我国第一款单色QVGA有机微显示器的研制中;4)采用简单的mCP、BPhen、mCP:BPhen等中间界面层的结构,用实验和理论相结合的方法揭示了互补双发光层白光器件内部的光子、载流子和激子行为随不同界面层变化的特点;5)首次报道了基于Cu电极的低驱动电压、高效率的顶发射白光有机电致发光器件,研究了m-MTDATA光学覆盖层对顶发射白光器件的耦合输出效率和光谱分布特性的影响,为下一步开发全彩色、低成本、高稳定性的有机微显示器提供了一种可靠的方案。
Organic light-emitting diodes (OLEDs) have great potential applications in the next generation flat panel displays and solid-state lighting products, because of their advantages of low driving voltage, high luminance, high efficiency, high contrast, thinness, low weight, wide viewing angle, wide range of operating temperature, simple process, and flexibility. Over the last two decades, the activities on OLEDs turn to focus on the development of the commercial products, derived from the monotonously fundamental research. To further satisfy the requirements of longevity, high efficiency and low-cost, much more effort should be made on the further improvements of OLEDs'performances.
     In this contribution, the solutions to fabricate OLEDs with low driving voltage are suggested, in view of improving the performances of OLEDs for practical use and integrating OLEDs on active matrix circuits based substrates with compatible process. Both bottom-emitting white OLEDs (BEWOLEDs) and top-emitting white OLEDs (TEWOLEDs) with low driving voltage and high efficiencies are demonstrated. Some mechanisms of the influences of charge carriers and excitons on the performance of white OLEDs (WOLEDs) are revealed. The main achievements involved in this dissertation are listed as follows.
     1. A novel p-type electrical doping of organic semiconductor is introduced. The influences of electron transporting materials with different ability of electron transportation and hole blocking on the performances of OLED are investigated. The behavior of charge trapping of C545T in Alq3 is probed. Simple models of the distribution of the emissive dipoles in different structures with weak microcavity are derived by analyzing the experimental and simulated results. As the current-voltage characteristics of OLEDs are not sensitive to highly conductive doped hole injecting layer,the thicknesses of p-doping layer are optimized for 128x96x3 active matrix displays with uniform and full-screen emission, which are based on low-temperature polysilicon thin film transistors.
     2. Based on the dipole model mention above, the optical mode contributions in top-emitting OLEDs (TEOLEDs) are calculated. The forward emission is maximized for the devices used in the near-eye circumstance. Low driving voltage (2500 and 10000 cd/m2 achieved at 4.0 and 4.9 V, respectively) and highly efficient (28.8 1m/W at the luminance level of 1000 cd/m2) TEOLED is demonstrated with an efficient fluorescent dye and a p-doping strategy which is also highly thermal-stable. Implemented with the optimized TEOLED structure and an improved Ag chemical mechanical polishing process, a first prototype of monochromatic QVGA OLED microdisplay in China is also demonstrated.
     3. The characteristics of charge carriers and exciton in WOLEDs are probed by inserting the interlayers between the two emissive zones based on two complementary blue ((mCP:FIrpic) and yellow (mCP:(F-BT)2Ir(acac)) emitters. The dependences of the driving voltages and efficiencies on the p-type conductive mCP, n-type conductive BPhen and ambipolar mixed mCP:BPhen interlayers are revealed. The NPB/mCP structure is replaced by Ir(ppz)3 to enhance the confinement of the triplets in the emitting layer. With a p-doping hole injecting layer, phosphorescent WOLED for lighting with simple architecture exhibits low driving voltage (1333 cd/m2 at 4 V) and high power efficiency (40 lm/W achieved at the luminance level of 100 cd/m2).
     4. Both the necessity and feasibility of Cu contact in view of process compatibility and manufacturing cost for full color OLED microdisplays are under deliberate consideration. The simulation of TEWOLEDs sheds light on the influence of the capping layer on white light emission, the out-coupling efficiency, and contrast ratio in top-emitting structure. A first reported Cu-based TEWOLED with low driving voltage (1000 cd/m2 at 4.4 V) and high efficiencies (27.7 cd/A and 17.6 Im/W at 10 mA/cm2, respectively) is demonstrated.
