换热器复杂流道中的强化传热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对三种不同结构的换热器进行了强化传热研究,分别是圆形翅片管换热器、矩形自支撑缩放管换热器和管壳式换热器。
     通过实验得到Re、纵向管间距(Sl)及管束排列方式对圆形翅片管换热器传热性能的影响数据,再利用数值模拟的方法分析这三个因素影响的原因。Re变化范围为4970~23620,Sl为66mm到130mm,而管束排列方式则为顺排和叉排。Nu及f均随Re的增加而增加,且增加趋势逐渐下降。增大管间距会提高顺排的传热性能,但是提高幅度随间距的增加而减小,在Sl=110mm时换热效果最好;而叉排则不同,增大间距反而会降低换热器的传热性能,叉排的换热效果在Sl=66mm时是最好的。相对于顺排,叉排的换热效果要更好。对于换热器传热性能的提高可以从场协同与回流区面积及尾流涡尺度三个方面的变化来进行分析,寻找换热器结构改善的途径。
     在新型换热器——矩形自支撑矩形缩放管换热器的基础上,利用三维数值模拟的方法对换热器插入不同的插入物后,其流道内流动及传热特性进行了研究,Re数的变化范围为27900~41900。四种不同插入物分别为:圆环、扭带、旋流片和折板,并将加入不同插入物后换热器的综合性能与无插入物时的性能做对比,得出的结论如下:与无插入物时相比,壳侧的传热系数在分别加入圆环、扭带、旋流片及折板后依次增加了16.69~24.32%,31.07~33.08%,28.32~33.13%,38.01~46.74%,传热性能的提升伴随着阻力的增加,四种情况下阻力分别增加了74.02~89.5%,69.32~77.42%,54.35~65.74和68.49~87.16%,在综合考虑传热性能与摩擦阻力两方面的因素后发现,加入插入物后换热器的综合传热性能由高到低依次为插入折板、插入扭带、插入旋流片、插入圆环,无插入物时的综合性能是最差的。通过研究发现,提升矩形自支撑换热器传热性能的关键在于提高换热器两侧区域的传热性能。利用场协同理论进行分析后发现,减小速度场与温度场之间的夹角有利于提高换热器的传热性能。
     在自支撑矩形缩放管换热器内插物研究的基础上,利用三维数值模拟的方法分别研究在缩放段长度比例保持不变的情况下,缩放节距及缩放肋高对换热器管程、壳程及整体综合传热性能的影响,并得出缩放管的优化尺寸。研究表明:对于换热器管程和壳程,缩放节距L越小,换热效果越好,阻力也越大,壳程在L=16.5mm时综合传热性能达到最佳,而管程则在L=9mm时综合传热性能最好;缩放肋高h越大,二者的换热效果越好,阻力也由于管子的粗糙程度增加而变大,此时综合传热性能管程在h=1.25mm时最好,壳程则在h=0.5mm时最好。引起这些变化的原因主要是由于随缩放节距与缩放肋高的增加,管程和壳程通道内的回流区不断增加,在回流区的增加造成阻力增加的同时,也改善了速度场与温度场的协同性,从而使二者的传热性能增强。最后将管程和壳程作为一个串联的整体进行综合考虑,得到整个换热器的综合传热性能在L=15mm,h=0.75mm时达到最佳,综合因子η=1.136-1.155(壳侧Re=27900-41900)。
     以空气为工质,对缩放管间插入旋流片的管壳式换热器进行了单因素结构优化,经过第一轮优化后,得出换热器最佳尺寸参数为:缩放管节距L=28mm,肋高h=1.5mm,缩放比例ratioy=4.6,旋流片扭率y=3.33,旋流角度w=180°,旋流片间距Lp=896mm。在第一轮的优化研究基础上,又进行了第二轮结构优化,经过两轮的优化,最终得出换热器的最佳结构参数为:缩放管节距L=28mm,肋高h=1mm,缩放比例ratioy=4.6,旋流片扭率y=3.33,旋流角度w=180°,旋流片间距Lp=896mm。
Research on heat transfer enhancement of three different kinds of heat exchangers waspresented in this paper. They were annular-finned tube heat exchanger, self-supportedrectangle converging-diverging tube bundle heat exchanger, and shell and tube heat exchangerwith regularly spaced twisted tape inserted in shell side, respectively.
