金属化合物—碳类复合材料的制备及其用作锂离子电池负极的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在碳质微纳米材料改性金属化合物复合材料的制备方面开展了一系列工作,研究内容可分为两部分:第一部分主要针对金属氧化物(MxOy)用于锂离子电池负极材料时出现的首次库伦效率偏低,储锂性能较差等问题,用石墨烯(Graphene nanosheets)和球形碳(CSs)对金属氧化物微纳米材料Fe304、Fe203和Ce02进行改性研究,在对该类型材料物相组成、形貌和结构以及电化学性能分析和测试的基础上,对石墨烯、球形碳以及碳包覆层在改善金属氧化物储锂能力方面所起作用进行归纳和总结;第二部分主要针对碱式碳酸盐类镧系化合物LaOHCO3的可控制备以及其与石墨烯的复合方面展开研究,并对该类型材料的荧光性能进行检测和比较。具体研究内容如下:
     利用石墨烯作为改性元素,以水热法合成出两种担载型纳米复合材料Fe3O4/graphene和CeO2/graphene和一种掺杂型微纳米复合材料Fe2O3-graphene。三种复合材料均显示出优于其本体的电化学性能,对于Fe3O4/graphene,首次充放电比容量分别高达2315和1160mAh/g,50次循环后可逆比容量771mAh/g,相比于单一Fe304,比容量提升107%;对于Fe2O3-graphene,首次充放电比容量分别高达1800和1420mAh/g,100次循环后可逆比容量为567mAh/g,相比于单一Fe203,比容量提升46%;对于CeO2/graphene,首次充放电比容量分别高达1469和991mAh/g,100次循环后可逆比容量为605mAh/g,相比于单一CeO2,比容量提升63%。
     利用球形碳作为改性元素,利用水热法合成出一种掺杂型碳包覆的微纳米复合材料Fe2O3@C-CSs,以浸渍法并结合高温煅烧手段合成出一种担载型碳包覆的纳米复合材料Fe2O3@C/graphene。两种材料均显示出优于其本体的电化学性能,对于Fe2O3@C-CSs,首次充放电比容量分别高达1507和978mAh/g,50次循环后可逆比容量为550mAh/g,相比于单一Fe203,比容量提升37%;对于Fe2O3@C/graphene,首次充放电比容量分别为1530和1016mAh/g,50次循环后可逆比容量为1027mAh/g,相比于Fe2O3/graphene,比容量提升34%。
     以聚乙烯吡咯烷酮(PVP)作为软模板,利用水热法并精确调控反应时间,制备出不同形貌的LaOHCO3微纳米颗粒,在优化出层级结构LaOHCO3合成工艺的基础上对其与石墨烯复合进行研究。对合成的不同形貌LaOHCO3以及不同石墨烯含量的层级结构LaOHCO3-graphene进行荧光测试发现前者均可在365nm激发下于420nm处出现一荧光发射峰,而后者荧光性能的存在与否和石墨烯的添加量有关。对于LaOHCO3样品,其荧光强度呈现一定规律性,粒度越大,荧光强度越强;粒度同等大小情况下,经180℃水热反应24h得到的层级结构LaOHCO3微米球的荧光强度最强。对于LaOHCCO3-graphene,随石墨烯含量增加,荧光强度逐渐减弱直至发生淬灭。
A series of composites related to the modification of metal compounds by micro-or nano-carbonaceous materials has been synthesized and studied in this paper. The detailed research work is composed of two parts. Part one is focoused on the modification of metal oxides (MxOy=Fe3O4, Fe2O3and CeO2) by graphene nanosheets and carbon spheres to overcome their defects such as low coulombic efficiency at the initial cycle and poor lithium storage properties and improve their electrochemical performance when used as anode materials for lithium ion batteries. The influence of graphene nanosheets and carbon spheres as modifying elements on lithium storage performance of the MxOy is summarized after systematically investigating the phase composition, the morphology and structure, and the electrochemical perforamance of the MxOy-graphene composites. Part two is focoused on the synthesis of lanthanum carbonate hydroxides (LaOHCO3) and LaOHCO3-graphene composites with controlled morphology and the further comparation of their luminescence properties. The main contents of the paper are presented as follows:
     Preparation of two supported nanocomposites of Fe3O4/graphene and CeO2/graphene, and a doped micro/nanocomposite of Fe2O3-graphene is realized by utilization of graphene nanosheets as modifying elements through hydrothermal treatment. The three composites show much better electrochemical performance than the MxOy used in each system. For the Fe3O4/graphene, it shows a discharge capacity of2315mAh/g and charge capacity of1160mAh/g in the first cycle. After50cycles, the reversible capacity still remained771mAh/g. The rate of capacity increased is107%when compare with pure Fe3O4electrode. For the Fe2O3/graphene, it shows a discharge capacity of1800mAh/g and charge capacity of1420mAh/g in the first cycle. After100cycles, the reversible capacity still remained567mAh/g. The rate of capacity increased is46%when compared with pure Fe2O3electrode. For the CeO2/graphene, it shows a discharge capacity of1469mAh/g and charge capacity of991mAh/g in the first cycle. After100cycles, the reversible capacity still remained605mAh/g. The rate of capacity increased is63%when compared with pure CeO2electrode.