     An air-stable organic:inorganic p-doping structure is introduced to fabricate low driving OLEDs. The software simulation simplifies the design of highly efficient OLEDs. Some solutions to the applications of OLEDs in active matrix displays and lighting are suggested in this contribution. Detailed analyses of the optical and electrical characteristics of OLEDs with the structures used in this dissertation are presented. The innovations imbedded here are listed as follows:1) Solutions towards low driving voltage and highly efficient organic light-emittin diodes are presented.2) The carrier blocking layers and charge trapping architecture are introduced to characterize the distribution of emissive dipoles in OLEDs with single emitting layer. 3) Based on the above mentioned technique, especially the air-stable p-doping strategy, active matrix OLEDs implemented in the substrates with low temperature polysilicon thin film transistors and a first prototype of QVGA OLED microdisplay in China are demonstrated, respectively.4) The interlayers between the two emitting layer in WOLEDs are introduced to tailor the performances. The behaviors of the photons, charge carriers and excitons in such devices are also investigated.5) It is the first time, to the best of our knowledge, Cu contact used for low driving voltage and highly efficient TEWOLED is presented. The role of a capping layer on top of TEWOLED is theoretically and experimentally investigated.
引文
[1]BERNANOSE A, COMTE M, VOUAUX P. Sur un Nouveau Mode d'Emission Lumineuse chez Certainz Composes Organiques [J]. J. Chim. Phys. (Paris),1953.50: 64-68.
    [2]TANG C W, VANSLYKE Organic electroluminescent diodes [J]. Appl. Phys. Lett,1987,51(12):913-915.
    [3]http://www.oled-info.com/samsung-confirms-investment-new-55gen-oled-plant-will-go-online-january-2011.
    [4]http://www.oled-info.com/samsung-develops-new-method-make-65-amoled-panels-gen-55-substrates.
    [5]http://www.oled-info.com/lg-plans-55-gen-amoled-plant-2012-50-oled-tv-panels.
    [6]http://www.oled-info.com/duponts-printable-oleds-be-cheaper-lcds-40.
    [7]http://www.cnbc.com/id/41456149/.
    [8]http://www.techchee.com/2010/09/13/mitsubishis-100-inch-diamond-vision-oled-displays-to-start-selling-on-sept-21 st/.
    [9]http://www.oled-display.net/mitsubishi-introduce-curved-diamond-vision-oled-at-ise-2011.
    [10]http://www.emagin.com/oled-microdisplays/.
    [11]KIDO J, HONGAWA K, OKUYAMA K, et al. White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with three fluorescent dyes [J]. Appl. Phys. Lett.,1994,64(7):815-817.
    [12]JORDAN R H, DODABALAPUR A, STRUKELJ M, et al. White organic electroluminescence devices [J]. Appl. Phy. Lett.,1996,68(9):1192-1194.
    [13]DESHPANDE R S, BULOVIC V, FORREST S R. White-light-emitting organic electroluminescent devices based on interlayer sequential energy transfer [J]. Appl. Phys. Lett.,1999,75(7):888-890.
    [14]LIU S, HUANG J, XIE, Z, WANG, Y et al. Organic white light electroluminescent devices [J]. Thin Solid Films,2000,363:294-297.
    [15]JIANG X, ZHANG Z, ZHAO W, et al. White-emitting organic diode with a doped blocking layer between hole-and electron-transporting layers [J]. J. Phys. D:Appl. Phys.,2000,33(5):473-476.
    [16]KO C W, TAO Y T. Bright white organic light-emitting diode [J]. Appl. Phys. Lett,2001,79(25):4234-4236.
    [17]D'ANDRADE B W, BROOKS J, ADAMOVICH V, et al. White light emission using triplet excimers in electrophosphorescent organic light-emitting devices [J]. Adv. Mater.,200214(15):1032-1036.
    [18]ADAMOVICH V, BROOKS J, TAMAYO A, et al. High efficiency single dopant white electrophosphorescent light emitting diodes [J]. New J. Chem., 2002,26(9):1171-1178.
    [19]TOKITO S, LIJIMA T, TSUZUKI T, et al. High-efficiency white phosphorescent organic light-emitting devices with greenish-blue and red-emitting layers[J]. Appl. Phys. Lett.,2003,83(12):2459-2461.
    [20]D'ANDRADE B W, FORREST S R. Effects of exciton and charge confinement on the performance of white organic p-i-n electrophosphorescent emissive excimer devices [J]. J. Appl. Phys.,2003,94(5):3101-3109.
    [21]http://www.ge.com/de/ourcompany/focus/focus/06.html.
