糖尿病相关认知下降大鼠海马蛋白质组学分析及滋补脾阴方药的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病相关认知下降(diabetes-associated cognitive decline, DACD),也被称为糖尿病脑病,是糖尿病在脑部的一种慢性展性并发症,临床表现为逐渐出现的认知功能下降。据统计,2030年成人糖尿病的全球患病率很可能从2010年的2.85亿增长到4.39亿,将近是2010年的2倍。中华医学会糖尿病学分会“中国糖尿病和代谢综合征研究组"2010年在《新英格兰医学杂志》发表的关于我国糖尿病患病率调查的结果显示,我国20岁以上人群中糖尿病的患病率已达9.7%,总患病人数达九千两百万以上,专家估计70岁以上年龄组患病率超过20%,形势十分严峻。目前DACD缺乏统一的诊断标准,尚无确切的患病率统计,但必将老龄化社会的来临以及糖尿病患病率的增高而增高。认知功能损伤将给患者的生活带来不便,甚至使其丧失生活自理能力,给家庭和社会带来沉重的负担,因而DACD的防治已成为全世界亟待解决的问题。目前对DACD病机的研究涉及葡萄糖毒性、胰岛素信号障碍、钙稳态失衡、炎症、氧化应激损伤、血管病变及下丘脑-垂体-肾上腺轴异常等方面,但确切机制仍不清楚。而对本病的治疗还处于试验阶段,尚无公认的治疗措施。
     蛋白质是生命活动的直接执行者,细胞中各种病理改变的发生无不与蛋白质异常有关。但目前以单个蛋白质为对象的研究方式已无法满足人类对生命活动全面深入认识的需求。蛋白质组学(proteomics)作为系统生物学时代最热点的研究领域之一,是对一个基因组所表达的全部蛋白质在整体水平上的大规模研究,它通过一系列高分辨率、高通量的蛋白质分离、鉴定技术,使与疾病相关的特异蛋白分子一次性、全面的暴露出来,加快了对疾病病理改变的认识。目前关于糖尿病认知损伤的研究越来越多,但蛋白质组学方面的分析还很少。海马与学习记忆功能密切相关,也是脑组织中最易受损的部位之一。海马损伤被证明是2型糖尿病(type 2 diabetes mellitus, T2DM)患者脑部早期病变。对DACD海马蛋白质组学的研究将可能揭示糖尿病认知损伤的重要机制。
     糖尿病在中医学中属于“消渴”病范畴。记忆力降低等认知功能减退的表现,属于中医学“健忘”、“呆病”范畴。《圣济总录》中已有“消渴日久,健忘怔忡”等糖尿病认知损害的症状记载。因此,DACD可认为是消渴病合并健忘或呆病。消渴病机以阴虚为本,燥热为标,病变的脏腑主要在肺、胃、肾。但除此三脏之外,脾阴虚在消渴发生发展过程中的作用也不可忽视。早在《素问》中即有甘美多肥之食化热耗伤脾阴而发消渴的论述。另外郁怒化热、思虑过度皆可暗耗脾阴而致消渴。此外,脾为后天之本,“脏真濡于脾”,五脏六腑阴血津液的补充无不有赖于脾。脾阴与全身阴液在生理上息息相通,病理上相互影响。脾阴足自然能不断补充五脏之阴,使肺、胃、肾之阴亏逐渐改善而渐复;然脾阴不足,则三脏之阴无以复,导致病情加重。脾阴耗伤,脾运失健,日久气血化生不足,痰瘀阻塞脑窍,导致脑髓失养,神明失用而发呆病。从治疗角度,消渴病以阴虚为本,理当滋阴为要。而脾为太阴,乃三阴之长,故治疗阴虚当以滋养脾阴为主,脾阴充足,自能灌溉诸脏腑,而使疾病出现向愈之机。
     滋补脾阴方药(ZiBu PiYin Recipe, ZBPYR)源自清代医家吴澄《不居集》中的资成汤,经战丽彬教授据临床经验加减而成。全方以培补后天、滋补脾阴为原则,既能滋补脾阴而不滞腻,又兼化痰通瘀、安神益智之功效,是针对糖尿病认知损伤中的脾阴虚损、痰瘀阻窍病机治疗的良好方剂。既往研究显示ZBPYR能够通过多种途径显著改善老龄及痴呆大鼠的学习记忆能力。而ZBPYR对DACD的作用还不清楚。本研究以ZBPYR对DACD大鼠行干预,并应用基于荧光差异凝胶电泳(DIGE)的蛋白质组学方法,对DACD大鼠的海马行研究,希望从组织整体蛋白质水平揭示DACD可能的病变机制,并寻找ZBPYR的作用靶点,以期为DACD的防治提供有益参考。
     目的:1.观察ZBPYR对DACD动物模型认知功能的影响;2.寻找DACD大鼠海马蛋白质组的差异表达蛋白,以揭示疾病特异靶分子,并观察ZBPYR干预对DACD大鼠海马蛋白质组的影响,以发现ZBPYR作用靶蛋白,为DACD的防治提供线索;3.明确蛋白质组结果的可靠性,并初步分析差异表达蛋白质丰度的改变与mRNA水平变化的关系。
     方法:1.实验动物分为对照组、糖尿病组和治疗组。采用高脂饲养复合小剂量STZ(链脲佐菌素)腹腔注射法建立T2DM动物模型,通过监测机血糖(RBG)、测定空腹血清胰岛素(FSI)、口服葡萄糖耐量试验(OGTT)和胰岛素耐量试验(ITT)对T2DM模型行评估,以水迷宫、跳台实验观察动物的认知功能和ZBPYR的干预效果;2.采用DIGE方法对DACD大鼠海马蛋白质行分离,以DIGE专用软件对凝胶扫描图行分析,获得差异表达蛋白点;3.应用基质辅助激光解吸电离-飞行时间串联质谱(MALDI-TOF/TOF MS)和生物信息学手段对获得的感兴趣差异表达蛋白点行鉴定,以揭示可能参与的分子机制;4.以Western blot在蛋白水平上对蛋白质组学结果行可靠性验证,并应用实时荧光定量聚合酶链式反应(qRT-PCR)初步分析差异蛋白质丰度改变与mRNA水平变化的关系。
     结果:1.高脂饲料喂养4周后,糖尿病模型大鼠较对照组体重明显增加,形成肥胖。STZ注射后,糖尿病模型大鼠出现了多饮、多食、多尿等症状,RBG和FSI显著升高,葡萄糖灌胃后OGTT各点血糖值均明显高于对照组p<0.05),ITT显示血糖下降速度较对照组缓慢,以上数据提示T2DM模型形成。ZBPYR使治疗组大鼠糖尿病症状改善,饮食、饮水量减少,RBG有降低趋势,但除饮食量外均未达到统计学差异(p>0.05)。行为学测试发现糖尿病组动物的学习记忆成绩显著差于对照组(p<0.05),而治疗组大鼠学习记忆成绩与对照组水平接近,明显好于糖尿病组p<0.05);2.经DIGE分析,糖尿病组与对照组比较共发现了13个显著差异表达蛋白点;治疗组与糖尿病组比较共发现了12个显著差异表达蛋白点;治疗组与对照组比较只发现了6个显著差异表达蛋白点;3.经MALDI-TOF/TOF MS分析和Swiss-Prot数据库检索,共有9个差异表达蛋白质被成功鉴定,分别是PDHE1α、CI-42kD、MATPSα、DRP-2、α-tubulin2、p34-ARC、G6PD、GSTM1-1和Stxbpl,其功能主要涉及能量代谢、细胞骨架动态变化和氧化应激;4.蛋白PDHE1α、DRP-2和G6PD的Western blot分析结果与蛋白质组分析结果有良好的一致性;DRP-2和G6PD的mRNA表达变化趋势与蛋白质水平变化趋势相一致,糖尿病组表达水平较其它两组为低,但都未达到统计学差异(p>0.05); PDHE1α的mRNA水平三组间非常接近,无明显差别。
     结论:1.在高脂饲养复合小剂量STZ腹腔注射法建立的T2DM动物模型基础上可以成功形成DACD。ZBPYR可显著减轻DACD大鼠的学习记忆损伤;2.DIGE能够成功用于DACD及ZBPYR干预后海马的比较蛋白质组学分析。DIGE发现的差异表达点很可能是与DACD发病相关的疾病特异分子或ZBPYR作用的靶蛋白;3.鉴定的9个蛋白质分子参与的细胞功能提示,DACD大鼠海马中可能存在细胞能量代谢、细胞骨架动态变化和氧化应激环节的异常而损伤认知功能,ZBPYR可作用于多靶点对病变行修复,从而改善认知;4.Western blot分析证实了蛋白质组技术的可靠性。qRT-PCR结果提示蛋白质表达水平的改变可能不完全源于mRNA的变化,很可能也与蛋白质的翻译后修饰或降解有关。