     Preparation of a doped micro/nanocomposite with carbon coated (Fe2O3@C-CSs) is realized by utilization of carbon spheres as modifying elements through hydrothermal treatment. Preparation of a supported nanocomposite with carbon coated (Fe2O3@C/graphene) is realized by utilization of carbon spheres as modifying elements through immersion method and high temperature calcination. The two composites show much better electrochemical performance than the Fe2O3or Fe2O3/graphene used in each system. For the Fe2O3@C-CSs, it shows a discharge capacity of1507mAh/g and charge capacity of978mAh/g in the first cycle. After50cycles, the reversible capacity still remained550mAh/g. The rate of capacity increased is37%when compare with pure Fe2O3electrode. For the Fe2O3@C/graphene, it shows a discharge capacity of1530mAh/g and charge capacity of1016mAh/g in the first cycle. After50cycles, the reversible capacity still remained1027mAh/g. The rate of capacity increased is34%when compare with Fe2O3/graphene.
     In the presence of polyvinylpyrrolidone (PVP), LaOHCO3with various morphologies are synthesized successfully via a facile hydrothermal process. The novel hierarchical nest-like architectures of LaOHCO3are obtained based on the time-controlled experiment during the process. Hierarchical LaOHCO3-graphene composites with different amounts of graphene nanosheets are synthesized subsequently. The optical properties of LaOHCO3microparticles with different morphologies and LaOHCO3-graphene composites with different amounts of graphene nanosheets are measured. For the pure LaOHCO3, it shows that all the samples exhibite emission spectrum centered at~420nm using an excitation wavelength of365nm. Their luminescence properties are very sensitive to the morphology and strongly dependent on the size. The larger the particle size, the stronger the intensity of luminescence. Comparing the particles that have the same size, the hierarchical LaOHCO3obtained at180℃in24h exhibite the highest luminescence intensity. For the LaOHCO3-graphene composites, it shows that the luminescence intensity decreased gradually and finally the fluorescence quenching occured with the amounts of graphene increased.
引文
[1]Callister W. D. Fundamentals of Materials Science and Engineering[M]北京:化学工业出版社,2004:2-3
    [2]靳正国,郭瑞松,师春生等.材料科学基础[M].天津:天津大学出版社,2005:1-2
    [3]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002:3-4
    [4]尹洪峰,魏剑.复合材料[M].北京:冶金工业出版社,2010:5-8
    [5]Yao C., Shin Y., Wang L. Q., et al. Hydrothermal dehydration of aqueous fructose solutions in a closed system[J]. The Journal of Physical Chemistry C,2007,111: 15141-15145
    [6]Wan X., Huang Y., Chen Y Focusing on energy and optoelectronic applications:a journey for graphene and graphene oxide at large scale[J]. Accounts of Chemical Research,2011, DOI:10.1021/ar200229q
    [7]Dreyer D. R., Ruoff R. S., Bielawski C. W. From conception to realization:a historical account of graphene and some perspectives for its future[J]. Angewandte Chemie International Edition,2010,49:9336-9344
    [8]Novoselov K. S., Geim A. K., Morozov S. V., et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306:666-669
    [9]Zhu Y, Murali S., Cai W., et al. Graphene and graphene oxide:synthesis, properties, and applications[J]. Advanced Materials,2010,22:3906-3924.
    [10]Morozov S. V., Novoselov K. S., Katsnelson M. I., et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Physical Review Letters,2008,100:016602-016605
    [11]Lee C., Wei X. D., Kysar A. K., et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321:385-388
    [12]Balandin A. A., Ghosh S., Bao W. Z., et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8:902-907
    [13]Cai W., Zhu Y., Li X., et al. Large area few-layer graphene/graphite films as transparent thin conducting electrodes [J]. Applied Physics Letters,2009,95:123115-123117
    [14]Li X., Zhu Y., Cai W., et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes [J]. Nano Letters,2009,9:4359-4363
    [15]Novoselov K. S., Geim A. K., Morozov S. V., et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature,2005,438:197-200
    [16]Zhang Y. B., Tan Y. W., Stormer H. L., et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature,2005,438:201-204
    [17]Heersche H. B., Herrero P. J., Oostinga J. B., et al. Bipolar supercurrent in graphene[J]. Nature,2007,446:56-59
    [18]Schedin F., Geim A. K., Morozov S. V., et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials,2007,6:652-655
    [19]Dan Y. P., Lu Y, Kybert N. J., et al. Intrinsic response of graphene vapor sensors[J]. Nano Letters,2009,9:1472-1475
    [20]Robinson J. T., Perkins F. K., Snow E. S., et al. Reduced graphene oxide molecular sensors[J]. Nano Letters,2008,8:3137-3140
    [21]Tang L. H., Wang Y, Li Y. M., et al. Preparation, structure, and electrochemical properties of reduced graphene sheet films[J]. Advanced Functional Materials,2009,19: 2782-2789
    [22]Ohno Y, Maehashi K., Yamashiro Y, et al. Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption[J]. Nano Letters,2009,9:3318-3322
    [23]Mohanty N., Berry V. Graphene-based single-bacterium resolution biodevice and DNA transistor:interfacing Graphene Derivatives with nanoscale and microscale biocomponents[J]. Nano Letters,2008,8:4469-4476
    [24]Park S., Ruoff R. S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology,2009,4:217-224
    [25]Li D., Muller M. B., Gilje S., et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology,2008,3:101-105
    [26]Li X. L., Zhang G. Y, Bai X. D., et al. Highly conducting graphene sheets and Langmuir-Blodgett films[J]. Nature Nanotechnology,2008,3:538-542
    [27]Biswas S., Drzal L. T. A Novel Approach to Create a Highly ordered monolayer film of graphene nanosheets at the liquid-liquid interface[J]. Nano Letters,2009,9:167-172
    [28]Winter M., Besenhard J. O., Spahr M. E., et al. Insertion electrode materials for rechargeable lithium batteries[J]. Advanced Materials,1998,10:725-763
    [29]Liu Y. H., Xue J. S., Zheng T., et al. Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins[J]. Carbon,1996,34:193-200
    [30]Yoo E., Kim J., Hosono E., et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano Letters,2008,8:2277-2282
    [31]Pan D. Y., Wang S., Zhao B., et al. Li Storage properties of disordered graphene nanosheets[J]. Chemistry of Materials,2009,21:3136-3142
    [32]Fang M., Wang K. G, Lu H. B., et al. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites[J]. Journal of Materials Chemistry,2009, 19:7098-7105
    [33]Hu H., Wang X., Wang J., et al. Preparation and properties of graphene nanosheets-polystyrene nanocomposites via in situ emulsion polymerization[J]. Chemical Physics Letters,2010,484:247-253
    [34]Ramanathan T., Abdala A. A., Stankovich S., et al. Functionalized graphene sheets for polymer nanocomposites[J]. Nature Nanotechnology,2008,3:327-331.
