鄂东南铜绿山铜铁金矿床地质特征、成因模式及找矿方向
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以区域成矿学理论为指导,从铜绿山矿床地质特征和控矿构造入手,通过岩矿石的微量元素、稀土元素、稳定同位素和流体包裹体测试,对夕卡岩型和隐爆角砾岩型矿体进行了深入研究和对比,探讨了铜绿山矿床成矿物质来源和成因,建立了铜绿山矿床成矿模式,总结了成矿规律,并指出了找矿方向。取得的主要成果与认识如下:
     1、通过区域成矿背景研究,认为印支期和燕山期构造运动控制了铜绿山矿田岩浆活动和成矿作用。印支运动形成了北西—北西西向断裂与褶皱,燕山运动不仅改造了早期的北西西向构造,而且新生了规模较大的北北东向断裂和褶皱,北北东向断裂褶皱与北西西向的构造叠加控制铜绿山花岗闪长斑岩株就位和矿床的产出,矿体则受更次一级构造控制,两组构造交汇部位有利于形成富矿体。
     2、从矿田角度研究了铜绿山矿床与外围鸡冠嘴、桃花嘴、鲤泥湖、石头嘴等矿床的关系,首次提出铜绿山矿床处于矿田及鄂东“黄石热点”的中心地带,矿化类型齐全,矿化强度最大,具有超大型铜、金找矿前景。
     3、通过坑道和地表的系统调查和深入研究,发现原作为Ⅺ号夕卡岩型矿体及周边“废石”为隐爆角砾岩型铜金矿体,它们是在夕卡岩化之后,经隐爆角砾岩化并叠加后期的金矿化而成,主要受北西西向断裂—破碎带构造控制,特别是北西西向与北北东向构造交汇部位易于形成厚大矿体。
     4、通过对-305m中段详细研究,发现含铜云煌斑岩脉。该脉形成于隐爆角砾岩型铜金矿化之后,并与之空间上伴生,亦受北西西向断裂的控制。这一云煌斑岩型铜矿体的发现,佐证了“黄石热点”的存在,也反映了本区具有强烈的壳—幔成矿作用。
     5、通过对矿区控矿构造的研究,发现矿区存在多个北西西向的断裂—破碎带,在各个破碎带的深部(-300m~-600m标高),存在不同程度的破碎岩石和碎裂的黄铁矿及玉髓等中低温热液矿物,铜、金均达到工业品位,并且这些断裂—破碎带具有与形成Ⅺ号矿体相同的地质和成矿环境,拓展了本区的找矿空间。
     6、通过H、O、Sr、Pb、S同位素、稀土元素、微量元素和流体包裹体地球化学研究,论证了矿床成矿流体主要来自岩浆,晚期有大
In this thesis, guided with the regional metallogeny theory, started from the geological properties and the mineralization-controlling structures of Tonglushan ore deposit, we researched and compared the characteristics of Skarn and cryptoexplosive breccia ore-body from their trace elements, REE, stable isotopes and fluid inclusions. The origin and cause of metallogenic matter were discussed. The author set up the ore deposit metallogenic model, summarized the metallogenic rule and figured out the areas for next mineral exploration. The main innovation and new viewpoints are summarized as following:1 、 Through the research of regional metallogenic background, it is regarded that both of Indosinian and Yanshan orogeny controlled the magmatism and metallogenesis in Tonglushan ore-deposit area. During the Indosinian Epoch, NW-NWW-striking faults and folds were formed. In the Yanshan orogeny Epoch, the tectonic process not only altered the existed structures of NW-NWW-striking, but also added the NEE-striking structures. The superposition of NNE and NWW structures controls the stock position of granodiorite and the output of ore deposit. The ore-body was controlled by structure formed later. The intersection space of these two group of structures is favor of the produce of bouanza.2、 From the point of mine field, the relation of Tonglushan ore deposit and the periphery deposits such as Jiguanzui, Taohuazui, Liyuzui and Shitouzui was researched. It puts forward the point of that Tonglushan ore deposit lies in central zone of mineral area and "huangshi hotspot" of east of Hupei. The ore deposit has many mineralization types, the biggest mineralization intensity. The ore deposit has a exploration prospect of giant-deposit of Cu-Au ore deposit for the first time.3、 From systemic survey and research on tunnel and surface, It founds that the primary number XI skarn-type ore body and it's surrounding "barren rock" actually are cryptoexplosive breccia ore-body of Cu-Au. After skarnization it experiences cryptoexplosive brecciation and follow a goldzation. Eventually the "barren rock" become cryptoexplosive breccia Cu-Au ore deposit. The mineralization was
