基于PWM有源逆变器的内反馈串级调速系统的仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力电子技术和计算机控制技术的发展,串级调速技术重新受到人们的关注,近年来发展起来的内反馈斩波串级调速技术以其调速性能好、控制精度高等特点受到人们的亲睐,尤其是在高压大容量电动机调速方面,展现出良好的节能前景。
     目前,内反馈斩波串级调速技术普遍采用可控硅晶闸管逆变器进行电能的反馈,虽然采用斩波控制技术较大地提高了系统功率因数,但依然存在晶闸管换流引起网侧电流波形畸变、低速时功率因数降低及逆变颠覆等的不足。
     针对以上不足,文中提出采用三相电压型PWM逆变器代替传统晶闸管相控逆变器,利用三相电压型PWM逆变器功率因数和直流侧电压可控的优点,从结构上打破了传统可控硅串级调速技术因电路结构限制而不能进一步提高系统功率因数的局限性。
     本论文首先从研究基于晶闸管逆变器的内反馈斩波串级调速技术入手,分析了内反馈调速电动机电磁关系,为建立内反馈电动机仿真模型提供理论依据;通过对内反馈斩波串级调速系统直流回路的分析,揭示了斩波串级调速系统的工作原理及其节能原理,并对内反馈斩波串级调速系统的谐波和功率因数进行分析,给出提高系统功率因数和减小系统谐波“污染”的可行方案,即采用三相PWM逆变技术,在保持原有斩波串级调速技术优点的基础上,结合三相电压型PWM逆变器的控制特点,通过提高逆变器功率因数来提高整个系统的总功率因数,并通过控制逆变器交流侧电流的波形,减小系统谐波“污染”。
     由于目前PWM逆变器在串级调速系统中的应用较少,甚至仍停留在理论研究阶段,因此本文建立了基于三相电压型PWM逆变器的内反馈串级调速系统的仿真模型,通过仿真实验,进一步验证了PWM逆变器在串级调速系统中应用的可行性,这为PWM逆变器在工程上的应用研究提供了便利;文中还针对串级调速系统功率因数随转速下降而降低的不足提出了可行的解决方案,即通过控制PWM逆变器的无功电流,使逆变器产生容性无功功率,补偿因转子整流而产生的感性无功,使系统在低速时也能保持较高的功率因数。通过仿真研究,系统地分析了基于三相电压型PWM逆变器的内反馈串级调速系统的特性以及在运行中可能出现的问题,这为三相电压型PWM逆变器在工程上应用提供了较为可靠的理论依据。
With the development of power electronics technology and computer control technology, the cascade speed regulation slip power recovery technology of 3 phase motor renewed attention, in recent years, chopper circuit used in cascade speed regulation technology of inner-feedback motor with its good performance and high precision control shows good prospects for energy conservation in the high voltage & large power motor.
     At present, the chopper cascade speed regulation technology of inner-feedback motor adopts commonly SCR thyristor inverter to feedback the slip power of the motor to grid, although the use of chopper control technology has greatly improved the power factor, there are still many disadvantages:the voltage waveform of grid is distort, the power factor is reduced in lower speed and the inverter subversion can be happened some cases because the use of thyristor inverter.
     For lack of above, in this paper, using three-phase voltage-type PWM inverter instead of the traditional thyristor inverter, with it't advantages:Three-phase voltage-type PWM inverter power factor and the Controlled DC current, from the structure, it breaks the limitations of traditional SCR cascade control technology can not be further enhanced the system power factor as the circuit limit
     in this paper, the cascade speed control technology of inner-feedback motor based on thyristor inverter has been researched, and the electromagnetic relations within the inner-feedback motor has been analysed, which provide a theoretical basis for the establishment of simulation models of the inner-feedback motor; By analyzing the direct current loop of the chopping cascade control system of the inner-feedback motor, the principle of the chopping cascade control system has been revealed. The power factor and the system harmonics have been analyzed, and the way of improving power factor and reducing harmonics has been given. The three-phase PWM inverter technology has been used in the cascade control system, and the new system maintain all the merits of the original chopping cascade control system, and combinating the characteristics of the three-phase PWM inverter, the power factor of the cascade speed control system will be improved by increasing the inverter power factor, and the harmonics pollution will be reduced by controlling the inverter AC side current waveforms.
     As there are less the PWM inverter applied in the cascade control system, and it even still at the stage of theoretical research. So, in this paper the simulation model of the cascade speed control system of inner-feedback motor based on the three-phase voltage-type PWM inverter is rebuild and it has been proved accurate by the theoretical analysis and simulation results, which provide the convenients for the PWM inverter applications in engineering; because the power factor of the cascade speed control system decreases with the speed dropped, the feasible solution had been designed by controlling the PWM inverter reactive current to produce capacitive reactive current compensation for speed device by inductive power, so the system can maintain high power factor in a low speed. The characterisics and the potential proplems in peration has analyzed by the simulation experiments systematically, which provide a more reliable theorical basis for the engineering application.