Diabetes-associated cognitive decline (DACD), also called diabetic encephalopathy, represents a complication on the diabetic brain, which manifests as a gradual decline of cognitive function. The global prevalence of diabetes among adults is expected to rise from 285 million persons in 2010 to an estimated 439 million in 2030. Chinese Diabetes and Metabolic Syndrome Study Group of Diabetes Society of Chinese Medical Association published the results of the survey on the Chinese prevalence of adult diabetes on New England Journal of Medicine in 2010. The results showed that the prevalence of diabetes has reached 9.7% and the total number of these patients has reached 92 million in the population aged over 20. And in the old age group over 70 years the prevalence has already over 20%. There is no exact prevalence report of DACD because it is still lack of uniform diagnostic criteria. But it's sure that the DACD prevalence would rise with the advent of an aging society and the increasing of the diabetes. Cognitive impairment will cause inconvenience to the life of diabetic patients, or even self-care inability, which would bring families and the community a heavy burden. Thus the prevention and treatment of DACD have become the worldwide problems to be solved. Current studies on DACD pathogenesis involve glucose toxicity, insulin signalling dysfunction, calcium disequilibrium, inflammation, oxidative stress, vascular disorder and hypothalamus-pituitary-adrenal axis abnormalities, but the exact mechanisms remain unclear. The measures to treat DACD are still in the test stage.
     Proteins are the direct executors of life activities and almost participant a variety of pathological changes in cells. But currently the study of a single protein has been unable to meet the requirements of overall and in-depth understanding of life. Proteomics, as one of the hottest field in the era of systematic biology, is a kind of large-scale and overall study on all the proteins expressed by a genome. It can reveal the specific disease-related proteins with the technologies of high-resolution, high-throughput protein isolation and identification, in order to accelerate the understanding of pathology. Up to now, proteomic analysis on DACD is little regarded. Hippocampus is closely related to learning and memory function in the brain. Hippocampal damage has been proved to be an early change in type 2 diabetic patients. Proteomic research on DACD hippocampus may reveal some important mechanisms of cognitive impairment.
     For thousands of years, traditional Chinese medicine (TCM) has played an indispensable role in the fight against diseases in China. TCM aims to modulate human body to homeostasis using prescriptions with unique effects. Its biggest advantage is improving the function without obvious side effects. The ZiBu PiYin Recipe (ZBPYR) is derived from Zicheng Decoction, a TCM formula recorded in the book of Bujuji, written by Wu Cheng in the Qing dynasty and used for clinical treatment of amnesia. Previous studies have shown that ZBPYR treatment improved learning and memory abilities in aged and dementia rats through multiple metabolisms. However, the effect of ZBPYR on DACD is unclear. Here, using fluorescence-based difference gel electrophoresis (DIGE)-based proteomic method, we investigated the protein alterations in the hippocampus in DACD and in ZBPYR treated rats and hope to reveal the possible pathological mechanisms in DACD and ZBPYR interventional targets to provide some useful information for the prevention and treatment of DACD.