    [35]Liang J. J., Huang Y, Zhang L., et al. Molecular-Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites[J]. Advanced Functional Materials,2009,19:2297-2302
    [36]Salavagione H. J., Martinez G., Gomez M. A. Synthesis of poly(vinyl alcohol)/reduced graphite oxide nanocomposites with improved thermal and electrical properties [J]. Journal of Materials Chemistry,2009,19:5027-5032
    [37]Wu J. H., Tang Q. W., Sun H., et al. Conducting film from graphite oxide nanoplatelets and poly(acrylic acid) by layer-by-layer self-assembly [J]. Langmuir,2008,24:4800-4805.
    [38]Hernandez Y, Nicolosi V., Lotya M., et al. High-yield production of graphene by liquid-phase exfoliation of graphene [J]. Nature Nanotechnology,2008,3:563-568
    [39]Hummers W. S., Offeman R. E. Preparation of graphite oxide[J]. Journal of the American Chemical Society,1958,80:1339-1339
    [40]杨永岗,陈成猛,温月芳等.氧化石墨烯及其与聚合物的复合[J].新型炭材料,2008,3:193-200
    [41]胡耀娟,金娟,张卉等.石墨烯的制备、功能化及在化学中的应用[J].物理化学学报,2010,26:2073-2085
    [41]Ferna M. J., Guardia L., Paredes J. I., et al. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions [J]. The Journal of Physical Chemistry C,2010, 114:6426-6432
    [42]Si Y., Samulski E. T. Synthesis of water soluble grapheme[J]. Nano Letters,2008,8: 1679-1682
    [43]Rao C. N. R., Sood A. K., Subrahmanyam K. S., et al. Graphene:the new tow-dimensional nanomaterial[J]. Angewandte Chemie International Edition,2009,48: 7752-7777
    [44]Dreyer D. R., Ruoff R. S., Bielawski C. W. From conception to realization:an historial account of graphene and some perspectives for its future [J]. Angewandte Chemie International Edition,2010,49:9336-9345
    [45]Chattopadhyay J., Mukherjee A., Billups W. E., et al. Graphite epoxide[J]. Journal of the American Chemical Society,2008,130:5414-5415
    [46]沈丽英.乙二胺还原法制备纳米石墨烯[D].南京:南京理工大学,2009
    [47]Graeme W., Brian S., Prashant V. K. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide[J]. ACS Nano,2008,2:1487-1491
    [48]Cote L. J., Cruz S. R., Huang J. X. Flash reduction and patterning of graphite oxide and its polymer composite[J]. Journal of the American Chemical Society,2009,131: 11027-11032
    [49]Guo H. L., Wang X. F., Qian Q. Y., et al. A green approach to the synthesis of graphene nanosheets[J]. ACS Nano,2009,3:2653-2659
    [50]Tong X., Wang H., Wang G., et al. Controllable synthesis of graphene sheets with different numbers of layers and effect of the number of graphene layers on the specific capacity of anode material in lithium-ion batteries[J]. Journal of Solid State Chemistry,2011, 184:982-989
    [51]袁小亚.石墨烯的制备研究进展[J].无机材料学报,2011,26:561-570
    [52]Kim K. S., Zhao Y, Jang H., et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature,2009,457:706-710
    [53]Reina A., Jia X., Ho J., et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Letters,2009,9:30-35
    [54]Wei D., Liu Y., Zhang H., et al. Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechnical switches[J]. Journal of the American Chemical Society,2009,131:11147-11154
    [55]Tao L., Lee J., Chou H., et al. Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films[J]. ACS Nano,2012,6: 2319-2325
    [56]Chen S., Cai W., Piner R. D., et al. Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils[J]. Nano Letters,2011,11:3519-3525.