     Experiments were performed for turbulent heat transfer and fluid flow characteristics ofannular-finned tube heat exchanger. The effects of three factors were examined: Re number,longitudinal tube spacing (Sl) and tube arrangements. Then3-D numerical simulations wereperformed to analyze the experimental results. The Reynolds number varied from4970to23620, and Slvaried from66mm to130mm. The tube arrangements were inline arrangementand staggered arrangement. It was found that Nusselt number and friction factor increasedwith the increase of Re for both inline and staggered arrangement, and the increasing trenddecreased. For inline arrangement, the heat transfer performance became better with theincrease of Sl, and it was the best when Slis110mm. However, it became worse with theincrease of Slfor staggered arrangement, and it was best when Slis66mm. Compared withinline arrangement, the heat transfer performance of staggered array was better. It was foundthat the effects of the three factors on the heat transfer performance of the annular-finned tubebanks can be well described by the field synergy principle, the area of recirculation region andthe wake vortex scale, i.e., the enhancement or deterioration of the heat transfer performancewas inherently related to the variations of the intersection angle between the velocity and thefluid temperature gradient, the area of recirculation region and the wake vortex scale.
     Based on the new heat exchangers, self-support of rectangle converging-diverging(SS-RCD) tube bundle heat exchangers, three-dimensional numerical investigation wasperformed for turbulent heat transfer and fluid flow characteristics of the heat exchangers withdifferent inserts. The Reynolds numbers varied from27900to41900. The baselineconfiguration (without insert) was compared with four enhanced configurations (with inserts):Torus case, regularly spaced twisted-tape elements (RSTT) case, twisted tape (TT) case, andbaffle plate (BP) case. The inserts leaded to the variation of velocity distribution anduniformity of temperature. Compared with the baseline case, the air-side heat transfercoefficient of the four enhanced cases improved by16.69~24.32%,31.07~33.08%,28.32~33.13%, and38.01~46.74%, with an associated pressure drop penalty increase of74.02~89.5%,69.32~77.42%,54.35~65.74, and68.49~87.16%, respectively. The overallperformance was conducted by thermal enhancement factor. It is found that the BP case obtained the best overall performance, followed by TT case, RSTT case and Torus case, thebaseline case was the worst. The results indicated that the key point of enhancing heat transferof shell side is to improve the heat transfer performance on converging-diverging tube. Thenumerical results were analyzed from the view point of field synergy principle. It was foundthat the reduction in the average intersection angle between the velocity vector and thetemperature gradient was one of the essential factors influencing heat transfer performance.
     Based on the above research,3-D numerical simulations were performed to get theoptimal structure of converging-diverging tube. The rib length (L) and height (h) wereexamined while retaining converging length ratio. The effects on heat transfer performance oftube side, shell side and whole heat exchanger were studied. The numerical results indicatedthat the smaller rib length and the larger rib height, the better the performance of heat transferand the greater the flow resistance for both shell side and tube side. Performance EvaluationCriteria (η) was adopted to evaluate the overall heat transfer performance. When L=16.5mm,η was the largest for shell side, while when L=9mm it was the largest for tube side. The riblength remained15mm was unchanged, the effect of rib height was examined. The overallheat transfer performance was best when h=0.5mm for shell side, while when h=1.25mmfor tube side it was the best. The reason is that the recirculation region increased withincreasing of rib length and height for both shell side and tube side. With the increasing ofrecirculation region, the friction in the channel increased. However, the recirculation regionreduced the average intersection angle between the velocity vector and the temperaturegradient, which was one of the essential factors influencing heat transfer performance. ThePerformance Evaluation Criteria of the total heat exchanger when the rib length was15mmand the rib height was0.75mm was η=1.136-1.155against the Reynolds number of shellside in the range of27900-41900as compared with the smooth tube bundle heat exchanger.
     Optimization structure research of shell and tube heat exchanger with regularly spacedtwisted tape in shell side was performed. The working fluid was air, and the tube wasconverging-diverging tube. Single-factor method was adopted in this optimization process.Two rounds of numerical simulations were performed to find the best structure parameters ofthe heat exchanger. After the initial round of research, the optimization structure parameterswas L=28mm, h=1.5mm, ratio=4.6, y=3.33, and w=180°. Then, the second round of researchwas performed. After above research, the optimization structure parameters can bedetermined. The parameters were L=28mm, h=1mm, ratio=4.6, y=3.33, and w=180°.