    [22]http://www.printedelectronicsworld.com/articles/european_projects_accelerate_oled_technology_for_mainstream_lighting_00000972.asp?sessionid=1.
    [23]D'ANDRADE B W, HOLMES R J, FORREST S R. Organic electrophosphorescent white-light-emitting device with a triple doped emissive layer [J]. Adv. Mater.,2004,16(7):624-628.
    [24]http://www.ledsmagazine.eom/news/3/6/8/1.
    [25]http://www.ledsmagazine.eom/news/2/8/5/1
    [26]SERVICE R F. Organic LEDs look forward to a bright, white future [J]. Science, 2005,310:1762-1763.
    [27]SUN Y, GIEBINK N C, KANNO H, et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices [J]. Nature,2006, 440(7086):908-912.
    [28]http://www.konicaminolta.com/about/research/oled/advanced/vo101.html.
    [29]SUN Y, FORREST S R. High-efficiency white organic light emitting devices with three separate phosphorescent emission layers [J]. Appl. Phys. Lett.,2007, 91(26):263503.
    [30]http://www.hitech-projects.com/euprojects/olla/news/press_release_june_2008/ OLLA_pressrelease6_v4.pdf.
    [31]http://www.oled-info.com/lg/universal_display_presents_significant_advances_inwhite_oled.
    [32]http://www.oled-info.com/lg/udc_white_oled_technology_exceeds_100_lm_w.
    [33]Reineke, S., et al, White organic light-emitting diodes with fluorescent tube efficiency. Nature,2009.459(7244):p.234-U116.
    [34]http://www.printedelectronicsworld.com/articles/lumiotec_to_begin_sample_shipment_of_oled_lighting_panels_00003032.asp?sessionid=1.
    [35]http://www.oled-info.com/lumiotec-start-mass-producing-oled-lighting-panels-january-2011.
    [36]http://nanomarkets.net/images/uploads/OLEDLIGHTINGSUMMARY.pdf.
    [37]http://www1.eere.energy.gov/buildings/ssl/techroadmaps.html.
    [38]http://appsl.eere.energy.gov/buildings/publications/pdfs/ssl/ssl-rd-roundtable-report_jan11.pdf% 20.
    [39]http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl_mypp2010_web.pdf
    [40]http://www.hitech-projects.com/euprojects/olla/index.html.
    [41]http://www.oled100.eu/.
    [42]http://www.nedo.go.jp/english/activities/portal/gaiyou/p03033/p03033.html.
    [43]http://www.nedo.go.jp/kankobutsu/pamphlets/kouhou/2008gaiyo_e/15_24.pdf.
    [44]http://www.china-led.net/info/2010824/2010824150840.shtml
    [45]POPE M, SWENBERG C E. Electronic Processes in Organic Crystals and Polymers [M].2nd ed.New York:Oxford University Press,1999..
    [46]B RUTTING W. Physics of Organic Semiconductors [M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA,2005.
    [47]BROWN W H, FOOTE C S, I VERSION B L, et al. Organic Chemistry [M].5th ed. Belmont:Brooks/Cole Cengage Learning,2009
    [48]http://galileo.phys.virginia.edu/classes/752.mfli.spring03/IdenticalParticles Revisited.pdf.
    [49]BALDO M. The electronic and optical properties of amorphous organic semiconductors [D]. New Jersey:Princeton University,2001.
    [50]MURPHY C B, ZHANG Y, TROXLER T, et al. Probing Forster and Dexter energy-transfer mechanisms in fluorescent conjugated polymer chemosensors [J]. J. Phys. Chem. B,2004,108(5):1537-1543.
    [51]STALLINGA P. Electrical characterization of organic electronic materials and devices [M]. Cornwall:John Wiley & Sons Ltd,2009.
    [52]SZE S M, NG K K. Physics of semiconductor devices [M].3rd ed. New Jersey: John Wiley & Sons, Inc,2007.
    [53]LI S S. Semiconductor physical electronics [M].2nd ed. New York:Springer Science+Business Media, LLC,2006.
    [54]HUANG Q. High efficiency top-emitting organic light-emitting diodes:Design and fabrication [D]. Dresden:Technischen Universitat Dresden,2007.
    [55]DUNLAP D H, PARRIS P E, KENKRE V M. Charge-dipole model for the universal field dependence of mobilities in molecularly doped polymers [J]. Phys. Rev. Lett.,1996,77(3):542-545.