     Objectives:1. To observe the effect of ZBPYR on the cognitive function of DACD rats.2. To find the changed proteins in DACD hippocampal proteome in order to reveal the disease-specific molecular targets, and to observe the effect of ZBPYR intervention on the DACD proteome and find targets of ZBPYR. 3. To confirm the reliability of proteomic analysis, and preliminarily analyze the relationship between changed protein and its mRNA.
     Methods:1. Animals were divided into control group, diabetes group and ZBPYR-treated group (DM/ZBPYR). The method of high fat diet combined with low dose of streptozotocin (STZ) intraperitoneal injection was used to establish T2DM animal models. And the model was evaluated by random blood glucose (RBG), fasting serum insulin (FSI), oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). The cognitive function and the effect of ZBPYR were evaluated using Morris water maze and step down test.2. DIGE was used to isolate DACD hippocampal proteins, and Decyder 6.5 software analyzed the gel images to find the changed protein spots.3. Matrix-assisted laser desorption ionization-time of flight tandem mass spectrometry (MALDI-TOF/TOF MS) and bioinformatic tools were used to identify the identities of changed protein spots of interest. 4. The reliability of proteomics were confirmed by Western blot at the protein level, and quantitive real-time polymerase chain reaction (qRT-PCR) was used to analyze the relationship between the changes in protein abundance and its mRNA level.
     Results:1. After 4 weeks of high fat diet, diabetic model rats gained more weight than the control and became fat. After STZ injection, diabetic model rats appeared the symptoms of diabetes, such as drinking, eating and urining more. RBG and FSI of diabetic model rats were significantly elevated, and their blood glucose levels in OGTT were significantly higher than the control (p<0.05), but those in ITT decresed slower than the control. These data suggested the formation of T2DM model. ZBPYR treatment improved the rats'status in DM/ZBPYR group and their diet, water intakes were reduced, and the RBG had a trend of reduction. But except for food intake, the data didn't reach statistical significance (p>0.05). Behavioral test showed that performance of diabeties group in Morris water maze were significantly worse than the control (p<0.05), while the performance of DM/ZBPYR rats was similar to the control, and significantly better than the diabetes group (p<0.05).2. The DIGE analysis found 13 significantly changed protein spots between the diabetes and control group,12 ones between DM/ZBPYR and diabetes group and 6 ones between DM/ZBPYR and control group.3.9 protein spots identities were successfully identified by MALDI-TOF/TOF MS. They are PDHE1α, CI-42kD, MATPSα, DRP-2,α-tubulin 2, and p34-ARC, G6PD, GSTM1-1 and Stxbpl. These proteins'functional categories include energy metabolism, cytoskeleton dynamics, and oxidative stress.4. Western blot analysis of interested proteins PDHE1α, DRP-2 and G6PD showed good consistency with proteomic results. The mRNA expressions of DRP-2 and G6PD in the diabetes group were lower than the other two groups, which had consistent trends with protein levels, but did not reach statistical significance (p>0.05). The mRNA level of PDHE1αwas very close among the three groups.
     Conclusions:1. The method of high fat diet combined with low dose of streptozotocin (STZ) intraperitoneal injection established good T2DM animal model and this model could successfully formed DACD. ZBPYR could significantly improve the learning and memory abilities in DACD rats. 2. DIGE could be used for comparative proteomics analysis of hippocampus in DACD and ZBPYR-treated rats. The differentially produced protein spots found by DIGE may be the specific moleculars involved in pathogenesis of DACD and the targets of ZBPYR.3. The nine proteins identified here indicated that DACD rat hippocampus may exist disorders in energy metabolism, cytoskeleton dynamics and oxidative stress, which caused the cognitive impairment. ZBPYR can act on multiple targets to reduce the lesions, thereby improving cognition. 4. Western blot analysis confirmed the reliability of proteomic results. The results of qRT-PCR suggested that changes in protein levels may not be entirely due to the mRNA change. It may be related to protein post-translational modification or degradation, too.
引文
1.Mijnhout, GS, Scheltens, P, Diamant, M, Biessels, GJ, Wessels, AM, Simsek, S, Snoek, FJ, Heine, RJ. Diabetic encephalopathy: A concept in need of a definition[J]. Diabetologia, 2006,49(6):1447-1448.
    2. Shaw, JE, Sicree, RA, Zimmet, PZ. Global estimates of the prevalence of diabetes for 2010 and 2030[J]. Diabetes Res Clin Pract,2010,87(1):4-14.
    3.Yang, W, Lu, J, Weng, J, Jia, W, Ji, L, Xiao, J, Shan, Z, Liu, J, Tian, H, Ji, Q, Zhu, D, Ge, J, Lin, L, Chen, L, Guo, X, Zhao, Z, Li, Q, Zhou, Z, Shan, G, He, J. Prevalence of diabetes among men and women in China[J]. N Engl J Med,2010,362(12):1090-1101.
    4.Xu, WL, von Strauss, E, Qiu, CX, Winblad, B, Fratiglioni, L. Uncontrolled diabetes increases the risk of Alzheimer's disease: a population-based cohort sfudy[J]. Diabetologia,2009,52(6): 1031-1039.
    5.van den Berg, E, Reijmer, YD, de Bresser, J, Kessels, RP, Kappelle, LJ, Biessels, GJ. A 4 year follow-up study of cognitive functioning in patients with type 2 diabetes mellitus[J]. Diabetologia,2010,53(1):58-65.
    6.战丽彬,徐枫,董玉宽,马悦,王立德.滋补脾阴方药对老龄大鼠脑线粒体膜ATP酶活性的影响[J].中药药理与临床,2000,16(1):24-25.
    7.曲明阳,战丽彬.滋补脾阴方药对衰老大鼠学习记忆能力的影响及脑内机制[J].中药药理与临床,2002,18(6):32-35.
    8.Zhan, LB, Niu, XP, Sui, H, Gong, XY. Protective effect of spleen-yin-nourishing recipe on amyloid beta-peptide-induced damage of primarily cultured rat hippocampal neurons and its mechanism[J]. Zhong Xi Yi Jie He Xue Bao,2009,7(3):242-248.