引文
[1] Bergles A E. ExHFT for fourth generation heat transfer technology. ExperimentalThermal and Fluid Science [J].2002,26(2-4):335-344
    [2] Bergles A E. The implications and challenges of enhanced heat transfer for the chemicalprocess industries [J]. Transactions of the Institution of Chemical Engineers,2001,79(A4):437-444
    [3]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359
    [4]宣能啸.我国能效问题分析[J].中国能源,2004,26(9):4-8
    [5]第十届全国人民代表大会第四次会议.《中华人民共和国国民经济和社会发展第十一个五年规划纲要》[EB/OL].http://www.gov.cn/gongbao/content/2006/content_268766.htm,2006
    [6]第十一届全国人民代表大会第四次会议.《中华人民共和国国民经济和社会发展第十二个五年规划纲要》[EB/OL]. http://www.gov.cn/2011lh/content_1825838.htm,2011
    [7]中华人民共和国国务院新闻办公室.《中国的能源政策(2012)》白皮书[EB/OL].http://www.scio.gov.cn/zfbps/ndhf/2012/201210/t1233790.htm,2012
    [8]史美中,王中铮.热交换器原理与设计[M],南京:东南大学出版社,1996
    [9]崔海亭,彭培英.强化传热新技术及其应用[M].北京:化学工业出版社,2006:1-2
    [10] Liu S., Sakr M.. A comprehensive review on passive heat transfer enhancements in pipeexchangers [J]. Renewable and Sustainable Energy Reviews,2013,19:64–81
    [11] Elshafei EAM, Safwat Mohamed M., Mansour H., et al. Experimental study of heattransfer in pulsating turbulent flow in a pipe [J]. International Journal of Heat and FluidFlow,2008,29:1029-1038
    [12] Liebenberg L., Meyer JP. In-tube passive heat transfer enhancement in the processindustry [J]. Applied Thermal Engineering,2007,27:2713-2726
    [13] Alamgholilou A., Esmaeilzadeh E. Experimental investigation on hydrodynamics andheat transfer of fluid flow into channel for cooling of rectangular rids by passive andEHD active enhancement methods [J]. Experimental Thermal and Fluid Science,2012,38:61-73
    [14]赵国辉,隋军.管壳式换热器技术进展[J].化学工业与工程技术,2000,21(4):12-14
    [15]马晓驰.国内外新型高效换热器[J].化工进展,2001(1):49-51
    [16]陈颖,邓先和,丁小江.缩放管内湍流对流换热(Ⅱ)—结构优化[J].化工学报,2004,55(11):1764-1767
    [17]张亚君,欧阳荣,邓先和,等.强化传热管内的自然对流沸腾换热[J].华南理工大学学报(自然科学版),2004,32(1):41-43
    [18]靳遵龙,董其伍,刘敏珊,等.缩放管流体流动与传热性能数值研究[J].冶金能源,2009,28(13):12-14
    [19]靳遵龙,董其伍,刘敏珊,等.缩放管结构优化数值研究[J].郑州大学学报(工学版),2010,31(4):105-107
    [20]汪卫东,赵景波.空心环缩放管式换热器在金隆铜业公司的应用[J].硫酸工业,2002(2):40-42
    [21] Kalinin E. K., Dreytser G. A., Zakirov S. G., et al. Improvement of heat transfer intubular heat transfer exchangers by the use of grooved tubes [J]. Heat Transfer-SovietResearch,1981,13(4):30-40)
    [22]邓先和,邓颂九.管间支撑物的结构对横纹槽管管束传热强化性能的影响[J].化工学报,1992,43(1):62-68
    [23]罗运禄,崔乃瑛,张秀云,等.横纹槽管束在不同支承结构下的传热及流阻性能试验[J].化工学报,1992,43(6):770-773
    [24]徐志明,杨善让,甘云华.横纹管污垢性能的实验研究[J].中国电机工程学报,2005,25(5):59-163
    [25]洪宇翔.粗糙管带插入物复合强化传热技术的实验与数值研究[D].广州:华南理工大学,2012
    [26]邱广涛,丰艳春.波纹管式换热器(一)——起源、现状与发展[J].管道技术与设备,1998(1):43-45
    [27]王泓伟,张志英.波纹管式换热器的特性研究[J].氮肥设计,1994,32(6):47-49
    [28]黄述文,洪广昌,郭建中,等.波纹管技术在换热器上的应用[J].中氮肥,2001(1):62-63