    [56]MARK P, HELFRICH W. Space-charge-limited currents in organic crystals [J]. J. Appl. Phys.,1962,33(1):205-215.
    [57]MEERHEIM R, WALZER K, HE G, et al. Highly efficient organic light emitting diodes (OLED) for displays and lighting [C]. Proc. SPIE,2006,6192: 61920P-.
    [58]http://www.novaled.com/.
    [59]WALZER K, MAENNIG B, PFEIFFER M, et al. Highly efficient organic devices based on electrically doped transport layers [J]. Chem. Rev.,2007, 107(4):1233-1271.
    [60]XIE G, MENG Y, WU, M, et al. Very low turn-on voltage and high brightness tris-(8-hydroxyquino line)aluminum-based organic light-emitting diodes with a MoOx p-doping layer[J]. Appl. Phys. Lett.,2008,92:093305.
    [61]PFEIFFER M, FRITZ T, BLOCHWITZ J, et al. Controlled doping of molecular organic layer:Physics and device prospects [C]. in Advances in Solid State Physics, Berlin:Springer,1999.
    [62]SEOK L, SOO P, SUNG K K, et al. A Novel Five-photo-mask low-temperature poly crystalline-silicon CMOS structure with improved contact resistance [J]. Electron Device Letters, IEEE,2009,30(1):42-44.
    [63]SARMA K R, SCHMIDT J, ROUSH J, et al. Current assessment of AM OLED technology for avionics applications [C]. Orlando:SPIE,2005.
    [64]SHI S, TAKAYUKI C, TAKASHI T, et al. Pyridine-containing triphenylbenzene derivatives with high electron mobility for highly efficient phosphorescent OLEDs [J]. Adv. Mater.,2008,20(11):2125-2130.
    [65]LUO Y, AZIZ H. Correlation between triplet-triplet annihilation and electroluminescence efficiency in doped fluorescent organic light-emitting devices. Adv. Funct. Mater.,2010,20(8):1285-1293.
    [66]CHEN J, MA D. Performance improvement by charge trapping of doping fluorescent dyes in organic memory devices [j]. J. Appl. Phys.,2006,100(3): 034512.
    [67]LEE C, CHANG M, HUANG P, et al. Electrical and optical simulation of organic light-emitting devices with fluorescent dopant in the emitting layer [J]. J. Appl. Phys.,2007,101(11):114501.
    [68]NUESCH F, BERNER D, TUTIS E, et al. Doping-induced charge trapping in organic light-emitting devices [J]. Adv. Funct. Mater.,2005,15:323-330.
    [69]SO F, KONDAKOV D. Degradation mechanisms in small-molecule and polymer organic light-emitting diodes [J]. Adv. Mater.,2010,22(34): 3762-3777.
    [70]CHANCE R R, PROCK A, SILBEY R. Molecular fluorescence and energy transfer near interfaces [J]. Advances in Chemical Physics,1978,37:1-65.
    [71]FLAMMICH M, ROTH S, DANZ N, et al. Measuring the dipole orientation in OLEDs [C]. Brussels, Belgium:SPIE,2010.
    [72]KRUMMACHER B C, NOWY, S, FRISCHEISEN J, et al. Efficiency analysis of organic light-emitting diodes based on optical simulation [J]. Org. Electron., 2009,10(3):478-485.
    [73]www.fluxim.com.
    [74]RUHSTALLER B, CARTER S A, BARTH S, et al. Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes [J]. J. Appl. Phys.,2001,89(8):4575-4586.
    [75]RIEB W, BEIERLEIN T A, RIEL H. Optimizing OLED structures for a-Si display applications via combinatorial methods and enhanced outcoupling [J]. Physica Status Solidi (a),2004,201(6):1360-1371.
    [76]CHEN J, MA D. Effect of dye-doped concentration on the charge carrier recombination in molecularly doped organic light-emitting devices [J]. J. Phys. D:Appl. Phys.,2006,39(10):2044-2047.
    [77]ROTHE C. Electrical doping is paving the way for the implementation of OLEDs in consumer electronics [J]. Laser & Photonics Rev.,2007,1(4): 303-306.
    [78]BLOCHWITZ J, LANGGUTH O, MURANO S, et al. PIN-OLEDs for active-matrix-display use [J]. J. SID,2010,18(8):596-605.