    controlled by the NWW-striking faults and cracks belt. The large ore-bodies usually in the intersection sets of NWW and NNE structures, especially.4n With the detail research in the tunnel of -305m, we found minette vein concentrating Cu and accompanying with cryptoexplosive breccia. The vein formed after cryptoexplosive brecciation and also was controlled by the NWW cracks. The finding of minette porphyry copper ore deposit proofs the existence of "huangshi hotspot" and reflects the existence of intense crust-mantle metallization.5^ By the research on the mineralization-controlling structures, it was found that there were many NWW fault-crack belts. In the deep of these belts (-300m~-600m in elevation), there existed fractured rock, pyrite and chalcedony, etc formed by hydrothermal mineralization middle-low temperature. The gold and copper all reached the industrial standard. These fault-crack belts has same geologic and metallogenic environment as the XI ore body. It enlarges the exploration space in the zone.6> With the geochemical analysis of isotope (H> O> Sr> P^ S), REE, trace elements and the fluid inclusions, it has proved that the metallogenic fluid was mainly from the magma and meteoric water added later. And the mineralizing elements were mainly from the deep (sub-crust or upper mantle), part of them from the source bed. It figured out the mechanism of the metallogemy is: the mineralization elements circulated and extracted with fluid driven by the magma, and deposited at appropriate zone. The process of mineralization can be sum up as: first the skarn-type Cu-Fe ore-forming, then concealed-crack breccia, Cu-Au mineralized, the minette porphyry copper deposit formed at last.7 ^ Through the research of geochemical geology, the author expatiated the space-time relation and cause contact between Skarn Cu-Fe and Cryptoexplosive breccia Cu-Au ore deposit. Basing on the existence of minette and companied cobalt, it was concluded that the Tonglushan ore deposit is the outcome of crust-mantle mineralization. And their mineralization model was founded.8> By research of datum, geology survey, synthesis mapping and
    analysis of test result, author summarizes the mineralization rule and the exploration indicators, founds the exploration model, forecasts the output of blind marble belt and mineral belt with analyses fold-faluts superposition and brings forward 7 target areas and 2 prospective areas. The part of these areas have been proved by practice.