    [29]王世平,林培森,詹亚韶,等.花瓣形翅片传热管[P].中国:ZL93204279.1,1993
    [30]张正国,王世平,林培森.花瓣形翅片管的强化传热研究概况[J].石油化工设备,1997,6(4):11-14
    [31]张正国,群培森,王世平.花瓣形翅片管的开发及其纵向冲刷冷凝强化传热的研究[J].石油化工设备,1996,25(3):3-6
    [32]熊剑.不同制冷工质在螺旋槽花瓣形翅片管管外的冷凝传热强化研究[D].广州:华南理工大学,2010
    [33]赵晓曦,邓先和,陆恩锡.菱形翅片管的强化传热特性[J].化工科技,2002,10(5):1-3
    [34]赵晓曦,邓先和,陆恩锡.空心环支承菱形翅片管油冷凝器传热性能[J].石油化工设备,2003,32(1):1-3
    [35]赵晓曦,邓先和,陆恩锡.螺旋折流板菱形翅片管换热器的传热与流阻性能[J].化工学报,2003,54(3):388-391
    [36] Chu P., He Y. L., Tao W. Q.. Three-dimensional numerical study of flow and heattransfer enhancement using vortex generators in fin-and-tube heat exchangers [J].Journal of Heat Transfer-Transfer of the ASME,2009,131(9):0919003(9pages)
    [37] Tian Liting, He Yaling, Chu Pan, et al. Numerical study of flow and heat transferenhancement by using delta winglets in a triangular wavy fin-and-tube heat exchanger[J]. Journal of Heat Transfer-Transfer of the ASME,2009,131(9):091901(8pages)
    [38]苟秋平,吴学红,吕彦力,等.复合翅片传热与流动特性的数值模拟[J].热科学与技术,2011,10(4):317-323
    [39] Joardar A., Jacobi A. M.. A numerical study of flow and heat transfer enhancementusing an array of delta-winglet vortex generators in a fin-and-tube heat exchanger [J].Journal of Heat Transfer-Transfer of the ASME,2007,129(9):1156-1167
    [40]洪蒙纳.缩放管内带衰减性自旋流的复合强化传热研究[D].广州:华南理工大学,2008
    [41]周水洪.衰减性自旋流强化传热的机理分析及优化[D].广州:华南理工大学,2007
    [42]张琳,尤一匡,钱红卫,等.换热器自转螺旋扭带自动阻垢技术应用研究[J].化学工程,2006,34(3):16-19
    [43]廖强,辛明道.三维内肋管内插人螺旋扭带的强化传热实验[J].工程热物理学报,1994,15(2):200-204
    [44]张琳,钱红卫,俞秀民,等.自转螺旋扭带管内湍流特性研究[J].高校化学工程学报,2005,19(1):17-21
    [45]林清宇,林靖宇,林榕端,等.管内自旋扭带转速的研究[J].中国机械工程,2007,18(16):1970-1973
    [46] Ashis K. Mazumder, Sujoy K. Saha. Enhancement of thermohydraulic performance ofturbulent flow in rectangular and square ribbed ducts with twisted-tape inserts [J].Journal of Heat Transfer-Transfer of the ASME,2008,130(8):081702(10pages)
    [47] Masoud Rahimia, Sayed Reza Shabaniana, Ammar Abdulaziz Alsairafib. Experimentaland CFD studies on heat transfer and friction factor characteristics of a tube equippedwith modified twisted tape inserts [J]. Chemical Engineering and Processing: ProcessIntensification,2009,48(3):762-770
    [48] Smith Eiamsa-ard, Pongjet Promvonge. Thermal characteristics in round fitted withserrated twisted tape [J]. Applied Thermal Engineering,2010,30(13):1673-1682
    [49] Khwanchit Wongcharee, Smith Eiamsa-ard. Heat transfer enhancement by twisted tapeswith alternate-axes and triangular rectangular and trapezoidal wings [J]. ChemicalEngineering and Processing: Process Intensification,2011,50(2):211-219
    [50]周水洪,邓先和,王杨君,等.旋流片强化换热器壳程传热的数值模拟与实验[J].华南理工大学(自然科学版),2007,35(4):77-81
    [51]周水洪,邓先和,何兆红,等.旋流片强化传热的数值模拟和场协同分析[J].化工学报,2007,58(10):2438-2443