    9.Zhan, LB, Sui, H, Lu, XG, Sun, CK, Zhang, J, Ma, H. Effects of Zibu Piyin recipe on SNK-SPAR pathway in neuron injury induced by glutamate[J]. Chin J Integr Med,2008,14(2): 117-122.
    10.Wrighten, SA, Piroli, GG, Grillo, CA, Reagan, LP. A look inside the diabetic brain: Contributors to diabetes-induced brain aging[J]. Biochimica Et Biophysica Acta-Molecular Basis of Disease,2009,1792(5):444-453.
    11.Reed, MJ, Meszaros, K, Entes, LJ, Claypool, MD, Pinkett, JG, Gadbois, TM, Reaven, GM. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat[J]. Metabolism, 2000,49(11):1390-1394.
    12.叶任高,陆再英.内科学[M].北京:人民卫生出版社,2004:787-788.
    13.Srinivasan, K, Ramarao, P. Animal model in type 2 diabetes research:An overview[J]. Indian Journal of Medical Research,2007,125(3):451-472.
    14.Ozturk, Y, Altan, VM, Yildizoglu-Ari, N. Effects of experimental diabetes and insulin on smooth muscle functions[J]. Pharmacol Rev,1996,48(1):69-112.
    15.Srinivasan, K, Viswanad, B, Asrat, L, Kaul, C, Ramarao, P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat:a model for type 2 diabetes and pharmacological screening[J]. Pharmacological Research,2005,52(4):313-320.
    16.Sauve, M, Ban, K, Momen, MA, Zhou, YQ, Henkelman, RM, Husain, M, Drucker, DJ. Genetic deletion or pharmacological inhibition of dipeptidyl peptidase-4 improves cardiovascular outcomes after myocardial infarction in mice[J], Diabetes,2010,59(4):1063-1073.
    17.Dejgaard, A, Gade, A, Larsson, H, Balle, V, Parving, A, Parving, HH. Evidence for diabetic encephalopathy[J]. Diabet Med,1991,8(2):162-167.
    18.Shimada, H, Miki, T, Tamura, A, Ataka, S, Emoto, M, Nishizawa, Y. Neuropsychological status of elderly patients with diabetes mellitus[J]. Diabetes Res Clin Pract,2010,87(2):224-227.
    19.Wessels, AM, Rombouts, SA, Remijnse, PL, Boom, Y, Scheltens, P, Barkhof, F, Heine, RJ, Snoek, FJ. Cognitive performance in type 1 diabetes patients is associated with cerebral white matter volume[J]. Diabetologia,2007,50(8):1763-1769.
    20.Weinger, K, Jacobson, AM, Musen, G, Lyoo, IK, Ryan, CM, Jimerson, DC, Renshaw, PF. The effects of type 1 diabetes on cerebral white matter[J]. Diabetologia,2008,51(3):417-425.
    21.Messier, C. Impact of impaired glucose tolerance and type 2 diabetes on cognitive aging[J]. Neurobiol Aging,2005,26 Suppl 1:26-30.
    22.Sinclair, AJ, Girling, AJ, Bayer, AJ. Cognitive dysfunction in older subjects with diabetes mellitus:impact on diabetes self-management and use of care services. All Wales Research into Elderly (AWARE) Study[J]. Diabetes Res Clin Pract,2000,50(3):203-212.
    23.Manschot, SM, Biessels, GJ, de Valk, H, Algra, A, Rutten, GE, van der Grond, J, Kappelle, LJ. Metabolic and vascular determinants of impaired cognitive performance and abnormalities on brain magnetic resonance imaging in patients with type 2 diabetes[J]. Diabetologia, 2007,50(11):2388-2397.
    24.Gold, SM, Dziobek, I, Sweat, V, Tirsi, A, Rogers, K, Bruehl, H, Tsui, W, Richardson, S, Javier, E, Convit, A. Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes[J]. Diabetologia,2007,50(4):711-719.
    25.Kodl, CT, Seaquist, ER. Cognitive dysfunction and diabetes mellitus[J]. Endocr Rev, 2008,29(4):494-511.
    26.Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism [J]. Diabetes, 2005,54(6):1615-1625.
    27.Sredy, J, Sawicki, DR, Notvest, RR. Polyol pathway activity in nervous tissues of diabetic and galactose-fed rats:effect of dietary galactose withdrawal or tolrestat intervention therapy[J]. J Diabet Complications,1991,5(1):42-47.
    28.Girones, X, Guimera, A, Cruz-Sanchez, CZ, Ortega, A, Sasaki, N, Makita, Z, Lafuente, JV, Kalaria, R, Cruz-Sanchez, FF. N epsilon-carboxymethyllysine in brain aging, diabetes mellitus, and Alzheimer's disease[J]. Free Radic Biol Med,2004,36(10):1241-1247.
    29.Heitner, J, Dickson, D. Diabetics do not have increased Alzheimer-type pathology compared with age-matched control subjects. A retrospective postmortem immunocytochemical and histofluorescent study[J]. Neurology,1997,49(5):1306-1311.
    30.Wang, CF, Li, DQ, Xue, HY, Hu, B. Oral supplementation of catalpol ameliorates diabetic encephalopathy in rats[J]. Brain Res,2010,1307:158-165.
    31.Biessels, GJ, Kappelle, AC, Bravenboer, B, Erkelens, DW, Gispen, WH. Cerebral function in diabetes mellitus [J]. Diabetologia,1994,37(7):643-650.
    32.Duarte, JM, Oliveira, CR, Ambrosio, AF, Cunha, RA. Modification of adenosine A1 and A2A receptor density in the hippocampus of streptozotocin-induced diabetic rats[J]. Neurochem Int, 2006,48(2):144-150.
    33.Yan, SD, Stern, D, Schmidt, AM. What's the RAGE? The receptor for advanced glycation end products (RAGE) and the dark side of glucose[J]. Eur J Clin Invest,1997,27(3):179-181.
    34.Zhao, L, Teter, B, Morihara, T, Lim, GP, Ambegaokar, SS, Ubeda, OJ, Frautschy, SA, Cole, GM. Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: implications for Alzheimer's disease intervention[J]. J Neurosci,2004,24(49):11120-11126.