引文
[1]金哲,节能技术与节电工程[M].中国电力出版社,1999.7
    [2]马小亮,王春杰.大功率风机和泵的调速传动[J].自动化博览,2003,20(5):1~4
    [3]王纪春.变级调速及其节能作用[J].电工技术,1990.4:3~6
    [4]王纪春.电磁转差离合器调速及其节能应用[J].电工技术,1992.9:26~29
    [5]范维浩.高压变频器与液力耦合器调速的比较[J].变频器世界,2004.10:64~67
    [6]卞国成.高压变频器与液力耦合器调速性能分析[J].现代冶金,2009.4,37(2):53~5
    [7]丁兆国,李凯.变频器调速与液力耦合器调速的优缺点比较[J].变频器世界,2005.12:132~138
    [8]杜俊明.风机、泵类负载液力耦合器调速与变频调速节能的对比[J].自动化信息,2008.8:33~34
    [9]许经鸾.电机学[M].徐州:中国矿业大学出版社,1997:88~120
    [10]姚舜才.,赵耀霞.电机学与电力拖动技术[M].北京:国防工业出版社,2009.9:25~78
    [11]陈伯时.电力拖动自动控制系统(第二版)[M].北京:机械工业出版社,1999
    [12]孙旭东,王善铭.电机学[M].北京:清华大学出版社,2006.9:207~237
    [13]江友华.高压大功率异步电动机驱动风机、泵类负载调速技术的研究[D].上海大学,2006.2:1~10
    [14]江明,王伟.变频调速技术的发展概况及趋势[J].安徽机电学院学报,2002.12,17(4):73~77
    [15]张承慧,程金,夏东伟,崔纳新.变频调速技术的发展及其在电力系统中的应用[J].热能动力工程,2003.9,18.5:439~444
    [16]王世荣.变频调速技术的发展及应用[J].四川电力技术,2001.2:53~55
    [17]徐宇罡.2000kW风机串级调速改造方案[J].机械制造与自动化,2003.12
    [18]顾祥和,胡宏林.内反馈串级调速控制系统在锅炉风机上的应用[J].江苏电机工程,2007.3,26(2):75~77
    [19]尚德彬,刘华伟,刘桂兰,赵红艳.SEC高频斩波串级调速技术的应用及发展趋势[J].电气开关,2007.6:50~53
    [20]张杰,任曼华.串级调速系统在水泵上的应用及经济效益分析[J].节能技术,1997.6:33~34
    [21]马士英.高频斩波串级调速系统在水泥厂的应用[J].新世纪水泥导报,2007.1:40~42
    [22]何守光,邓志发.内反馈串级调速技术在电厂的应用[J].中国电力,2001.9,34(9):20~22
    [23]沈均洪.内反馈串级调速系统在热电厂锅炉风机上的应用[J].节能,2004.11:41~42
    [24]谢军,孙忠献,温晓玲.IGCT在矿井提升机斩波串级调速系统中的应用[J].煤矿机电,2007,2:73~74
    [25]陈庆协.次同步串级调速系统的功率因数[J].电气传动,2004,4:72~73
    [26]郑有根,郭小渝.串级调速系统功率因数研究[J].陕西理工学院学 报,2005.9,21(3):56~58
    [27]刘志强,刘进永.高功率因数斩波式串级调速系统的研究[J].基础自动化,2001.10,8(5):54~56
    [28]江友华,曹以龙,龚幼民.转子变频调速系统的发展和应用[J].变频器世界,2005.7:9~12
    [29]曹以龙,江友华.串级调速技术的发展与现状[J].变频器世界,2004.2:26~30
    [30]谢军.矿井提升机交流电机斩波串调系统的研究[D].安徽理工大学,2002.4
    [31]刘雪波.内反馈调速电机的设计及应用研究[D].湖南大学,2008.5
    [32]屈维谦.串级调速的再讨论[J].电气传动自动化,2007,29(3):1~6
    [33]屈维谦.电机调速P理论及变频与内馈调速的对比[J].中国能源,2000.8:24~27
    [34]屈维谦.电机调速的功率控制原理[J].中国能源,2000.6:3~6
    [35]屈维谦.交流调速的功率控制[J].电气工程应用,2005.1:44~46
    [36]屈维谦.交流调速的功率控制原理[J].华北电力大学学报,2002.7,29(3):39~43
    [37]樊立萍,袁德成.一种改善串级调速系统功率因数的有效方法[J].沈阳化工学院学报,1999.12,13(4):296~299
    [38]马长啸,高功率因数斩波式内反馈串级调速系统研究[D].华北电力大学,2007.11
    [39]王泽宇.三相异步电动机功率因数偏低的原因及提高途径[J].黑龙江和科技信息,1999.12
    [40]米起超,赵红梅.异步电机功率因数控制节能研究[J].电机技术,2007.6:6~9
    [41]王辉.异步电动机节能与功率因数关系的研究[J].宁夏电力,2008.1:37~40
    [42]甄亚.斩波式串级调速系统功率因数的研究与仿真分析[D].华北电力大学,2008.1
    [43]刘志强,和敬涵.功率因数补偿式绕线式异步电机串级调速方法研究[J].铁道学报,2004.6,26(3):51~54
    [44]崔健.斩波式串级调速系统的研究与改进[D].华北电力大学(保定),2002.12
    [45]李铁成.内反馈串级调速电机的电磁机理分析[D].华北电力大学(河北),2007
    [46]孙文博.高压电机内反馈数控串级调速系统设计与实现[D].大连理工大学,2002.9
    [47]许畅,王兵树,吕丽霞,张晓东.高频斩波串级调速系统的仿真研究[J].电力科学与工程,2006.3:50~52