    [57]Ramon M. E., Gupta A., Corbet C., et al. CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films[J]. ACS Nano,2011,5:7198-7204
    [58]Srivastava A., Galande C., Ci L., et al. Novel liquid precursor-based facile synthesis of large-area continuous, single, and few-layer graphene films[J]. Chemistry of Materials,2010, 22,3457-3461
    [59]Imamura G, Saiki K. Synthesis of nitrogen-doped graphene on Pt(111) by chemical vapor deposition[J]. The Journal of Physical Chemistry C,2011,115:10000-10005
    [60]Wei D., Liu Y., Wang Y, et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties [J]. Nano Letters,2009,9:1752-1758
    [61]Obraztsov A. N. Making graphene on a large scale[J]. Nature Nanotechnology,2009,4: 212-213
    [62]Geim A. K., Novoselov K. S. The rise of graphene[J]. Nature Materials,2007,6: 183-191
    [63]Huang H., Chen W., Chen S., et al. Bottom-up growth of epitaxial graphene on 6H-SiC(0001)[J]. ACS Nano,2008,2:2513-2518
    [64]Rutter G. M., Crain J. N., Guisinger N. P., et al. Scattering and interference in epitaxial graphene[J]. Science,2007,317:219-222
    [65]Berger C., Song Z. M., Li X. B., et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science,2006,312:1191-1196
    [66]Wu X. S., Li X. B., Song Z. M. Weak antilocalization in epitaxial graphene:evidence for chiral electrons[J]. Physical Review Letters,2007,98:136801-136804
    [67]Miller D. L., Kubista K. D., Rutter G. M., et al. Observing the quantization of zero mass carriers in graphene science[J]. Science,2009,324:924-927
    [68]吴孝松.碳化硅表面的外延Graphene[J]物理,2009,38:409-415
    [69]Emtsev K. V., Bostwick A., Horn K., et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide[J]. Nature Materials,2009,8:203-207
    [70]程立强,刘应亮,张静娴等.球形碳材料的研究进展[J].化学进展,2006,18,1298-1304
    [71]施伟伟,李铁虎,王小宪等.活性中间相炭微球的研究进展[J].炭素技术,2009,28,30-33
    [72]柯余良,林起浪,郭单余等.新型中间相炭微球的制备及表征[J].煤炭转化,2009,32:89-91
    [73]Xia Y, Gates B., Yin Y, et al. Monodispersed colloidal spheres:old materials with new applications[J]. Advanced Materials,2000,12:693-713
    [74]Inagaki M. Discussion of the formation of nanometric texture in spherical carbon bodies[J]. Carbon,1997,35:711-713
    [75]Mehraban Z., Farzaneh F., Dadmehr V. Catalytic chemical vapour deposition synthesis of carbon spheres[J]. Materials Letters,2009,63:1653-1655
    [76]Chen X., Kierzek K., Cendrowski K., et al. CVD generated mesoporous hollow carbon spheres as supercapacitors[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,396:246-250
    [77]Chen X., Kierzek K., Jiang Z., et al. Synthesis, growth mechanism, and electrochemical properties of hollow mesoporous carbon spheres with controlled diameter [J]. The Journal of Physical Chemistry C,2011,115:17717-17724
    [78]Qian H. S., Han F. M., Zhang B., et al. Non-catalytic CVD preparation of carbon spheres with a specific size[J]. Carbon,2004,42:761-766
    [79]Jin Y Z., Gao C., Hsu W. K., et al. Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons [J]. Carbon,2005,43:1944-1953
    [80]Aili M., Xiaomin W., Tianbao L., et al. Characteristics of carbon microspheres and study on its adsorption isotherms[J]. Materials Science and Engineering:A,2007,443:54-59
    [81]Zhao S., Wang C., Chen M., et al. Preparation of carbon sphere from corn starch by a simple method[J]. Materials Letters,2008,62:3322-3324
    [82]Zhang B., Bai S., Cheng H. M., et al. Graphitization-induced micro structural changes in tetrahydrofuran-derived pyrolytic carbon spheres[J]. Journal of Materials Research,2006,21: 2198-2203
    [83]Qiu J., Li Y., Wanga Y., et al. A novel form of carbon micro-balls from coal[J]. Carbon, 2003,41:767-772
    [84]He X., Wu F., Zheng M. The synthesis of carbon nanoballs and its electrochemical performance [J]. Diamond and Related Materials,2007,16:311-315
    [85]Qiao W. M., Song Y, Lim S. Y, et al. Carbon nanospheres produced in an arc-discharge process[J]. Carbon,2006,44:187-190
    [86]Kim S., Shibata E., Sergiienko R., et al. Purification and separation of carbon nanocapsules as a magnetic carrier for drug delivery systems[J]. Carbon,2008,46: 1523-1529
    [87]魏明真.溶剂热法合成纳米材料的研究进展[J].四川化工,2007,10:22-24
    [88]Yin C., Huang Q., Liu B., et al. Synthesis and TEM observation of fluffy hollow carbon spheres by FeCl3 catalyzed solvent-thermal reaction[J]. Materials Letters,2007,61: 4015-4018
    [89]Ni Y, Shao M., Tong Y, et al. Preparation of hollow carbon nanospheres at low temperature via new reaction route[J]. Journal of Solid State Chemistry,2005,178:908-911
    [90]Pang L.L., Bi J. Q., Bai Y J., et al. Synthesis of carbon spheres via a low-temperature metathesis reaction[J]. The Journal of Physical Chemistry C,2008,112:12134-12137
    [91]Pol V. G., Motiei M., Gedanken A., et al. Carbon spherules:synthesis, properties and mechanistic elucidation [J]. Carbon,2004,42:111-116
    [92]Yang X., Li C., Wang W., et al. A chemical route from PTFE to amorphous carbon nanospheres in supercritical water[J]. Chemical Communications,2004,342-343
    [93]Shin Y, Wang L. Q., Bae I. T., et al. Hydrothermal syntheses of colloidal carbon spheres from cyclodextrins[J]. The Journal of Physical Chemistry C,2008,112:14236-14240
    [94]Tang S., Vongehr S., Meng X. Carbon spheres with controllable silver nanoparticle doping[J]. The Journal of Physical Chemistry C,2010,114:977-982.
    [95]Sun X., Li Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angewandte Chemie International Edition,2004,43:597-601.