    [52] Sivashanmugam P., Suresh S. Experimental studies on heat transfer and friction factorcharacteristics of laminar flow through a circular tube fitted with helical screw-tapeinserts [J]. Applied Thermal Engineering,2006;26(16):1990–1997
    [53] Sivashanmugam P., Nagarajan P. K. Studies on heat transfer and friction factorcharacteristics of laminar flow through a circular tube fitted with right and left helicalscrew-tape inserts [J]. Experimental Thermal and Fluid Science,2007,32(1):192–197
    [54] Ibrahim E.Z.. Augmentation of laminar flow and heat transfer in flat tubes by means ofhelical screw-tape inserts [J]. Energy Conversion and Management,2011,52(1):250-257
    [55]王锁芳,高胜勇.低Re数管内强化对流传热实验研究[J].南京航空航天大学学报,1996,28(1):137-140
    [56] García A., Vicente P. G., Viedma A. Experimental study of heat transfer enhancementwith wire coil inserts in laminar-transition-turbulent regimes at different Prandtlnumbers [J]. International Journal of Heat and Mass Transfer,2005,48(21-22):4640-4651
    [57] García A., Solan J. P., Vicente P. G., et al. The influence of artificial roughness shape onheat transfer enhancement: Corrugated tubes, dimpled tubes and wire coils [J]. AppliedThermal Engineering,2012,35:196-201
    [58] Promvonge P. Thermal performance in circular tube fitted with coiled square wires [J].Energy Conversion and Management,2008,49(5):980–987
    [59] Promvonge P. Thermal augmentation in circular tube with twisted tape and wire coilturbulators [J]. Energy Conversion and Management,2008,49(11):2949–2955
    [60] Eiamsa-ard S., Nivesrangsan P., Chokphoemphun S., et al. Influence of combinednon-uniform wire coil and twisted tape inserts on thermal performance characteristics[J]. International Communications in Heat and Mass Transfer,2010,37(7):850–856
    [61] Gunes S., Ozceyhan V., Buyukalaca O. Heat transfer enhancement in a tube withequilateral triangle cross sectioned coiled wire inserts [J]. Experimental Thermal andFluid Science,2010,34(6):684–691
    [62] Shabanian S. R., Rahimi M., Shahhosseini M., et al. CFD and experimental studies onheat transfer enhancement in an air cooler equipped with different tube inserts [J].International Communications in Heat and Mass Transfer,2011,38(3):383–390
    [63] Promvonge P., Eiamsa-ard S. Heat transfer enhancement in a tube with combinedconical-nozzle inserts and swirl generator [J]. Energy Conversion and Management,2006,47(18-19):2867–2882
    [64] Promvonge P., Eiamsa-ard S. Heat transfer in a circular tube fitted with free-spacingsnail entry and conical-nozzle turbulators [J]. International Communications in Heatand Mass Transfer,2007,34(7):838–848
    [65] Promvonge P. Heat transfer behaviors in round tube with conical ring inserts [J]. EnergyConversion and Management,2008,49(1),8–15.