    35.Pavlides, C, McEwen, BS. Effects of mineralocorticoid and glucocorticoid receptors on long-term potentiation in the CA3 hippocampal field[J]. Brain Res,1999,851(1-2):204-214.
    36.Yau, PL, Javier, DC, Ryan, CM, Tsui, WH, Ardekani, BA, Ten, S, Convit, A. Preliminary evidence for brain complications in obese adolescents with type 2 diabetes mellitus[J]. Diabetologia,2010,53(11):2298-2306.
    37.梁晓春.糖尿病脑病与中医补肾法对脑保护作用的思考[J].中医杂志,2005,46(005):329-331.
    38.岳仁宋,张发荣,龚光明.糖尿病性认知功能障碍中医认识新视角-”胰(脾)-脑-肾轴”消渴呆病病机学说的建立[J].四川中医,2009,27(1):28-29.
    39.田国庆.糖尿病脑病与消渴病兼证”呆症”及其中医治疗[J].中国临床医生,2006,34(5):12-13.
    40.宋福印,王永炎,黄启福.试论毒损脑络与糖尿病性脑病[J].北京中医药大学学报,2000,23(5):7-8.
    41.隋华,刘晓亭,战丽彬.阴虚在老年期痴呆中的作用[J].中医药学刊,2005,23(6):1090-1091.
    42.陈莲珍,李林,安文林,王育琴,魏海峰,叶翠飞,赵玲,张丽,楚晋.参乌胶囊对糖尿病复合脑缺血模型大鼠学习记忆功能和细胞凋亡相关蛋白表达的影响[J].中国药学杂志,2005,40(1):23-27.
    43.富苏,张孟仁.中药脑复聪对糖尿病大鼠学习记忆能力及海马CA1区胰岛素样生长因子Ⅰ含量的影响[J].中国医科大学学报,2009,38(9):667-680.
    44.宝轶,冯晓云,邹俊杰,石勇铨,赵瑛,刘志民.通络方剂对糖尿病大鼠海马组织氧化应激水平及其超微结构的影响[J].上海医学,2009,(5):406-409.
    45.黄小波,李宗信,陈文强,李斌,王宁群,陈玉静.脑康Ⅱ号改善糖尿病大鼠认知障碍的研究[J].中华中医药杂志,2010,25(3):366-369.
    46.田国庆,卢贺起,郭赛珊,张玲,樊莎莎.补肾活血方对糖尿病小鼠学习记忆功能及中枢神经递质的影响[J].中医杂志,2009,(5):460-462.
    47.梁丽娜.滋补脾阴方药对脾阴虚糖尿病脑病大鼠海马内质网应激影响的研究[D].大连医科大学,2009,(2):2-3..
    48.胡守玉.滋补脾阴方药对脾阴虚糖尿病脑病大鼠海马胰岛素抵抗影响的研究[D].大连医科大学,2009,(2):2-3..
    49.闫云.Aβ在脾阴虚糖尿病脑病大鼠脑组织的表达及滋补脾阴方药作用机制[D].大连医科大学,2009,(2):1-2..
    50.林甲宜,刘加利,刘献华,顾东方.复方丹参滴丸治疗对糖尿病合并冠心病患者认知功能的影响[J].中国新药杂志,2009,(13):1213-1216.
    51.范新蕾,徐金枝,田锋.银杏叶提取物对糖尿病所致脑部损害的影响[J].卒中与神经疾病,2006,13(3):155-158.
    52.林军,韦力,黄志明,舒雨雁.银杏叶提取物对糖尿病大鼠行为学及大脑皮质和海马钠-钾ATP酶活性的影响[J].中国医院药学杂志,2005,25(3):198-200.
    53.王援朝,朱丽霞,刘忠武,叶燕燕,莫孝荣,田德全.针刺防治糖尿病性学习记忆障碍[J].针刺研究,2003,28(1):21-25.
    54.晋志高,何原芳,景向红.针刺对糖尿病大鼠海马和杏仁核CREB表达的影响[J].中国中医基础医学杂志,2011,17(1):102-105.
    55.Lang, BT, Yan, Y, Dempsey, RJ, Vemuganti, R. Impaired neurogenesis in adult type-2 diabetic rats[J]. Brain Res,2009,1258:25-33.
    56.Li, XL, Aou, S, Oomura, Y, Hori, N, Fukunaga, K, Hori, T. Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents[J]. Neuroscience, 2002,113(3):607-615.
    57.Stranahan, AM, Norman, ED, Lee, K, Cutler, RG, Telljohann, RS, Egan, JM, Mattson, MP. Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats[J]. Hippocampus,2008,18(11):1085-1088.
    58.Tsukuda, K, Mogi, M, Li, JM, Iwanami, J, Min, LJ, Sakata, A, Fujita, T, Iwai, M, Horiuchi, M. Amelioration of cognitive impairment in the type-2 diabetic mouse by the angiotensin Ⅱ type-1 receptor blocker candesartan[J]. Hypertension,2007,50(6):1099-1105.
    59.战丽彬,刘莉,宫晓洋,嵇征鸿.脾阴虚痴呆证病结合模型建立及滋补脾阴方药干预的实验研究[J].中华中医药学刊,2008,(1):9-12.
    1.曾嵘,夏其昌.蛋白质组学研究展与趋势[J].中国科学院院刊,2002,17(3):166-169.
    2.Van den Bergh, G, Arckens, L. Fluorescent two-dimensional difference gel electrophoresis unveils the potential of gel-based proteomics[J]. Curr Opin Biotechnol,2004,15(1):38-43.
    3.Alban, A, David, SO, Bjorkesten, L, Andersson, C, Sloge, E, Lewis, S, Currie, I. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard[J]. Proteomics,2003,3(1):36-44.
    4.den Heijer, T, Vermeer, SE, van Dijk, EJ, Prins, ND, Koudstaal, PJ, Hofman, A, Breteler, MM. Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI[J]. Diabetologia, 2003,46(12):1604-1610.