    [79]LEE CA,JINS H, KWON, H I, et al. A high voltage NMOSFET fabricated by using standard CMOS logic process as a pixel-driving transistor for the OLED on the silicon substrate [J]. Journal of Information Display,2004,5:28-33.
    [80]PFEIFFER M, FORREST S R, LEO K, et al. Electrophosphorescent p-i-n organic light-emitting devices for very-high-efficiency flat-panel displays [J]. Adv. Mater.,2002,14(22):1633-1636.
    [81]PFEIFFER M, LEO K, ZHOU X, et al. Doped organic semiconductors:Physics and application in light emitting diodes [J]. Org. Electron.,2003,4:89-103.
    [82]HE G, PFEIFFER M, LEO K, et al. High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers [J]. Appl. Phys. Lett.,2004,85:3911-3913.
    [83]HUANG Q, WALZER K, PFEIFFER M, et al. Highly efficient top emitting organic light-emitting diodes with organic outcoupling enhancement layers [J]. Appl. Phys. Lett,2006,88:113515.
    [84]MATSUSHIMA T, ADACHI C. Extremely low voltage organic light-emitting diodes with p-doped alpha-sexithiophene hole transport and n-doped phenyldipyrenylphosphine oxide electron transport layers [J]. Appl. Phys. Lett., 2006,89:253506.
    [85]MEERHEIM R, NITSCHE R, LEO K. High-efficiency monochrome organic light-emitting diodes employing enhanced microcavities [J]. Appl. Phys. Lett., 2008,93:043310.
    [86]KIM S Y, JEON, W S, PARK T J, et al. Low voltage efficient simple p-i-n type electrophosphorescent green organic light-emitting devices [J]. Appl. Phys. Lett,2009,94:133303.
    [87]GERARD J, GAYRAL B. Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities [J]. J. Lightwave Techno1.,1999, 17(11):2089-2095.
    [88]GIFORD D K. Emission from organic light-emitting diodes via surface-plasmon cross-coupling [D]. New York:University of Rochester,2001.
    [89]LEHNHARDT M, HAMWI S, HOPING M, et al., Charge carrier densities in chemically doped organic semiconductors verified by two independent techniques [J]. Appl. Phys. Lett,2010,96(19):193301.
    [90]GIEBINK N C, FORREST S R. Quantum efficiency roll-off at high brightness in fluorescent and phosphorescent organic light emitting diodes [J]. Phys. Rev. B,2008,77:235215.
    [91]REINEKE S, WALZER K, LEO K. Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters [J]. Phys. Rev. B, 2007,75(12):125328.
    [92]HERTEL D, MEERHOLZ K. Triplet-polaron quenching in conjugated polymers [J]. J. Phys. Chem. B,2007,111(42):12075-12080.
    [93]SETOGUCHI Y, ADACHI C. Suppression of roll-off characteristics of electroluminescence at high current densities in organic light emitting diodes by introducing reduced carrier injection barriers [J]. J. Appl. Phys.,2010, 108(6):064516.
    [94]ZHANG Y, WHITED M, THOMPSON, M E, FORREST S R. Singlet-triplet quenching in high intensity fluorescent organic light emitting diodes [J]. Chem. Phys. Lett.,2010,495:161-165.
    [95]KALINOWSKI J, MURATA H, PICCIOLO L C, et al. Voltage evolution of the recombination zone and emission quantum yield in organic light-emitting diodes with doped and undoped emitter layers [J]. J. Phys. D:Appl. Phys., 2001.34(21):3130-3138.
    [96]NAKANOTANI H, SASABE H, ADACHI C. Singlet-singlet and singlet-heat annihilations in fluorescence-based organic light-emitting diodes under steady-state high current density [J]. Appl. Phys. Lett.,2005,86(21):213506.
    [97]DJURISIC A B, RAKIC A D. Asymmetric Bragg mirrors for the reduction of emission wavelength dependence on the viewing angle in organic microcavity light emitting diodes [J]. Opt. Comm.,2004,236(4-6):303-311.
    [98]LIU X, POITRAS D, TAO Y, et al. Microcavity organic light emitting diodes with double sided light emission of different colors [J]. J. Vac. Sci.Technol.A, 2004,22(3):764-767.
    [99]WU C, CHEN C, LIN C, et al. Advanced organic light-emitting devices for enhancing display performances [J]. J. Disp. Technol.,2005,1(2):248-266.