    [48]姜萍,王兵树,万军.高频斩波串级调速系统的建模研究[J].微计算机信息,2008,24(7-1):245~247
    [49]张经纬,邹轩,朱燕燕.基于MATLAB的串级调速系统的建模与仿真[J].大电机技术,2008.4:57~60
    [50]江友华,宁宁,吴国祥.基于状态空间平均模型的全数字双闭环斩波内反馈串级调速系统[J].控制理论与应用,2007.2,24(1):109~112
    [51]赵忠生.内反馈串级调速系统的研究与应用[D].华北电力大学,2005.6
    [52]马永光,张晓东,王兵树,许畅.串级调速电机的动态模型与仿真[J].电机与控制应用,2007,34(1):11~14
    [53]孟瑜,刘文辉,张海涛,刘文化.6kV/1250kW绕线式电机的新型串级调速装置[J].电力电子技术,2004.2,38(1):60~63
    [54]赵仁.感应电动机串级调速机械特性方程[J].云南民族学院学报(自然科学版),2000.1,9(1):41~43
    [55]马长啸,王艾萌,石新春.内反馈串级调速系统使用PWM整流器的方法研究[J].电力科学与工程,2008.3,24(3):9~13
    [56]马小亮,刘志强.高功率因数串级调速系统的研究[J].电力电子技术,2002.2,36(1):1~4
    [57]江友华.高压大功率异步电动机驱动风机、泵类负载调速技术的研究[D].上海大学,2006.2:1-10
    [58]贾华,于精卫,高振宇.基于PWM整流技术的内反馈串级调速系统[J].机械工程与自动化,2008.2,1:149~154
    [59]李亮.基于SVPWM控制策略的内反馈串级调速系统的研究设计[D].辽宁工程技术大学,2006.11
    [60]江友华,龚幼民.高压大功率变频器主电路拓扑和控制策略[J].高压变频器,2006.2:51~58
    [61]江友华,龚幼民.基于电流型PWM整理器技术的转子变频调速系统[J].电工技术学报,2006.7,21(7):54~59
    [62]陈小丽.高功率因数双PWM变频调速系统的研究[D].广西大学,2005.6
    [63]文露,高敬格,王淑欣.基于双IGBT的斩波式串级调速系统的研究[J].电子设计工程,2009.2,17(2):67~68
    [64]柳毛继,曹以龙.PWM整流器在内反馈串级调速系统中的应用[J].微计算机信息,2005,21(8-1)
    [65]刘志刚,和敬涵.功率因数补偿式绕线异步电机串级调速方法研究[J].铁道学报,2004.6,26(3):51~54
    [66]江友华,宁宇,龚幼民.单位功率因数的内馈斩波串级调系统研究[J].电力电子技术,2005.12,39(6):65~66
    [67]刘观起,孙金水,万军.基于IGBT斩波控制的内反馈串级调速系统的研究[J].电力科学与工程,2008.1:37~40
    [68]孔鹏.基于IGBT有源逆变内反馈串级调速系统的研究[J].东北电力技术,2008.8:27~29
    [69]孔鹏.PWM逆变技术在内反馈串级调速系统中的应用[D].华北电力大学,2008.8:1~37
    [70]刘观起,巩保峰,万军.内反馈串级调速电动机数学模型的建立和仿真[J].华北电力大学学报,2005.1,32(1):6~8
    [71]魏泽国.可控硅串级调速的原理与应用[M].北京:冶金工业出版社,1985.8:15~55
    [72]Seshagiri R. Doradla and Sudarshan Chakravorty. A new slip power recovery scheme with improved supply power factor. IEEE Trans on Power Electronics,2001, Vol.3(NO.2):200~206
    [73]王兆安,黄俊。电力电子技术[M].机械工业出版社,2004.1:43-111
    [74]E.Akpinar and p.pillay. Modeling and performance of slip energy recovery induction motor drives using a linearization technique. IEEE Trans. on Energy Conversion, March1993,8(3):668~698
    [75]甄亚.斩波式串级调速系统功率因数的研究与仿真分析[D].华北电力大学,2009.4:16~28
    [76]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2005.1:15~60
    [77]AwadFaiz, H.Barati and Eyup Akpinar. Harmonic analysis and Performance improvement of slip energy recovery induction motor drives.IEEE Trans. On Power Electronics, May,2001,16(3):410~427
    [78]陈国呈.PWM逆变技术及其应用[M].北京:中国电力出版社,2007.7:222~244
    [79]Kpjnar E. Pillay P. Modeling And Performance of slip Energy Recovery Induction Motor Drives.IEEE Traps on Energy Conversion 1990(5):203-210.