    [66] Promvonge P,, Eiamsa-ard S. Heat transfer behaviors in a tube with combinedconical-ring and twisted-tape insert [J]. International Communications in Heat and MassTransfer,2007,34(7):849–859
    [67]杨军,陈保东,孙成家.螺旋与弓形折流板换热器性能对比及螺旋角优化[J].辽宁石油化工大学学报,2005,25(2):59-62
    [68]王晨,桑芝富.单螺旋和双螺旋折流板换热器性能的研究[J].高校化学工程学报,2007,21(6):929-935
    [69]谢洪虎,江楠.连续形螺旋折流板管壳式换热器强化传热机理的数值模拟[J].石油化工设备,2009,38:6-11
    [70]邓先和,邓颂九.管壳式换热器管间支承物[P].中国,8921835.3,1990
    [71]邓先和,张亚军,潘朝群,等.旋流网板支承管束的管南式换热器及其强化传热方法[P].中国, ZL200410051657.7,2005
    [72]邓先和,洪蒙纳,周水洪,等.带间隔分置旋流片的复合强化传热管[P].中国,ZL200610035832.2,2006
    [73]王杨君.管壳式换热器中自旋流的复合强化传热研究[D].广州:华南理工大学,2005
    [74]邓先和,何兆红,李自卫.采用自支撑的矩形缩放管管束换热器及其强化传热方法[P].中国:200910215974,2012
    [75]何兆红.矩形管束换热器的传热与流阻研究[D].广州:华南理工大学,2010
    [76]邓先和,蒋夫花.换热器壳程流路分析及折流与逆流的换热偏差[J].华南理工大学(自然科学版),2010,38(8):12-16
    [77]蒋夫花,邓先和.壳程多通道管壳式换热器中并列分置管束长宽比与深度换热[J].中南大学学报(自然科学版),2011,42(11):3564-3571
    [78]邓先和,蒋夫花.换热器在大型化发展中的深度换热问题讨论[J].2009(6):1-5
    [79]顾维藻,神家锐,马重芳,等.强化传热[M].北京:科学出版社,1990
    [80] Kays W. M., London A. L.紧凑式热交换器[M].宣益民,张后雷译.北京:科学出版社,1997
    [81] Webb R. L., Scott M. J. A parametric analysis of the performance of internally finnedtubes for heat exchanger application [J]. Journal of Heat transfer,1980,102(1):38-43
    [82] Webb R. L. Performance Evaluation Criteria for Use of Enhanced Heat TransferSurfaces in Heat Exchanger Design [J]. International Journal of Heat and MassTransfer,1981,24(4):715-726
    [83] Webb R. L., Eckert E. R. G. Application of rough surfaces to heat exchanger design [J].International Journal of Heat and Mass Transfer,1972,15(9):1647-1658
    [84] Bergles A. E., Bunn R. L., Junkhan G. H. Extended performance evaluation criteria forenhanced heat transfer surfaces [J]. Letters heat mass transfer,1974,1:113-120
    [85] Ventsislav D. Zimparov, Nikolai L. Vulchanov. Performance evaluation criteria forenhanced heat transfer surfaces [J]. International Journal of Heat and Mass Transfer,1994,37(12):1807-1816
    [86] Guo Z.Y., Li D. Y. Wang B. X.. A novel concept for convective heat transferenhancement [J]. International Journal of Heat and Mass Transfer,1998,41(14):2221-2225
    [87]过增元.对流换热的物理机制及控制:速度场与热流场的协同[J].科学通报,2000,45(19):2118-2112
    [88] Guo Z. Y., Wang S. Novel concept and approaches of heat transfer enhancement [A].Cheng P. Proceeding of Symposium on Energy and Engineering [C]. New York: BegelHouse,2000:118-123
    [89] Guo Z. Y. Mechanism and control of convective heat transfer-Coordination of velocityand heat flow fields [J]. Chinese Science Bulletin,2001,46(7):596-599
    [90] Tao W. Q., Guo Z. Y., Wang B. X. Field synergy principle for enhancing convective heattransfer-its extension and numerical verification [J]. International Journal of Heat andMass Transfer,2002,45(18):3849-3856
    [91] Tao W. Q., He Y. L., Wang Q. W., et al. A unified analysis on enhancing single phaseconvective heat transfer with field synergy principle [J]. International Journal of Heatand Mass Transfer,2002,45(24):4871-4879
    [92] Guo Z. Y., Tao W. Q., Shah R. K. The field synergy (coordination) principle and itsapplications in enhancing single phase convective heat transfer [J]. International Journalof Heat and Mass Transfer,2005,48(9):1797-1807