引文
[1] 蔡元古等.岩金矿床黄铁矿标型特征实验研究,中国科学院地球化学研究所矿床地球化学开放研究室年报.1991,119~129
    [2] 曹宏,宾晓蓓,尹京武,等.湖北过河口金矿床黄铁矿的标型特征及找矿意义.黄金,1995,16(1):2~7
    [3] 曹益富,李世华.爆破角砾岩体型金矿床成矿特点.黄金,1999,20(9):12~16
    [4] 常印佛,刘湘培,吴言昌.长江中下游铜铁成矿带.北京:地质出版社,1991,1~359
    [5] 陈广浩,张湘炳,王岳军,等.洋鸡山金矿床构造成矿与找矿初步研究.大地构造与成矿学.1998,22(3):192~197
    [6] 陈培良.《长江中下游铁铜金银成矿规律》论文集编委会汇编.长江中下游铁铜金银矿产地质.北京:冶金工业出版社,1996,1~18
    [7] 陈衍景,常兆山.中国矽卡岩型金矿床地质研究和勘查的进展与问题.有色金属矿产与勘查.1996,5(3):129~139
    [8] 陈衍景.中国夕卡岩型金矿床的勘查进展和方向.地质与勘探,1996,32(4):9~18
    [9] 陈衍景,秦善,李欣.中国矽卡岩型金矿的成矿时间、空间、地球动力学背景和成矿模式.北京大学学报(自然科学版),1997,33(4):456~466
    [10] 陈毓川,朱格生等.中国矿床成矿模式.北京,地质出版社,1993,1~367
    [11] 楚之潮,秦有余.《长江中下游铁铜金银成矿规律》论文集编委会汇编.长江中下游铁铜金银矿产地质.北京:冶金工业出版社,1996,69~96
    [12] 邓吉牛,曲丽莉.长江中下游地区层控矽卡岩型铜矿床控矿地质因素新探.有色金属矿产与勘查,1995,4(5):257~263
    [13] 地质部宜昌地质矿产研究所同位素地质研究室.铅同位素地质研究的基本问题,地质出版社,1979,1~236
    [14] 高洁中,蔡新平,张宝林,等.黄铁矿的诸多特征与金矿化.黄金科学技术,1999,7(3):10~14
    [15] 顾连兴,陈培荣,倪培,等.长江中、下游燕山期热液铜—金矿床成矿流体.南京大学学报(自然科学),2002,38(3):392~407
    [16] 郭洪中.从铷锶同位素特征探讨二道沟金矿床的成因.中山大学学 报(自然科学版),1994,33(4):13~137
    [17] 国外地质科技编辑部.矽卡岩型金矿引起注意——加拿大、美国和澳大利亚勘查开发大型矽卡岩金矿床.国外地质科技,1988,(8):1~10
    [18] 黄崇轲,白冶,朱裕升,等.中国铜矿床(上册),地质出版社,2001,1~215
    [19] 黄华盛.矽卡岩矿床的研究现状.地学前缘,1994,1(3~4):105~111
    [20] 黄伟林.湖南东坡多金属矿田成矿流体地球化学研究:[博士学位论文],1988
    [21] 胡善亭,孙克勤,赵东甫.板块构造与花岗岩的成因分类.山东地质,1994,10(2):72~76
    [22] 季克俭,等.热液矿床的矿源、水源和热源及矿床分布规律.北京:科学技术出版社,1989,1~126
    [23] 梁祥济,王福生.接触交代型矽卡岩金矿床形成机理的实验研究.黄金地质,2000,6(1):2~14
    [24] 李福东,张汉文,宋志杰.鄂拉山地区热液成矿模式.西安:西安交通大学出版社,1993,276~300
    [25] 李怀勇,张占洋,赵庆国,等.水泉沟金矿田地质地球化学特征研究.黄金,2003,24(12):14~18
    [26] 李洁.阿舍勒大型铜锌多金属块状硫化物矿床黄铁矿标型特征.新疆有色金属,2003,11~12
    [27] 林仕良,雍永源,高大发.西藏东部隐爆角砾岩特征及其含矿性.沉积与特提斯地质,2003,23(3):49~53
    [28] 林新多.岩浆成因矽卡岩的某些特征及形成机制初探.现代地质,1989,3(3):351~358
    [29] 刘华山,李秋林,于浦生,等.“镜铁山式”铁铜矿床地质特征及其成因探讨.矿床地质,1998,17(1):25~35
    [30] 刘继顺.关于金矿床形成时代的确定方法.黄金,1991,12(10):10~12
    [31] 刘继顺,舒广龙,高珍权.鄂东丰山矿田卡林型金矿地质地球化学特征.地学前缘,2004,11(2):379~386.