    [96]Ma Y., Hu Z., Huo K., et al. A practical route to the production of carbon nanocages[J]. Carbon,2005,43:1667-1672
    [97]Okuno H., Grivei E., Fabry F., et al. Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process[J]. Carbon,2004,42:2543-2549
    [98]Yang G. M., Xu Q., Tian H. W., et al. Amorphous hollow carbon spheres synthesized using radio frequency plasma-enhanced chemical vapour deposition[J]. Journal of Physics D: Applied Physics,2008,41:195504-195510
    [99]Bystrejeweski M., Lange H., Huczko A., et al. One-step catalyst-free generation of carbon nanospheres via laser-induced pyrolysis of anthracene[J]. Journal of Solid State Chemistry,2008,181:2796-2803
    [100]Wang Z. X., Yu L. P., Zhang W., et al. Carbon spheres synthesized by ultrasonic treatment[J]. Physics Letters A,2003,307:249-252
    [101]Liu J., Qiao S. Z., Liu H., et al. Extension of the stober method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres [J]. Angewandte Chemie International Edition,2011,50:5947-5951
    [102]Wang G. H., Sun Q., Zhang R., et al. Weak acid-base interaction induced assembly for the synthesis of diverse hollow nanospheres [J]. Chemistry of Materials,2011,23:4537-4542
    [103]孙玉绣,张大伟,金政伟.纳米材料的制备方法及其应用[M].北京:中国纺织出版社,2010
    [104]郑兴芳.水热法制备纳米氧化物的研究进展[J].无机盐工业,2009,41:9-11
    [105]周菊红,王涛,陈友存等.水热法合成一维纳米材料的研究进展[J].化学通报,2008,7:510-517
    [106]Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries [J]. Chemical Reviews,2004,104,4303-4417
    [107]Cheng F., Tao Z., Liang J., et al. Template-directed materials for rechargeable lithium-ion batteries[J]. Chemistry of Materials,2008,20:667-681
    [108]倪江峰,周恒辉,陈继涛,等.锂离子电池中固体电解质界面膜(SEI)研究进展[J].化学进展,2004,16:335-342
    [109]武明昊,陈剑,王崇等.锂离子电池负极材料的研究进展[J].电池,2011,41:222-225
    [110]刘艳.C0304基负极材料的制备、表征及性能研究[D].南京:南京航空航天大学,2009
    [111]Wang S., Zhang J., Chen C. Fe3O4 submicron spheroids as anode materials for lithium-ion batteries with stable and high electrochemical performance [J]. Journal of Power Sources,2010,195:5379-5381
    [112]Ni S., Wang X., Zhou G. et al. Hydrothermal synthesis of Fe3O4 nanoparticles and its application in lithium ion battery [J]. Materials Letters,2009,63:2701-2103
    [113]Chen Y. X., He L. H., Shang P. J., et al. Micro-sized and nano-sized Fe3O4 particles as anode materials for lithium-ion batteries[J]. Journal of Materials Science & Technology,2011, 27:41-45
    [114]Xiong Q. Q., Tu J. P., Lu Y., et al. Synthesis of hierarchial hollow-structured single-crystalline magnetite (Fe3O4) microspheres:the highly powerful storage versus lithium as an anode for lithium ion batteries[J]. The Journal of Physical Chemistry C,2012,116: 6495-6502
    [115]Li Y., Zhang P., Guo Z., et al. Preparation of α-Fe2O3 submicro-flowers by a hydrothermal approach and their electrochemical performance in lithium-ion batteries[J]. Electrochimica Acta,2008,53:4213-4218
    [116]Liu H., Wang G., Park J., et al. Electrochemical performance of α-Fe2O3 nanorods as anode material for lithium-ion cells[J]. Electrochimica Acta,2009,54:1733-1736
    [117]NuLi Y, Zeng R., Zhang P., et al. Controlled synthesis of α-Fe2O3 nanostructures and their size-dependent electrochemical properties for lithium-ion batteries [J]. Journal of Power Sources,2008,184:456-461
    [118]Zhang P., Guo Z. P., Liu H. K. Submicron-sized cube-like α-Fe2O3 agglomerates as an anode material for Li-ion batteries[J]. Electrochimica Acta,2010,55:8521-8526
    [119]Hwang S. W., Umar A., Kim S. H., et al. Low-temperature growth of well-crystalline Co3O4 hexagonal nanodisks as anode material for lithium-ion batteries [J]. Electrochimica Acta,2011,56:8534-8538
    [120]Liu Y., Mi C., Su L., et al. Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries[J]. Electrochimica Acta,2008,53:2507-2513
    [121]Wang X., Guan H., Chen S., et al. Self-stacked Co3O4 nanosheets for high-performance lithium ion batteries[J]. Chemical Communications,2011,47:12280-12282
    [122]Li C., Yin X., Chen L., et al. Synthesis of cobalt ion-based coordination polymer nanowires and their conversion into porous Co3O4 nanowires with good lithium storage properties[J]. Chemistry-A Eurpean Journal,2010,16:5215-5221
    [123]Yang H. X., Qian J. F., Chen Z. X., et al. Multilayered nanocrystalline SnO2 hollow microspheres synthesized by chemically induced self-assembly in the hydrothermal environment[J]. The Journal of Physical Chemistry C,2007,111:14067-14071
    [124]Lei D., Zhang M., Hao Q., et al. Morphology effect on the performance of SnO2 nanorod arrays as anodes for Li-ion batteries[J]. Materials Letters,2011,65:1154-1156
    [125]Liu R., Li N., Li D., et al. Template-free synthesis of SnO2 hollow microspheres as anode material for lithium-ion battery[J]. Materials Letters,2012,73:1-3
    [126]Yin X. M., Li C. C., Zhang M., et al. One-step synthesis of hierarchical SnO2 hollow nanostructure via self-assembly for high power lithium ion batteries [J]. The Journal of Physical Chemistry C,2010,114:8084-8088
    [127]Wang Q., Wen Z., Li J. Solvent-controlled synthesis and electrochemical lithium storage of one-dimensional TiO2 nanostructures[J]. Inorganic Chemistry,2006,45: 6944-6949.