    [93] Tao W. Q., He Y. L., Wang Q. W., et al. A unified analysis on enhancing single phaseconvective heat transfer with field synergy principle [J]. International Journal of Heatand Mass Transfer,2002,45(24):4871-4879
    [94]孟继安.基于场协同理论的纵向涡强化换热技术及其应用[D].北京:清华大学,2003
    [95]孟继安,陈泽敬,李志信,等.管内对流换热的场协同分析及换热器强化[J].工程热物理学报,2003,24(4):652-654
    [96]孟继安,陈泽敬,李志信,等.交叉缩放椭圆管换热与流阻实验研究及分析[J].工程热物理学报,2004,25(5):813-815
    [97]苏欣,程新广,孟继安,等.层流场协同方程的验证及其性质[J].工程热物理学报,2005,26(2):289-291
    [98]陈颖,邓先和,丁小江.缩放管内湍流对流换热(Ⅰ)—场协同控制机理[J].化工学报,2004,55(11):1759-1763
    [99] Zhao T. S., Song Y. J. Forced convection in a porous medium heated by a permeablewall perpendicular to flow direction: analyses and measurements [J]. InternationalJournal of Heat and Mass Transfer,2001,44(5):1031-1037
    [100] Wang S., Guo Z. Y., Li Z. X. Heat transfer enhancement by using metallic filamentinsert in channel flow [J]. International Journal of Heat and Mass Transfer,2001,44(7):1373-1378
    [101] Allen P. H. G., Karayiannis T. G. Electro hydrodynamic enhancement of heat transferand fluid flow [J]. Heat Recovery System and CHP,1995,15(5):389-423
    [102] Pascual C. C., Stromberger J. H., Jeter S. M., et al. An empirical correlation for electrohydrodynamic enhancement of natural convection [J]. International Journal of Heat andMass Transfer,2000,43(11):1965-1974
    [103] Kalman H., Sher E. Enhancement of heat transfer by means of a corona wind created bya wire electrode and confined wings assembly [J]. Applied Thermal Engineering,2001,21(3):265-282
    [104] Wakayama N. I. Behavior of gas flow under gradient magnetic fields [J]. Journal ofApplied Physics,1991,69(4):2734-2736
    [105] Yang L. J., Ren J. X., Song Y. Z., et al. Free convection of a gas induced by a magneticquadrupole field [J]. Journal of Magnetism and Magnetic Materials,2003,261(3):377-384
    [106] Yang L. J., Ren J. X., Song Y. Z., et al. Convection heat transfer enhancement of air in arectangular duct by application of a magnetic quadrupole field [J]. International Journalof Engineering Science,2004,42(5-6):491-507
    [107]过增元,黄素逸.场协同原理与强化传热新技术[M].北京:中国电力出版社,2004:51-53
    [108]陶文铨,何雅玲.场协同原理在强化传热与脉管制冷机性能改进中的应用(上)[J].西安交通大学学报,2002,36(11):1101-1105
    [109]陶文铨,何雅玲.场协同原理在强化传热与脉管制冷机性能改进中的应用(下)[J].西安交通大学学报,2002,36(11):1106-1110
    [110]吴明,何雅玲,陶文铨,等.场协同理论在脉管制冷机研究中的推广[J].工程热物理学报,2002,23(4):488-490
    [111]吴明,何雅玲,陶文铨,等.最佳脉管长径比优化设计的理论分析及数值模拟[J].西安交通大学学报,2002,36(2):230-232
    [112]郭平生,华贲,韦绍波.温度场与电场在奇异热电效应中的协同[J].华南理工大学学报(自然科学版),2002,30(4):7-10
    [113]郭平生,华贲,李忠.超声波场强化解吸的机理分析[J].高校化学工程学报,2002,16(6):614-620
    [114]郭平生,韩光泽,张妮,等.超声波场强化解吸速率的机理及场协同分析[J].高校化学工程学报,2002,20(2):300-305
    [115] Hua B., Guo P. S. The study of field synergy theory in transfer processes [A]. ImayishiN., ed., Proceedings of2001IAMS International Seminar on Meterial for Use inLithium Batteries and Transport Phenomena in Materials Processing [C], Kasuga,Kyushu Unversity,2001:107-115
    [116] Mi Sandar Mon, Ulrich Gross. Numerical study of fin-spacing effects in annular-finnedtube heat exchangers [J]. Int. J. Heat Mass Transfer,2004,47:1953-1964.
    [117] Chen Han-Taw, Hsu Wei-Lun. Estimation of heat transfer coefficient on the fin ofannular-finned tube heat exchangers in natural convection for various fin spacings [J].Int. J. Heat Mass Transfer,2007,50(9-10):1750–1761.