    [32] 刘湘培,常印佛,吴言昌.论长江中下游地区成矿条件和成矿规律.地质学报,1988,2:167~177
    [33] 刘治国.铜绿山铜铁矿床地质特征及岩浆岩与成矿关系探讨.化工 矿产地质,2002,24(4):207~214
    [34] 龙文国,谢盛周,李孙雄.海南岛屯昌地区发现印支期爆破角砾岩筒.华南地质与矿产,2000,3:42~45
    [35] 罗镇宽,苗来成,关康.角砾岩型金矿床——一种值得重视的金矿类型.地质找矿论丛,1999,14(4):15~23
    [36] 陆启行,陈永达.长江中下游地区深部地球物理调查成果及对地质构造与成矿预测的新认识.物探与化探,1993,17(5):321~330
    [37] 毛德宝,赵更新,席忠,等.Cu-Mo-Pb-Zn-Ag-Au成矿系统的地质特征及其研究意义.地质调查与研究,2003,26(4):213~220
    [38] 毛建仁,苏郁香,陈三元,等.长江中下游中酸性侵入岩与成矿.北京:地质出版社,1990,1~190
    [39] 孟良义.长江中、下游铜矿床的成矿模式.中国科学(D辑),1996,26(1):21~25
    [40] 孟良义.花岗岩与成矿.北京:科学出版社,1993,1~132
    [41] 庞春勇.我国矽卡岩型铜矿床同位素地质特征及其“三位一体”成矿模式.矿产与地质,1995,9(5):368~374
    [42] 彭聪,赵一鸣.中国东部含金夕卡岩矿床分布规律与深部地球物理背景研究.物探与化探,1999,23(6):415~420
    [43] 卿敏,韩先菊.隐爆角砾岩型金矿研究述评.黄金地质,2002,8(2):1~7
    [44] 邱家骧,等.岩浆岩岩石学.地质出版社.1985,1~340
    [45] 邱永进.鄂东鸡冠嘴铜(铁)金矿床的地质特征及成因.有色金属矿产与勘查,1995,4(2):1~7
    [46] 芮宗瑶,王龙生.中国铜矿床分类新方案.有色金属矿产与勘查,1994,3(2):96~97
    [47] 申浩澈.中国花岗岩锶同位素组成的基本特点及研究意义.吉林大学学报,1990,20(2):185~196
    [48] 沈渭洲,等.稳定同位素地质.北京:原子能出版社,1987,189~243
    [49] 舒广龙.湖北丰山矿田成矿地质背景及斑岩成矿系列与微细浸染型金矿:[博士学位论文].长沙:中南大学,2004
    [50] 舒全安,陈培良,程建荣.鄂东铁铜矿产地质.冶金工业出版社,1992,3~507
    [51] 苏欣栋,《长江中下游铁铜金银矿产地质》论文集编委会汇编.长江 中下游铁铜金银矿产地质.北京:冶金工业出版社,1996,1~326
    [52] 苏欣栎.鄂东南成矿区壳幔结构及其特征.地质与勘探,1995,31(1):18~25
    [53] 苏欣栋,刘陶梅.同位素地质在鄂东南铜铁矿床地质研究中的应用.地质与勘探,1994,30(1):27~32
    [54] 涂光炽,等.矿床地球化学.北京:地质出版社,1997,1~11
    [55] 涂光炽,等.中国超大型矿床(Ⅰ).北京:科学出版社,2000,293~319
    [56] 王文斌,李文达,董平,等.论长江中下游地区含铜黄铁矿型矿床成因.火山地质与矿产,1994,15(2):25~34
    [57] 王照波.隐爆岩及其形成模式探讨.地质找矿论丛,2001,16(3):201~205
    [58] 王中刚,于学元等.稀土元素地球化学.北京:科学出版社,1989,1~535
    [59] 魏存弟.辽宁五龙金矿黄铁矿标型特征.地质找矿论丛,2001,16(2):135~139
    [60] 韦俊铭,李晋辉.湖北丰山铜矿隐爆岩类地质特征及与成矿的关系.矿山地质,1993,13(1):3~10
    [61] 吴承烈,徐外生,刘崇民.中国主要类型铜矿勘查地球化学模型.地质出版社,1998,65~103
    [62] 吴言昌,常印佛.关于岩浆矽卡岩问题.地学前缘(中国地质大学,北京),1998,5(4):291~301
    [63] 吴言昌.论岩浆矽卡岩——一种新类型矽卡岩.安徽地质,1992,1(2):12~26
    [64] 肖光富,董意群.鸡冠嘴铜金矿床Ⅰ号矿体金铜铁、金铁型矿石成因研究.湖北地矿,2003,17(3):1~5
    [65] 肖光富.鸡冠嘴铜金矿床工号矿体群矿体地质特征及赋存规律.黄金,2003,24(7):1~5
    [66] 肖庆辉,邓晋福,马大铨,等.花岗岩研究思维与方法.北京:地质出版社.2002,1~294
    [67] 许建国.安徽长龙山矽卡岩浆型铁矿成因探讨.地球科学,1990,15(6):649~656
    [68] 徐克勤,等.华南两个成因系列花岗岩及成矿特征.桂林冶金地质学院学报,1982,2(1):1~10
    [69] 许文渊.我国伴生金物质来源及其与成矿关系.矿产与地质,1995,9(4):223~226
    [70] 徐跃通,舒全安.鄂东丰山矿田角砾岩成因研究.中南冶金地质,1991,9(1):50~53
    [71] 杨超群.花岗岩类的地质环境—成因分类.广东地质,1996,11(2):1~12