    [128]Ye J., Liu W., Cai J., et al. Nanoporous anatase TiO2 mesocrystals:additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior [J]. Journal of the American Chemistry Society,2011,133:933-940
    [129]Li J., Wan W, Zhou H., et al. Hydrothermal synthesis of TiO2(B) nanowires with ultrahigh surface area and their fast charging and discharging properties in Li-ion batteries[J]. Chemical Communications,2011,47:3439-3441
    [130]Wang H., Pan Q., Cheng Y, et al. Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrode for lithium-ion batteries[J]. Electrochimica Acta,2009,54:2851-2855
    [131]Liu L., Li Y, Yuan S., et al. Nanosheet-based NiO microspheres:controlled solvothermal synthesis and lithium storage performance [J]. The Journal of Physical Chemistry C,2010,114:251-255
    [132]Gao X. P., Bao J. L., Pan G. L., et al. Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery[J]. The Journal of Physical Chemistry B,2004,108:5547-5551
    [133]Zhou L., Yang L., Yuan P., et al. A-MoO3 nanobelts:a high performance cathode material for lithium ion batteries[J]. The Journal of Physical Chemistry C,2010,114: 21868-21872
    [134]Han Z., Yang Q., Lu G. Q. Crystalline lanthanum hydroxycarbonates with controlled phases and varied morphologies prepared on non-crystalline substrates [J]. Journal of Solid State Chemistry,2004,177:3709-3714
    [135]Zhao D., Yang Q., Han Z., et al. Biomolecule-assisted synthesis of rare earth hydroxycarbonated[J]. Solid State Sciences,2008,10:31-39
    [136]Wu M., Zhang Q., Liu Y, et al. Hydrothermal preparation of fractal dendrites:cerium carbonate hydroxide and cerium oxide[J]. Materials Research Bulletin,2009,44:1437-1440
    [137]Zhao D., Yang Q., Han Z., et al. Rare earth hydroxycarbonate materials with hierarchical structures:preparation and characterization, and catalytic activity of derived oxides[J]. Solid State Sciences,2008,10:1028-1036
    [138]尹小斌.几种稀土纳米材料的合成及性能研究[D].合肥:中国科学技术大学,2010
    [139]Guo P., Song H., Chen X. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries[J]. Electrochemistry Communications,2009,11: 1320-1324
    [140]He Y, Huang L., Cai J. S., et al. Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composite as anodes for lithium ion batteries[J]. Electrochimica Acta,2010,55:1140-1144
    [141]Wang G, Liu T., Luo Y, et al. Preparation of Fe2O3/graphene composite and its electrochemical performance as an anode material for lithium ion batteries [J]. Journal of Alloys and Compounds,2011,509:L216-L220
    [142]Yang S., Song H., Yi H., et al. Carbon nanotube capsules encapsulating SnO2 nanocomposite as an anode material for lithium ion batteries[J]. Electrochimica Acta,2009, 55:521-527
    [143]Chen C. H., Hwang B. J., Do J. S., et al. An understanding of anomalous capacity of nano-sized CoO anode materials for advanced Li-ion battery[J]. Electrochemistry Communications,2010,12:496-498
    [144]Chen L. B., Lu N., Xu C. M., et al. Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries[J]. Electrochimica Acta,2009,54: 4198-4201
    [145]张丽娟,王艳飞,王岩等.锂离子电池金属氧化物负极材料的研究进展[J].电源技术,2011,35:866-871
    [146]黄小华.纳米复合化对锂离子电池NiO负极材料电化学性能的改善[D].杭州:浙江大学,2009
    [147]Wu Z. S., Zhou G., Yin L. C., et al. Graphene/metal oxide composite electrode materials for energy storage[J]. Nano Energy,2012,1:107-131
    [148]Pimenta M. A., Dresselhaus G., Dresselhaus M. S., et al. Studying disorder in graphite-based system by Raman spectroscopy[J]. Physical Chemistry Chemical Physics, 2007,9:1276-1291.
    [149]Sood A. K., Gupta R., Asher S. A. Origin of the unusual dependence of Raman D band on exitation wavelength in graphite-like materials[J]. Journal of Applied Physics,2001,90: 4494-4497.