    [118] Cihat Arslanturk, Simple correlation equations for optimum design of annular fins withuniform thickness [J]. Appl. Therm. Eng.,2005,25(14-15):2463-2468
    [119] Lai Chi-Yuan, Kou Hong-Sen, Lee Ji-Jen. Optimum thermal analysis of annular fin heatsink by adjusting outer radius and fin number [J]. Appl. Therm. Eng.,2006,26:927–936
    [120] Paisarn Naphon, Study on the heat transfer characteristics of the annular fin underdry-surface, partially wet-surface, and fully wet-surface conditions [J], Int. Comm. HeatMass Transfer2006,33(1):112-121.
    [121] Peng Huan-Sen, Chen Chieh-Li, Hybrid differential transformation and finite differencemethod to annular fin with temperature dependent thermal conductivity, Int. J. HeatMass Transfer2011,54(11-12):2427-2433.
    [122]夏清,陈常贵.化工原理(上册),天津大学出版社,2005:256-258
    [123] Moffat R.J.. Using uncertainty analysis in the planning of an experiment [J]. Journal ofFluids Engineering,1985,107(20):173-178.
    [124]尾花英朗.热交换器设计手册[M],石油工业出版社,1982:690-691.
    [125]王杨君,邓先和,洪蒙纳,等.缩放管内间隔插入旋流片的复合强化传热[J].化工学报,2006,57(11):2554-2561.
    [126] Chu P., He Y.L., Tao W.Q., Three-dimensional numerical study of flow and heat transferenhancement using vortex generators in Fin-and-Tub heat exchangers [J]. ASME J.Heat Transfer,2009,131:1-9.
    [127] He Y.L., Tao W.Q., Song T.Q., et al. Three-dimensional numerical study of heat transfercharacteristics of plain plate fin-an-tube heat exchangers from view point of fieldsynergy principle [J]. Int. J. Heat Fluid Flow,2005,26:459-473.
    [128]董其伍.换热器[M].北京,化学工业出版社,2008:5-9
    [129] Zhang guanmin. Research on heat transfer enhancement mechanism and heat transfercharacteristic of compound corrugation plate heat exchanger [D]. Jinan: ShandongUniversity,2006.
    [130]邓先和,何兆红,周亮.采用旋流片支撑的矩形管束换热器及强化传热方法[P]:China, ZL200710029118.2009-06-10.
    [131]陶文铨,数值传热学[M],西安交通大学出版社,2001,370-376
    [132] Smith Eiamsa-ard, Pongjet Promvonge. Numerical study on heat transfer of turbulentchannel flow over periodic grooves [J]. International Communications in Heat andMass Transfer,2008,35:844-852.
    [133] Rahimi M., Shabanian S.R., Alsairafi A.A.. Experimental, CFD studies on heat transferand friction factor characteristics of a tube equipped with modified twisted tape inserts[J]. Chemical Engineering Processing,2009,48(3):762-770.
    [134] Ashis K. Mazumder, Sujoy K. Saha. Enhancement of thermohydraulic performance ofturbulent flow in rectangular and square ribbed ducts with twisted-tape inserts [J].Journal of Heat Transfer,2008,130:081702-1-081702-10.
    [135]王杨君,邓先和,洪蒙纳,李志武.管内周期性自旋流强化传热的结构优化[J].化工学报,2006,57(11):2554-2561.
    [136] Shabanian S.R., Rahimi M., Shahhosseini M., A.A. Alsairafi. CFD and experimentalstudies on heat transfer enhancement in an air cooler equipped with different tubeinserts [J]. International Communications in Heat and Transfer,2011,38:383-390.
    [137] Smith Eiamsa-ard, Pongjet Promvonge. Thermal charact-eristics in round tube fittedwith serrated twisted tape [J]. Applied Thermal Engineering.2010,30:1673-1682.
    [138] Khwanchit Wongcharee, Smith Eiamsa-ard. Heat transfer enhancement by twisted tapeswith alternate-axes and triangular, rectangular and trapezoidal wings [J]. ChemicalEngineering and Processing: Process Intensification.2011,50:211-219.
    [139] Incropera F.P., Witt P.D., Bergman T.L., A.S. Lavine, Fundamentals of heat and masstransfer [M]. New York: John-Wiley&Sons,2006:151-153.
    [140]黄维军.气侧传热界面粗糙肋形的结构优化研究[D],广州,2006
    [141] Incropera F.P., Witt P.D., Bergman T.L., A.S. Lavine, Fundamentals of heat and masstransfer [M]. New York: John-Wiley&Sons,2006:151-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700