    5.Stranahan, AM, Arumugam, TV, Cutler, RG, Lee, K, Egan, JM, Mattson, MP. Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons[J]. Nat Neurosci,2008,11(3):309-317.
    6.Kamal, A, Biessels, GJ, Gispen, WH, Ramakers, GM. Synaptic transmission changes in the pyramidal cells of the hippocampus in streptozotocin-induced diabetes mellitus in rats[J]. Brain Res,2006,1073-1074:276-280.
    7.Kuang, X, Du, JR, Chen, YS, Wang, J, Wang, YN. Protective effect of Z-ligustilide against amyloid beta-induced neurotoxicity is associated with decreased pro-inflammatory markers in rat brains[J]. Pharmacol Biochem Behav,2009,92(4):635-641.
    8.Zhang, T, Pan, BS, Sun, GC, Sun, X, Sun, FY. Diabetes synergistically exacerbates poststroke dementia and tau abnormality in brain[J]. Neurochem Int,2010,56(8):955-961.
    9.Moghadam, FH, Alaie, H, Karbalaie, K, Tanhaei, S, Nasr Esfahani, MH, Baharvand, H. Transplantation of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats[J]. Differentiation,2009,78(2-3):59-68.
    10.Manschot, SM, Biessels, GJ, de Valk, H, Algra, A, Rutten, GE, van der Grond, J, Kappelle, LJ. Metabolic and vascular determinants of impaired cognitive performance and abnormalities on brain magnetic resonance imaging in patients with type 2 diabetes[J]. Diabetologia,2007,50(11): 2388-2397.
    11.Brands, AM, Biessels, GJ, de Haan, EH, Kappelle, LJ, Kessels, RP. The effects of type 1 diabetes on cognitive performance: a meta-analysis[J]. Diabetes Care,2005,28(3):726-735.
    12.Yaffe, K, Blackwell, T, Kanaya, AM, Davidowitz, N, Barrett-Connor, E, Krueger, K. Diabetes, impaired fasting glucose, and development of cognitive impairment in older women[J]. Neurology,2004,63(4):658-663.
    13.van den Berg, E, Dekker, JM, Nijpels, G, Kessels, RP, Kappelle, LJ, de Haan, EH, Heine, RJ, Stehouwer, CD, Biessels, GJ. Cognitive functioning in elderly persons with type 2 diabetes and metabolic syndrome: the Hoorn study[J]. Dement Geriatr Cogn Disord,2008,26(3):261-269.
    14.Xu, W, Caracciolo, B, Wang, HX, Winblad, B, Backman, L, Qiu, C, Fratiglioni, L. Accelerated progression from mild cognitive impairment to dementia in people with diabetes[J]. Diabetes, 2010,59(11):2928-2935.
    15.Yau, PL, Javier, DC, Ryan, CM, Tsui, WH, Ardekani, BA, Ten, S, Convit, A. Preliminary evidence for brain complications in obese adolescents with type 2 diabetes mellitus[J]. Diabetologia,2010,53(11):2298-2306.
    16.van den Berg, E, Reijmer, YD, de Bresser, J, Kessels, RP, Kappelle, LJ, Biessels, GJ. A 4 year follow-up study of cognitive functioning in patients with type 2 diabetes mellitus[J]. Diabetologia,2010,53(1):58-65.
    17.Nielsen, J, Hoffert, JD, Knepper, MA, Agre, P, Nielsen, S, Fenton, RA. Proteomic analysis of lithium-induced nephrogenic diabetes insipidus:mechanisms for aquaporin 2 down-regulation and cellular proliferation[J]. Proc Natl Acad Sci U S A,2008,105(9):3634-3639.
    18.李臻琰,李炜,颜永平,王素娥,钟厂伟,周凌燕,李智.天麻钩藤饮对高血压肝阳上亢证大鼠下丘脑差异蛋白质表达的影响[J].中国临床康复,2006,10(047):58-61.
    19.周军,李沧海.桂枝汤对发热大鼠下丘脑蛋白质组影响初探[J].中国实验方剂学杂志2003,9(001):31-34.
    20.郭平,马增春,李鹰飞,梁乾德,王继峰,王升启.四物汤对放射线致血虚证小鼠骨髓蛋白质表达的影响[J].中国中药杂志,2004,29(009):893-896.
    21.张昱,谢雁鸣.后基因组时代中医药研究思路方法新探[J].中医药学刊,2001,19(005):426427.
    1.郭葆玉.药物蛋白质组学[M].北京:人民卫生出版社,2007年9月:9-10.
    2.陈主初,肖志强.疾病蛋白质组学[M].北京:化学工业出版社,2006年1月:157.
    3.邱宗荫,尹一兵,邱峰,母昭德,冯文莉.临床蛋白质组学[M].北京;科学出版社.2008年4月:43.
    4.Wilkins, MR, Appel, RD, Williams, KL, Hochstrasser, DF.蛋白质组学研究—概念、技术及应用/(澳)Wilkins, M. R.等著[M].张丽华,梁振,张玉奎,译.北京:科学出版社,2010年5月:109.
    5.Hwang, H, Bowen, BP, Lefort, N, Flynn, CR, De Filippis, EA, Roberts, C, Smoke, CC, Meyer, C, Hojlund, K, Yi, Z, Mandarino, LJ. Proteomics analysis of human skeletal muscle reveals novel abnormalities in obesity and type 2 diabetes[J]. Diabetes,2010,59(1):33-42.
    6.Decanini, A, Karunadharma, PR, Nordgaard, CL, Feng, X, Olsen, TW, Ferrington, DA. Human retinal pigment epithelium proteome changes in early diabetes[J]. Diabetologia,2008,51(6): 1051-1061.
    7.Sickmann, HM, Waagepetersen, HS, Schousboe, A, Benie, AJ, Bouman, SD. Obesity and type 2 diabetes in rats are associated with altered brain glycogen and amino-acid homeostasis[J]. J Cereb Blood Flow Metab,2010,30(8):1527-1537.