    [150]Wang L., Yu Y, Chen P. C., et al. Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries[J]. Journal of Power Sources,2008,183:717-723
    [151]Wang S., Zhang J., Chen C., et al. Fe3O4 submicron spheroids as anode materials for lithium-ion batteries with stable and high electrochemical performance [J]. Journal of Power Sources,2010,195:5379-5381
    [152]Laruelle S., Grugeon S., Poizot P., et al. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential[J]. Journal of Electrochemical Society, 2002,149:A627-A634
    [153]苏昌华.Fe203微纳米材料的控制合成、生长机理与储氢性质研究[D].西安:西北大学,2011
    [154]Lin Y. M., Abel P. R., Heller A., et al. a-Fe2O3 nanorods as anode material for lithium ion batteries[J]. The Journal of Physical Chemistry Letters,2011,2:2885-2891
    [155]Larcher D., Masquelier C., Bonnin D., et al. Effect of particle size on lithium intercalation into a-Fe2O3[J]. Journal of the Electrochemical Society,2003,150:A133-A139
    [156]Larcher D., Bonnin D., Cortes R., et al. Combined XRD, EXAFS, and mossbauer studies of the reduction by lithium of a-Fe2O3 with various particle sizes[J]. Journal of the Electrochemical Society,2003,150:A1643-A1650
    [157]Zou Y., Kan J., Wang Y. Fe2O3-graphene rice-on-sheet nanocomposite for high and fast lithium ion storage[J]. The Journal of Physical Chemistry C,2011,115:20747-20753
    [158]Zhu J., Zhu T., Zhou X. Z., et al. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability[J]. Nanoscale,2011,3: 1084-1089
    [159]闫俊.碳/氧化锰复合材料的制备电化学性能研究[D].哈尔滨:哈尔滨工程大学,2010
    [160]王晨.石墨烯的微观结构对电化学性能的影响[D].北京:北京化工大学,2011
    [161]韩文伟,陈猛,蒲俊红.Sn02-石墨复合材料的制备和性能研究[J].应用科技,2007,34:66-68
    [162]杨晓伟.石墨烯基高性能电化学储能材料研究[D].上海:上海交通大学,2011
    [163]蒋立中,周鸣飞,刘先年等.脉冲激光沉积具有锂离子储锂能力的Ce02薄膜[J].物理化学学报,1999,15:752-756
    [164]周复.新型锂离子电池材料的制备及性质研究[D].合肥:中国科学技术大学,2006
    [165]Zhou F., Ni X., Zhang Y, et al. Size-controlled synthesis and electrochemical characterization of spherical CeO2 crystallites [J]. Journal of Colloid and Interface Science, 2007,37:135-138
    [166]Zhou F., Zhao X., Xu H., et al. CeO2 spherical crystallites:synthesis, formation mechanism, size control, and electrochemical property study[J]. J. Phys. Chem. C,2007,111: 1651-1657
    [167]付伯承.碳包覆纳米Fe304颗粒的合成与结构研究[D],北京:北京化工大学,2010
    [168]Park S. J., Kim Y. J., Lee H. Synthesis of carbon-coated TiO2 nanotubes for high-power lithium-ion batteries[J], Journal of Power Sources,2011,196:5133-5137.
    [169]Saito Y., Yoshikawa T., Oikuda M., et al. Iron particles nesting in carbon cages grown by arcdischarge[J],1993,212:379-383.
    [170]Liu B. H., Ding J., Zhong Z. Y, et al. Large-scale preparation of carbon-encapsulated cobalt nanoparticles by the catalytic method[J], Chemical Physics Letters,2002,358:96-102.
    [171]Yogo T., Naka S., Hirano S., Synthesis and properties of carbons dispersed with a-iron particles from divinyl benzene-vinylferrocene[J], Journal of Material Science,1989,24: 2071-2075.
    [172]Lian W. T., Song H. H., Chen X. H., et al. The transformation of acetylene black into onion-like hollow carbon nanoparticles at 1000℃ using an iron catalyst[J]. Carbon,2008,56: 525-530.
    [173]Harris P. J. F., Tsang S. C. A simple technique for the synthesis of filled carbon nanoparticles [J], Chemical Physics Letters,1998,293:53-58.
    [174]吴卫泽,朱珍平,刘振宇.Fe/C复合纳米材料的制备研究[J].新型炭材料,2002,17:4-8
    [175]邱介山,安玉良.生物基碳包覆纳米材料(Mn, Co)的制备[J].物理化学学报,2004,20:260-264
    [176]Park S. J., Kim H., Kim Y. J., et al. Preparation of carbon-coated TiO2 nanostructures for lithium-ion batteries[J]. Electrochimica Acta,2011,56:5355-5362.
    [177]Lou X. W., Chen J. S., Chen P., et al. One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties[J]. Chemistry of Materials, 2009,21:2868-2874.
    [178]Zhang W. M., Wu X. L., Hu J. S., et al. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries[J]. Advanced Functional Materials,2008,18: 3941-3946.
    [179]Hassan M. F., Guo Z. P., Chen Z., et al. Carbon-coated MoO3 nanobelts as anode materials for lithium-ion batteries[J]. Journal of Power Sources,2010,195:2372-2376.
    [180]Hassan M. F., Rahman M. M., Guo Z. P., et al. Solvent-assisted molten salt process:A new route to synthesise a-Fe2O3/C nanocomposite and its electrochemical performance in lithium-ion batteries[J]. Electrochimica Acta,2010,55:5006-5013.