    [72] 杨坤光,马昌前.湖北大冶地区板内变形及构造应力场的初步研究.湖北地矿,1996,10(2):38~48
    [73] 杨明银.稀土元素在鄂东南找矿预测中的应用.湖北地质,1995,9(2):84~89
    [74] 杨明银,薛迪康,葛宗侠.鄂东南花岗岩类谱系单位与成矿.湖北地质,1995,9(1):48~57
    [75] 晏久平.长江中下游地区地层与成矿的关系.中南矿冶地质,1998,1:30~62
    [76] 於崇文,等.云南个旧赐多金属成矿区内生成矿作用动力学体系.武汉:中国地质大学出版社,1988,178~298
    [77] 裕声,梅燕雄.成矿模式研究的几个问题.地球学报,1995,2:182~189
    [78] 余元昌,李刚,肖国荃,等.湖北省大冶县铜绿山接触交代铜铁矿床.湖北省测绘大队印刷,1985,5~151
    [79] 张德会.银山矿床成矿作用时空特征及矿床成因探讨.矿床地质,1997,16(4):298~308
    [80] 张国胜.鄂东南地区构造特征及其控岩控矿规律.湖北地矿,1998,12(2):16~23
    [81] 张理刚,陈振胜,刘敬秀,等.两阶段水—岩同位素交换理论及其勘查应用.北京:地质出版社,1995,1~231
    [82] 张理刚.稳定同位素在地质科学中的应用——金属活化热液作用.西安:陕西科学技术出版社,1985,150~201
    [83] 张生,刘玉山.金溶解度试验研究及地质意义.地球化学,1995,24增刊:168~176
    [84] 张守林.矽卡岩型铜矿成矿地质环境、成矿地质特征及找矿标志.矿产与地质,2001,15(5):315~319
    [85] 张术根.长江中下游沿江成矿带铜金成矿学研究:[博士学位论文].长沙:中南大学,1993
    [86] 张术根.长江中下游中(新)生代岩浆岩铅同位素地质信息探索.有色金属矿产与勘探,1994,3(3):175~180
    [87] 张术根,王大伟.长江中下游铜金成矿岩体稀土地球化学特征.中南矿冶学院学报,1994,25(4):436~440
    [88] 张淑贞.矽卡岩浆型铜矿床特征.地球科学,1993,18(6):801~809
    [89] 张轶男.长江中下游及其邻区重要含金(铜)矽卡岩矿床地质地球化学特征:[博士学位论文].北京:中国地质科学院,1999
    [90] 赵斌,邢风鸣,朱成明,等.长江中下游中性—中酸性岩浆岩的母岩浆来源及铜的成矿作用——试验研究.地球化学,1996,25(4):387~398
    [91] 赵斌,赵劲松,张重泽.岩浆成因矽卡岩的试验依据.科学通报,1993,38(21):1986~1989
    [92] 赵斌.中国主要矽卡岩及矽卡岩矿床.北京:科学出版社,1989,19~72
    [93] 赵惠兰,张哲儒.普弄巴金矿床黄铁矿的标型特征.矿物学报,1995,15(1):111~116
    [94] 赵劲松.对柿竹园矽卡岩成因及其成矿作用的新认识。矿物学报,1996,16(4):442~449
    [95] 赵一鸣.98魁北克加拿大地质学会“矿化夕卡岩热液系统”学术讨论会简介.矿床地质,1998,17(3):285~286
    [96] 赵一鸣,李大新.中国矽卡岩矿床中的角闪石.矿床地质,2003,22(4):345~359
    [97] 赵一鸣,林文蔚,张德全,等.交代成矿作用及其找矿意义—几个重要含矿交代建造的研究.北京:科学技术出版社,1992
    [98] 赵一鸣.中国矽卡岩矿床.北京:地质出版社,1990,298~317
    [99] 赵一鸣,张轶男,毕承思.含金矽卡岩矿床产出构造环境和地质地球化学评价标志.地学前缘,1999,6(1):181~193
    [100] 翟裕生.按成矿系列思路找寻铜、金矿床.有色金属矿产与勘查,1994,3(3):1~1
    [101] 翟裕生.矽卡岩矿床.矿床学教学参考书(上册).北京:地质出版社,1985,124~135
    [102] 翟裕生,姚书振,林新多,等.长江中下游地区铁、铜等成矿规律研究.北京:地质出版社,1992,1~235
    [103] 翟裕生,姚书振,林新多,等.长江中下游地区铁、铜等成矿规律 研究.矿床地质,1992,11(1):1~12
    [104] 翟裕生,姚书振,林新多.长江中下游地区铁铜矿床的类型、形成条件和成矿演化.地球科学,1983,22(4):95~106
    [105] 《中国矿床》编委员会.《中国矿床》(上册).北京:地质出版社,1989,1~544
    [106] 周得科,张万平,芮夫臣,费诚.断裂破碎带对内生金矿的控制作用.湖北地质,1996,10(2):55~61
    [107] 周茂,蔡元吉.金在热液中的地球化学性质实验研究.火山地质与矿产,1998,19(3):224~235
    [108] 周珣若,任进.长江中下游中生代花岗岩.北京:地质出版社,1994,1~119