    [100]SCHUBERT E F, HUNT N, MICOVIC M, et al. Highly efficient light-emitting diodes with microcavities [J]. Science,1994,265:943-945.
    [101]http://homea.people.com.en/GB/124881/8137078.html.
    [102]http://www.oled-display.net/winstar-show-a-comparison-between-oled-and-stn-displays.
    [103]CHARLES H K, MACH K J, LEHTONEN, et al. Wirebonding at higher ultrasonic frequencies:reliability and process implications [J]. Microelectron. Reliab.,2003,43(1):141-153.
    [104]HARMAN G. Wire Bonding in Microelectronics:Materials, Processes, Reliability and Yield [M].3rd ed. New York:McGraw-Hill,2010.
    [105]DRECHSEL J, PFEIFFER M, ZHOU X, et al. Organic Mip-diodes by p-doping of amorphous wide-gap semiconductors:CV and impedance spectroscopy [J]. Synthetic Met.,2002,127(1-3):201-205.
    [106]GAO Z Q, MI B X, XU G Z, et al. An organic p-type dopant with high thermal stability for an organic semiconductor [J]. Chem. Comm.,2008,1:117-119.
    [107]KOECH P K, PADMAPERUMA A B, WANG L, et al. Synthesis and application of 1,3,4,5,7,8-Hexafluorotetracyanonaphthoquinodimethane (F6-TNAP):A conductivity dopant for organic light-emitting devices [J]. Chem. Mater.,2010,22(13):3926-3932.
    [108]TYAN Y. Organic light-emitting-diode lighting overview [J]. Journal of Photonics for Energy,2011,1(1):011009.
    [109]WUNSCHE J, REINEKE S, LUSSEM B, et al. Measurement of triplet exciton diffusion in organic light-emitting diodes [J]. Phys. Rev. B,2010,81(24): 245201.
    [110]WANG Q, DING J, MA D, et al. Harvesting excitons via two parallel channels for efficient white organic LEDs with nearly 100% internal quantum efficiency: Fabrication and emission-mechanism analysis [J]. Adv. Funct. Mater.,2008,19: 84-95.
    [111]LEBENTAL M, CHOUKRI H, CHeNAIS S, et al. Diffusion of triplet excitons in an operational organic light-emitting diode [J]. Phys. Rev. B,2009,79: 165318.
    [112]WANG Q, DING J, MA D, et al., Manipulating charges and excitons within a single-host system to accomplish efficiency/CRI/color-stability trade-off for high-performance OWLEDs [J]. Adv. Mater.,2009,21(23):2397-2401.
    [113]LUNT R R,BENZIGER J B, FORREST S R. Relationship between crystalline order and exciton diffusion length in molecular organic semiconductors [J]. Adv. Mater.,2010,22(11):1233-1236.
    [114]Sun Y, FORREST S.R. Multiple exciton generation regions in phosphorescent white organic light emitting devices [J]. Org. Electron.,2008,9(6):994-1001.
    [115]PARK Y, KANG J, KANG D, et al. Efficient, color stable white organic light-emitting diode based on high energy level yellowish-green dopants [J]. Adv. Mater.,2008,20(10):1957-1961.
    [116]SCHWARTZ G, REINEKE S, WALZER K, et al. Reduced efficiency roll-off in high-efficiency hybrid white organic light-emitting diodes [J]. Appl. Phys. Lett.,2008,92(5):053311.
    [117]YOOK, K S, LEE J Y. High efficiency and low efficiency roll off in white phosphorescent organic light-emitting diodes by managing host structures [J]. Appl. Phys. Lett,2008,92(19):193308.
    [118]CHIN B D, LEE C. Confinement of Charge Carriers and Excitons in Electrophosphorescent Devices:Mechanism of Light Emission and Degradation [J]. Adv. Mater.,2007,19(16):2061-2066.
    [119]WANG Q, MAD. Management of charges and excitons for high-performance white organic light-emitting diodes [J]. Chem. Soc. Rev.,2010,39(7): 2387-2398.
    [120]SASABE H, KIDO J. Multifunctional materials in high-performance OLEDs: challenges for solid-state lighting [J]. Chem. Mater.,2010,23(3):621-630.
    [121]CHIEN C, HSU F, SHU C, et al. Efficient red electrophosphorescence from a fluorene-based bipolar host material [J]. Org. Electron.,2009,10(5):871-876.