    [181]周友元.锂离子电池复合炭负极材料的制备及性能研究[D].长沙:中南大学,2008
    [182]任建国,闫润宝,何向明等.锂离子电池锡-碳复合负极材料的研究进展[J],电源技术,2011,35:229-231
    [183]Sun C. W., Sun J., Xiao G. L., et al. Mesoscale organization of nearly monodisperse flowerlike ceria microspheres[J]. The Journal of Physical Chemistry B,2006,110: 13445-13452
    [184]Mai H. X., Zhang Y. W., Si R., et al. High-quality sodium rare-earth fluoride nanocrystals:controlled synthesis and optical properties [J]. Journal of the American Chemical Society,2006,128:6426-6436
    [185]Jiang H., Hu J., Gu F., et al. Hydrothermal synthesis of novel In2O3 microspheres for gas sensors[J]. Chemical Communications,2009,3618-3620
    [186]Yi G. S., Lu H. C., Zhao S. Y, et al. Near-infrared emission of redispersible Er3+, Nd3+ and Ho3+ doped LaF3 nanoparticles[J]. Nano Letters,2002,2:733-737
    [187]Lu H. C., Yi G. S., Zhao S. Y, et al. Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties [J]. Journal of Materials Chemistry,2004,14:1336-1341
    [188]Wu Q. Z., Shen Y, Liao J. F., et al. Synthesis and characterization of three-dimensionally ordered macroporous rare earth oxides[J]. Materials Letters,2004,58: 2688-2691
    [189]Tang B., Ge J. C., Wu C. J., et al. Sol-solvothermal synthesis and microwave evolution of La(OH)3 nanorods to La2O3 nanorods[J]. Nanotechnology,2004,15:1273-1276
    [190]Si R., Zhang Y. W., You L. P., et al. Rare-earth oxide nanopolyhedra, nanoplates, and nanodisks[J]. Angewandte Chemie International Edition,2005,44:3256-3260
    [191]Tang B.,Ge J. C., Zhuo L. H. The fabrication of La(OH)3 nanospheres by a controllable-hydrothermal method with citric acid as a protective agent[J]. Nanotechnology, 2004,15:1749-1751
    [192]Wang X., Li Y. D. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires[J]. Angewandte Chemie International Edition,2002,41:4790-4793
    [193]Wang X., Li Y. D. Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles:synthesis, characterization, and properties [J]. Chemistry-A European Journal, 2003,9:5627-5635
    [194]Jeevanandam P., Koltypin Y., Palchik O., et al. Synthesis of morphologically controlled lanthanumcarbonate particles using ultrasound irradiation[J]. Journal of Materials Chemistry, 2001,11:869-873
    [195]Fang Y. P., Xu A. W., Song R. Q., et al. Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires[J]. Journal of the American Chemical Society,2003,125:16025-16034
    [196]Zhang Y. J., Guan H. M. The growth of lanthanum phosphate (rhabdophane) nanofibers via the hydrothermal method[J]. Materials Research Bulletin,2005,40: 1536-1543
    [197]Zhang Y. W., Sun X., Si R., et al. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor [J]. Journal of the American Chemical Society, 2005,127:3260-3261
    [198]Wang Xun, Zhuang J., Peng Q., et al. Hydrothermal synthesis of rare-earth fluoride nanocrystals[J]. Inorganic Chemistry,2006,45:6661-6665
    [199]Zhang Y, Han K., Cheng T., et al. Synthesis, characterization, and photoluminescence property of LaCO3OH microspheres[J]. Inorganic Chemistry,2007,46:4713-4717
    [200]Li Z., Zhang J., Du J., et al. Synthesis of LaCO3OH nanowires via a solvthermal process in the mixture of water and room-temperature ionic liquid[J]. Materials Letters,2005, 59:963-965
    [201]Xie J., Wu Q., Zhang D., et al. Biomolecular-induced synthesis of self-assembled hierarchical La(OH)CO3 one-dimensional nanostructures and its morphology-held conversion toward La2O3 and La(OH)3[J]. Crystal Growth & Design,2009,9:3889-3897
    [202]Zhong S. L., Zhang L. F., Jiang J. W., et al. Gelatin-mediated hydrothermal synthesis of apple-like LaCO3OH hierarchical nanostructures and tunable white-light emission[J]. Cry stEngComm,2011,13:4151-4160
    [203]Pol V. G, Thiyagarajan P., Moreno J. M. C., et al. Solvent-free fabrication of rare LaCO3OH luminescent superstructures[J]. Inorganic Chemistry,2009,48:6417-6424
    [204]Wang J., Jing X., Wang J., et al. A facile and green synthesis route to C@LaCO3OH core-shell microspheres using colloidal carbonaceous spheres as template and its by-products as carbon source[J]. Solid State Science,2010,12:1934-1940
    [205]Z. Luo, H. Li, H. Shu, K., et al. Synthesis of BaMoO4 nestlike nanostructures under a new growth mechanism[J]. Crystal Growth and Design,2008,8:2275-2281
    [206]Xue H., Li Z., Dong H., et al.3D hierarchical architectures of Sr2Sb2O7:hydrothermal syntheses, formation mechanisms, and application in aqueous-phase photocatalysis[J]. Crystal Growth & Design,2008,8:4469-4475
    [207]Dai X. J., Luo Y. S., Fu S. Y., et al. Facile hydrothermal synthesis of 3D hierarchical Bi2SiO5 nanoflowers and their luminescent properties [J]. Solid State Science,2010,12: 637-642
    [208]Y. Pei, X. F. Chen, R. H. Mao., et al. Growth and luminescence characteristics of undoped LaCl3 crystal by Modified Bridgman Method[J]. Journal of Crystal Growth,2005, 279:390-393
    [209]Y. Kawabe, A. Yamanaka, E. Hanamura, T. Kimura, Y. Takiguchi, H. Kan and Y. Tokura, Photoluminescence of perovskite lanthanum aluminate single crystals[J]. Journal of Applied Physics,2000,87:7594-7597
    [210]D. Pan, J. Zhang, Z. Li, Z. Zhang, L. Guo and M. Wu, Blue fluorescent carbon thin films fabricated from dodecylamine-capped carbon nanoparticles[J]. Journal of Materials Chemistry,2011,21:3565-3567
    [211]曹军.NH4C1和NH4Br晶体中自陷态激子的辐射光谱和Vk心的吸收光谱研究[D].南京:南京师范大学,2004
    [212]王尚平.几种化合物微/纳米结构的形貌可控合成与表征及其光学性能研究[D].南昌:江西师范大学,2010
    [213]G. Ghosh, M. K. Naskar, A. Patra and M. Chatterjee, Synthesis and characterization of PVP-encapsulated ZnS nanoparticles[J]. Optical Materials,2006,28:1047-1053
    [214]邹文斌.几种无机纳米粒子/(氧化)石墨烯复合材料的制备及性能研究[D].南京:南京理工大学,2011
    [215]陈文权.基于石墨烯纳米光催化复合材料的制备与性能研究[D].信阳:信阳师范学院硕士学位论文,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700