    [109] Beddoe-S tephens B, Shepherd T J, Bow les J F W, etal. Gold mineralization and Skarn Developm entnear Muara Sipongi, West Sumatra, Indonesia. Economic Geology, 1987, 82(7): 1732~1749
    [110] Berg Larsen R. Tungsten skarn mineralization in a regional metamorphic terrain in northern Norway: a posdible metamorphic ore deposit. Mineral Deposits, 1991, 26: 281~289
    [111] Burt D M. Sone phase equilibria in the system Ca-Fe-Si-C-O. Carnegje Inst Washington Yesr Book, 1971, 70: 178~184
    [112] Cameron D E, Germ oe W J. Geology of Skarn and high-grade gold in the Carr Fork mine, Utah. Eco-nomic Geology, 1987, 82(5): 1319~1333
    [113] Casto A, Patino Douce AE, Correge LG,, er al. Origin of peraluminous granites and granodiorites, Iberian massif, Spain: anexperimentsl test of granite petrogenesis[J]. Conteib minersl peteolo, 1999
    [114] Chang Yinfo, Liu Xiangpei, Wu Yanchang. The copper-ieon belt of the lower and middle reaches of the Changjiang River. Beijing: Gegl Publ House, 1991. 1~379
    [115] Einsudi M T, Burt D M, Introduction, terminolofy, classification and composition of skarn deposits. Econ Geol, 1982, 77(4): 745~754
    [116] Ettlinger A D, M einert L D, Ray G E. Gold Skarn Mineralization and F luid Evolution in the Nickel P late Deposit, British Columbria. Econom ic Geology, 1992, 87(6): 1541~1565
    [117] Ettlinger A D, Ray G E. Precious m e talenriched skarns in British Colum bia: an overview and geological study. Victoria, British Columbia, Canada, 1989
    [118] Faure G. Principles of isotope geolog. Jhon willy and Sons. 1986. 120~121
    [119] Goldfarb R J, Leach D L, Pickthron W J, et al. Oring of lode-gold deposits of the Juneau gold belt, southeastern Alaska. Geol., 1988, 16: 440~443
    [120] Groves D I, Goldfrab R J, Gebre-Mriam M, et al. Orogenic gold deposits, proposed classification in the context of their crustal distribution and relationship to the other gold deposit types. Ore Ged. Rev., 1998, 13: 7~27
    [121] Johson T W, Meinert L D. Au-Cu-Ag Skarn and Replacement M ineralization in the M cLaren Deposit, New World Ditsict, Park County, Montana. Economic Geology, 1994, 89(5): 969~993
    [122] Jiang N, Xu J H and Sun M X. Fluid inclusion characteristics of mesothermal gold deposits in the Xiaoqinglin district, Shanxi and Henan Province, People's Republic of China. Mineralium Deposit, 1999, 34: 150~162