    [122]LAI S L, TAO S L, CHAN M Y, et al. Efficient white organic light-emitting devices based on phosphorescent iridium complexes [J]. Org. Electron.,2010, 11(9):1511-1515.
    [123]LEE T, NOH T, CHOI B, et al. High-efficiency stacked white organic light-emitting diodes [J]. Appl. Phys. Lett.,2008,92(4):043301.
    [124]GUO T, WEN T, HUANG Y, et al. White-emissive tandem-type hybrid organic/polymer diodes with (0.33,0.33) chromaticity coordinates [J]. Opt. Express,2009,17(23):21205-21215.
    [125]COK R S, SHORE J D. Microcavity white-emitting OLED devices [J]. J.SID, 2009,17(8):617-627.
    [126]YOOK K S, JEON S O, JOO C W, et al. High efficiency phosphorescent white organic light-emitting diodes using a spirofluorene based phosphine oxide host material [J]. Thin Solid Films,2010.518(15):4462-4466.
    [127]WANG Y, HUA Y, WU X, et al. Performance enhancement of white-electrophosphorescent devices incorporating a mixed-transition layer [J]. Appl. Phys. Lett,2008,92(12):123504.
    [128]YOOK K S, JEON S O, JOO C W, et al. Effect of host and interlayer structures on device performances of hybrid white organic light-emitting diodes [J]. J.Lumin.,2010,130(7):1211-1215.
    [129]LEEM D, KIM J W, JUNG S O, et al. Efficient and colour-stable hybrid white organic light-emitting diodes utilizing electron-hole balanced spacers [J]. J. Phys. D:Appl. Phys.,2010.43(40):405102.
    [130]BALDO M A, ADACHI C, FORREST S R, Transient analysis of organic electrophosphorescence:I. Transient analysis of triplet energy transfer [J]. Phys.1 Rev. B,2000,62(16):10958.
    [131]SHIH, P, SHU C, TUNG Y, et al. Efficient white-light-emitting diodes based on poly(N-vinylcarbazole) doped with blue fluorescent and orange phosphorescent materials [J]. Appl. Phys. Lett.,2006,88(25):251110.
    [132]HOLMES R J, D'ANDRADE B W, FORREST S R, et al. Efficient, deep-blue organic electrophosphorescence by guest charge trapping [J]. Appl. Phys. Lett., 2003,83(18):3818-3820.
    [133]WU M F, YEH S J, CHEN C T, et al., The quest for high-performance host materials for electrophosphorescent blue dopants [J]. Adv. Funct. Mater.,2007, 17(12):1887-1895.
    [134]NAKA S, OKADA H, ONNAGAWA H, et al. High electron mobility in bathophenanthroline [J]. Appl. Phys. Lett.,2000,76(2):197-199.
    [135]PRACHE O. Active matrix molecular OLED microdisplays [J]. Displays, 2001,22(2):49-56.
    [136]LEE J Y, KWON J H, CHUNG H K. High efficiency and low power consumption in active matrix organic light emitting diodes [J]. Org. Electron., 2003,4(2-3):143-148.
    [137]GHOSH A P, ALI T A, KHAYRULLIN I, et al. Recent advances in small molecule OLED-on-silicon microdisplays [C]. San Diego:SPIE,2009.
    [138]MAMENO K, NISHIKAWA R, SUZUKI K, et al. Development of 2.2-inch full color AM-OLED display for mobile applications [C]. Santa Ana:IDW'02 SID,2002.
    [139]BOER W D. Active Matrix Liquid Crystal Displays:Fundamentals and Applications [M].:Burlington:Elsevier Inc,2005.
    [140]ARMITAGE D, UNDERWOOD I, WU S. Introduction to microdisplays [M]. Chichester:John Wiley & Sons Ltd,2006.
    [141]HATWAR T K, BOROSON M, SPINDLER J P. White light tandem OLED display with filters. USA, US7531959B2 [P],2009
    [142]http://www.oled-display.net/oled-television.
    [143]http://www.oled-info.com/lg-shows-new-15-oled-backlit-lcd-panel.
    [144]ARNOLD AD, CASTRO P E, HATWART K, et al. Full-color AMOLED with RGBW pixel pattern [J]. J. SID,2005,13(6):525-535.
    [145]WANG Q, DENG Z, CHEN J, et al. Realization of blue, green, and white inverted microcavity top-emitting organic light-emitting devices based on the same emitting layer [J]. Opt. Lett.,2010,35(4):462-464.