    [80]Zu tong, Hong ding guo and Chen Yu sheng.A new PWM type GTO Seherbius industrial device with high power factor. Industry Applications Society and Annual Meeting,1989, Vol.1,843-847.
    [81]Eshagiri R.Doradla. A new slip power recovery scheme with Improved supply power factor. IEEE Trans on power Electronics, April,1988,3(2):200~207
    [82]江友华,曹以龙,龚幼民.高压大功率电机调速方案的探讨和比较[J].变频器世界,2005.5:6~16
    [83]吴国祥,江友华.转子变频调速系统的性能分析和研究[J].电气传动,2007,37(10):10~13
    [84]S.Klaka, M.Frecher. The Integrated gate commutated Thyristor:a new high-efficiency high power switch for series or snubber-less operation. EPE conf.97, 1997:442~446
    [85]李军生.串级调速系统非定常参数的定常处理[J].宝鸡文理学院学报(自然科学版),2001.3,21(1):47~49
    [86]Bedford and R.Hoft, Principles of Inverter Circuits. New York:Willey,1964
    [87]林渭勋.现代电力电子技术[M].北京:机械工业出版社,2005.4:94~139
    [88]A.W. Green,J.T. Boys,G.F. Gates.3-phase voltage sourced reversible rectifier. IEEE Proceedings, Vol.135, Pt. B, No.6, NOVEMBER 1.
    [89]Eugenio Wernekinck, Atsuo Kawamura, and Richard Hoft. A High Frequency AC/DC Converter with Unity Power Factor and Minimum Harmonic Distortion. IEEE Transactions on Power Electronics,1991,Vol.6(No.3):364~370.
    [90]Jinbang Xu, Jin Zhao, Ling Luo, Xiaozhen Ma, Shuyun Wan. A New Control Strategy of Unity Power Factor for Three-phase PWM Rectifier System. The 30th Annual Conference of the IEEE Industrial Electronics Society, November, 2004,709~714.
    [91]Diego R. Veas, Juan W. Dixon, and Boon-Teck Ooi. A Novel Load Current Control Method for a LeadingPower Factor Voltage Source PWM Rectifier. Ieee Transactions on Power electronics. March 1994,Vol.9, No.2(153~159).
    [92]Rusong, Shashi B. Dewan, and Dorgon R.Slemon.A PWM AC-to-DC Converter with Fixed Switching Frequency. IEEE Transactions on Industry Applications, Vol. 26. No.5,1990,880~885.
    [93]梁永红,基于电压定向控制的PWM整流系统仿真的研究[D].广西大学,2006.5.40
    [94]V. B. Sriram,Sabyasachi SenGupta, and Amit Patra. Indirect Current Control of a Single-Phase Voltage-Sourced Boost-Type Bridge Converter Operated in the Rectifier Mode. IEEE Transactions on Power Electronics, Vol.18, No.5, 2003,1137~1137.
    [95]Juan W. Dixon and Boon-Teck Ooi. Indirect Current Control of a Unity Power Factor A sinusoidal Current Boost Type Three-phase Rectifier. IEEE Transactions on Industrial Electronics, Vol.35, No.4, November 1988,508~515.
    [96]Zixin Li, Ping Wang,Yaohua Li, Congwei Liu, Haibin Zhu, Longcheng Tan.Instantaneous Power Based Control of Three-Phase PWM Rectifier under Distorted Source Voltages. IEEE International Symposium on Industrial Electronics 2009,1234-1239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700