    [123] Kerrich R and Fyfe W S. The gold-carbonate association: source of CO2 and CO_2 fixation reactions in Archean load deposits. Chem. Geol., 1981, 33: 265~294
    [124] Kerrich R. Archean gold: relation to granulite formation rt felsic intrusions? Geol., 1989, 17: 1011~1015
    [125] Lin S L, Yong Y Y, Gao D F. geological characteristics and ore contents in the cryptoexplosive breccias from eastern Xizang[J]. Sedimentary geology and Tethyan geology, 2003. 23(3): 49~53 (in Chinese with English abstract)
    [126] Mao J W, Li Y Q, Goldfarb R, et al Fluid inclusion and noble gas studies of the Dongping gold deposit, Hebei Province, China: A mantle connection for mineralization?. Econ. Ged., 2003b, 98(1): 517~534
    [127] Mason B. Handbook of ele mentsl abundances in meteorites. New York: Gordon & Breach, 1971
    [128] Meinert L D. G old Skarn Deposits-Geology and Exploration Criteria. Economic Geology, 1989, Monograph 6, 537~552
    [129] Meinert L D, Gold in skarn deposits pril im inary oveview. Procceding of the Seventh Quadrennial IAGOD Sumposium. E. Schwezetbsrtishe Verlagsbuchhandlung, stuttgat, 1988
    [130] Meinert L D. Origins of skarn: regional metamorphicsm and metasonateam, contact effects related to pluteons, and metamorphicsm of pre-existing ore deposits. IX IAGOD Symposium, Abstracts, 1994, 1: 313~314
    [131] Meinert L D. Skarns and skarn deposits. Geosci Can, 1992, 19(1): 145~162
    [132] Newbery R J. Tungsten-bearing skarns of the Sierra Nevada,l. The Pine Creek mine, California Econ Geol, 1982, 77(8): 823~844
    [133] Newton R C, Smith J V and windly B. Carbonic metamorphism, granulite and crustal growth. Nature, 1980, 288: 45~52
    [134] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25: 956~983
    [135] Petro W L, Vogel T A, Wilband J T. Major-element chemistry of Plutonic rock suites from compressional and extensionsl plate boundaries. Chem. Geol. 1979, 26: 217~235
    [136] Sillitoe R H. Loe-gradde gold potential of volcano plutonic arcs: Nevads Bur. Minea Geology Rept, 1983, 36: 62~68
    [137] Taylor P Hugh JR. The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition, Economic Geology, 1974, 69: 843~883

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700