    [146]KIM M S, JEONG C H, LIM J T, et al. White top-emitting organic light-emitting diodes using one-emissive layer of the DCJTB doped DPVBi layer [J]. Thin Solid Films,2008,516:3590-3594.
    [147]CHEN S, KWOK H. Top-emitting white organic light-emitting diodes with a color conversion cap layer [J]. Org. Electron.,2011,12(4):677-681.
    [148]HSU S, LEE C, HWANG S, et al. Highly efficient top-emitting white organic electroluminescent devices [J]. Appl. Phys. Lett.,2005,86(25):253508.
    [149]THOMSCHKE M, NITSCHE R, FURNO M, et al. Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes [J]. Appl. Phys. Lett.,2009,.94(8):083303.
    [150]FREITAG P, REINEKE S, FURNO M, et al. White organic light-emitting diodes with top-emitting structure for high color quality and forward directed light emission [C]. Brussels:SPIE,2010.
    [151]ZHU X, SUN J, YU X, et al. High-performance top-emitting white organic light-emitting devices [J]. Jpn. J. Appl. Phys.,2007,46:4054-4058.
    [152]KANNO H, SUN Y, FORREST S R. High-efficiency top-emissive white-light-emitting organic electrophosphorescent devices [J]. Appl. Phys. Lett,2005,86(26):263502.
    [153]LEE M, TSENG M. Efficient, long-life and Lambertian source of top-emitting white OLEDs using low-reflectivity molybdenum anode and co-doping technology [J]. Curr. Appl. Phys.,2008,8(5):616-619.
    [154]KIM H D, JEONG J K, CHUNG H, et al. Technological challenges for large-size AMOLED display [J]. SID Symposium Digest of Technical Papers, 2008,39(1):291-294.
    [155]TU K N. Recent advances on electromigration in very-large-scale-integration of interconnects [J]. J. Appl. Phys.,2003,94(9):5451-5473.
    [156]http://www.microoled.net/.
    [157]TORRES J. Advanced copper interconnections for silicon CMOS technologies. AppL. Surf. Sci.,1995,91:112-123.
    [158]CHERN J G J,OLDHAM W G, CHEUNG N. Electromigration in Al/Si contacts-induced open-circuit failure [J]. IEEE T Electron. Dev.,1986,33(9): 1256-1262.
    [159]BLECH I.A, Meieran E S. Electromigration in thin A1 films [J]. J. Appl. Phys., 1969.40(2):485-491.
    [160]KNOR D B, TRACY D P, RODBELL K P. Correlation of texture with electromigration behavior in Al metallization [J]. Appl. Phys. Lett.,1991, 59(25):3241-3243.
    [161]http://www.itrs.net/reports.html.
    [162]SO SK, CHOI W K, LEUNG L M, et al. Interference effects in bilayer organic light-emitting diodes [J]. Appl. Phys. Lett.,1999,74(14):1939-1941.
    [163]NEYTS K A. Simulation of light emission from thin-film microcavities [J]. J. Opt. Soc. Am. A,1998,15(4):962-971.
    [164]LUKOSZ W. Light emission by multipole sources in thin layers. I. Radiation patterns of electric and magnetic dipoles [J]. J. Opt. Soc. Am.,1981.71(6): 744-754.
    [165]HUANG Q, REINEKE S, WALZER K. et al. Quantum efficiency enhancement in top-emitting organic light-emitting diodes as a result of enhanced intrinsic quantum yield [J]. Appl. Phys. Lett.,2006,89(26):263512.
    [166]YAMAMOTO H, KASAJIMA H, YOKOYAMA W, et al. Extremely-high-density carrier injection and transport over 12000 A/cm2 into organic thin films [J]. Appl. Phys. Lett.,2005,86:083502.
    [167]CHUNG S, LEE J H, JEONG J, et al. Substrate thermal conductivity effect on heat dissipation and lifetime improvement of organic light-emitting diodes [J]. Appl. Phys. Lett.,2009,94(25):253302.
    [168]DOBROWOLSKI J A, SULLIVAN B T, BAJCAR R C. Optical interference, contrast-enhanced electroluminescent device [J]. Appl. Opt.,1992,31(28): 5988-5996.
    [169]http://en.wikipedia.org/wiki/Illuminant_D65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700