    8.Gerozissis, K. Brain insulin, energy and glucose homeostasis; genes, environment and metabolic pathologies[J]. Eur J Pharmacol,2008,585(1):38-49.
    9.Korotchkina, LG, Tucker, MM, Thekkumkara, TJ, Madhusudhan, KT, Pons, G, Kim, H, Patel, MS. Overexpression and characterization of human tetrameric pyruvate dehydrogenase and its individual subunits[J]. Protein Expr Purif,1995,6(1):79-90.
    10.Xing, G, Ren, M, Watson, WD, O'Neill, JT, Verma, A. Traumatic brain injury-induced expression and phosphorylation of pyruvate dehydrogenase: a mechanism of dysregulated glucose metabolism[J]. Neurosci Lett,2009,454(1):38-42.
    11.Stump, CS, Short, KR, Bigelow, ML, Schimke, JM, Nair, KS. Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(13):7996-8001.
    12.Zarros, A, Liapi, C, Galanopoulou, P, Marinou, K, Mellios, Z, Skandali, N, Al-Humadi, H, Anifantaki, F, Gkrouzman, E, Tsakiris, S. Effects of adult-onset streptozotocin-induced diabetes on the rat brain antioxidant status and the activities of acetylcholinesterase, (Na+,K+)- and Mg2+ -ATPase: modulation by L-cysteine[J]. Metab Brain Dis,2009,24(2):337-348.
    13.Yao, J, Irwin, RW, Zhao, L, Nilsen, J, Hamilton, RT, Brinton, RD. Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease[J]. Proc Natl Acad Sci U S A,2009,106(34):14670-14675.
    14.Sharma, P, Benford, B, Li, ZZ, Ling, GS. Role of pyruvate dehydrogenase complex in traumatic brain injury and Measurement of pyruvate dehydrogenase enzyme by dipstick test[J]. J Emerg Trauma Shock,2009,2(2):67-72.
    15.战丽彬,徐枫,董玉宽,马悦,王立德.ZBPYR对老龄大鼠脑线粒体膜ATP酶活性的影响[J].中药药理与临床,2000,16(1):24-25.
    16.刘友章,宋雅芳,劳绍贤,邓铁涛,王建华.胃脘痛患者胃黏膜超微结构研究及中医“脾-线粒体相关”理论探讨[J].中华中医药学刊,2007,25(12):2439-2442.
    17.吴以岭.消渴病从脾论治探讨[J].中医杂志,2002,43(6):410-411.
    18.Nitta, A, Murai, R, Suzuki, N, Ito, H, Nomoto, H, Katoh, G, Furukawa, Y, Furukawa, S. Diabetic neuropathies in brain are induced by deficiency of BDNF[J]. Neurotoxicol Teratol,2002,24(5): 695-701.
    19.Carlisle, HJ, Kennedy, MB. Spine architecture and synaptic plasticity[J]. Trends Neurosci, 2005,28(4):182-187.
    20.O'Donnell, M, Chance, RK, Bashaw, GJ. Axon growth and guidance: receptor regulation and signal transduction[J]. Annu Rev Neurosci,2009,32:383-412.
    21.Gu, Y, Ihara, Y. Evidence that collapsin response mediator protein-2 is involved in the dynamics of microtubules[J]. J Biol Chem,2000,275(24):17917-17920.
    22.Arimura, N, Kimura, T, Nakamuta, S, Taya, S, Funahashi, Y, Hattori, A, Shimada, A, Menager, C, Kawabata, S, Fujii, K, Iwamatsu, A, Segal, RA, Fukuda, M, Kaibuchi, K. Anterograde transport of TrkB in axons is mediated by direct interaction with Slpl and Rab27[J]. Dev Cell, 2009,16(5):675-686.
    23.Stranahan, AM, Lee, K, Martin, B, Maudsley, S, Golden, E, Cutler, RG, Mattson, MP. Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice[J]. Hippocampus,2009,19(10):951-961.
    24.Petratos, S, Li, QX, George, AJ, Hou, X, Kerr, ML, Unabia, SE, Hatzinisiriou, I, Maksel, D, Aguilar, MI, Small, DH. The beta-amyloid protein of Alzheimer's disease increases neuronal CRMP-2 phosphorylation by a Rho-GTP mechanism[J]. Brain,2008,131(Pt 1):90-108.
    25.Guerreiro, N, Staufenbiel, M, Gomez-Mancilla, B. Proteomic 2-D DIGE profiling of APP23 transgenic mice brain from pre-plaque and plaque phenotypes[J]. J Alzheimers Dis,2008,13(1): 17-30.
    26.Watson, RT, Kanzaki, M, Pessin, JE. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes[J]. Endocr Rev,2004,25(2):177-204.
    27.Boczkowska, M, Rebowski, G, Petoukhov, MV, Hayes, DB, Svergun, DI, Dominguez, R. X-ray scattering study of activated Arp2/3 complex with bound actin-WCA[J]. Structure,2008,16(5): 695-704.
    28.Pollard, TD, Borisy, GG. Cellular motility driven by assembly and disassembly of actin filaments[J]. Cell,2003,112(4):453-465.
    29.Hotulainen, P, Llano, O, Smirnov, S, Tanhuanpaa, K, Faix, J, Rivera, C, Lappalainen, P. Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis[J]. J Cell Biol,2009,185(2):323-339.
    30.Williams, SK, Howarth, NL, Devenny, JJ, Bitensky, MW. Structural and functional consequences of increased tubulin glycosylation in diabetes mellitus[J]. Proc Natl Acad Sci U S A,1982,79(21): 6546-6550.
    31.Zhan, LB, Niu, XP, Sui, H, Gong, XY. Protective effect of spleen-yin-nourishing recipe on amyloid beta-peptide-induced damage of primarily cultured rat hippocampal neurons and its mechanism[J]. Zhong Xi Yi Jie He Xue Bao,2009,7(3):242-248.
    32.Zhan, LB, Sui, H, Lu, XG, Sun, CK, Zhang, J, Ma, H. Effects of Zibu Piyin recipe on SNK-SPAR pathway in neuron injury induced by glutamate[J]. Chin J Integr Med,2008,14(2): 117-122.
    33.Wang, CF, Li, DQ, Xue, HY, Hu, B. Oral supplementation of catalpol ameliorates diabetic encephalopathy in rats[J]. Brain Res,2010,1307:158-165.
    34.Kuhad, A, Sethi, R, Chopra, K. Lycopene attenuates diabetes-associated cognitive decline in rats[J]. Life Sci,2008,83(3-4):128-134.
    35.Ben-Yoseph, O, Boxer, PA, Ross, BD. Assessment of the role of the glutathione and pentose phosphate pathways in the protection of primary cerebrocortical cultures from oxidative stress[J]. J Neurochem,1996,66(6):2329-2337.
    36.Kahn, A, Boivin, P, Rubinson, H, Cottreau, D, Marie, J, Dreyfus, JC. Modifications of purified glucose-6-phosphate dehydrogenase and other enzymes by a factor of low molecular weight abundant in some leukemic cells[J]. Proc Natl Acad Sci U S A,1976,73(1):77-81.
    37.Hayes, JD, Flanagan, JU, Jowsey, IR. Glutathione transferases[J]. Annu Rev Pharmacol Toxicol, 2005,45:51-88.
    38.Verhage, M, Maia, AS, Plomp, JJ, Brussaard, AB, Heeroma, JH, Vermeer, H, Toonen, RF, Hammer, RE, van den Berg, TK, Missler, M, Geuze, HJ, Sudhof, TC. Synaptic assembly of the brain in the absence of neurotransmitter secretion[J]. Science,2000,287(5454):864-869.
    39.Linker, RA, Brechlin, P, Jesse, S, Steinacker, P, Lee, DH, Asif, AR, Jahn, O, Tumani, H, Gold, R, Otto, M. Proteome profiling in murine models of multiple sclerosis:identification of stage specific markers and culprits for tissue damage[J]. PLoS One,2009,4(10):e7624.
    40.Behan, AT, Byrne, C, Dunn, MJ, Cagney, G, Cotter, DR. Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression[J]. Mol Psychiatry, 2009,14(6):601-613.
    41.Bastone, A, Fumagalli, E, Bigini, P, Perini, P, Bernardinello, D, Cagnotto, A, Mereghetti, I, Curti, D, Salmona, M, Mennini, T. Proteomic profiling of cervical and lumbar spinal cord reveals potential protective mechanisms in the wobbler mouse, a model of motor neuron degeneration [J]. J Proteome Res,2009,8(11):5229-5240.
    1.Van den Bergh, G, Arckens, L. Fluorescent two-dimensional difference gel electrophoresis unveils the potential of gel-based proteomics[J]. Curr Opin Biotechnol,2004,15(1):38-43.
    2.Gorg, A, Weiss, W, Dunn, MJ. Current two-dimensional electrophoresis technology for proteomics[J]. Proteomics,2004,4(12):3665-3685.
    3.McNamara, LE, Dalby, MJ, Riehle, MO, Burchmore, R. Fluorescence two-dimensional difference gel electrophoresis for biomaterial applications[J]. Journal of the Royal Society Interface, 2010,7(Supp11):S107-117.
    4.Kahn, A, Boivin, P, Rubinson, H, Cottreau, D, Marie, J, Dreyfus, JC. Modifications of purified glucose-6-phosphate dehydrogenase and other enzymes by a factor of low molecular weight abundant in some leukemic cells[J]. Proc Natl Acad Sci U S A,1976,73(1):77-81.
    5.刘小荣,张笠,王勇平.实时荧光定量PCR技术的理论研究及其医学应用[J].中国组织工程研究与临床康复,2010,14(2):329-332.
    1.邱宗荫,尹一兵,邱峰,母昭德,冯文莉.临床蛋白质组学[M].北京;科学出版社.2008年4月:2-13.
    2.郭葆玉.药物蛋白质组学[M].北京:人民卫生出版社,2007年9月:9-10.
    3.Van den Bergh, G, Arckens, L. Fluorescent two-dimensional difference gel electrophoresis unveils the potential of gel-based proteomics[J]. Curr Opin Biotechnol,2004,15(1):38-43.
    4.McNamara, LE, Dalby, MJ, Riehle, MO, Burchmore, R. Fluorescence two-dimensional difference gel electrophoresis for biomaterial applications[J]. Journal of the Royal Society Interface,2010,7(Suppl 1):S107-117.
    5.Unlu, M, Morgan, ME, Minden, JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts[J]. Electrophoresis,1997,18(11):2071-2077.
    6.Gharbi, S, Gaffney, P, Yang, A, Zvelebil, MJ, Cramer, R, Waterfield, MD, Timms, JF. Evaluation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system[J]. Mol Cell Proteomics,2002,1(2):91-98.
    7.Tonge, R, Shaw, J, Middleton, B, Rowlinson, R, Rayner, S, Young, J, Pognan, F, Hawkins, E, Currie, I, Davison, M. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology[J]. Proteomics,2001,1(3):377-396.
    8.Shaw, J, Rowlinson, R, Nickson, J, Stone, T, Sweet, A, Williams, K, Tonge, R. Evaluation of saturation labelling two-dimensional difference ged electrophoresis fluorescent dyes[J]. Proteomics,2003,3(7):1181-1195.
    9.Van den Bergh, G, Clerens, S, Cnops, L, Vandesande, F, Arckens, L. Fluorescent two-dimensional difference gel electrophoresis and mass spectrometry identify age-related protein expression differences for the primary visual cortex of kitten and adult cat[J]. J Neurochem,2003,85(1):193-205.
    10.Greengauz-Roberts, O, St ppler, H, Nomura, S, Yamaguchi, H, Goldenring, JR, Podolsky, RH, Lee, JR, Dynan, WS. Saturation labeling with cysteine-reactive cyanine fluorescent dyes provides increased sensitivity for protein expression profiling of laser-microdissected clinical specimens [J]. Proteomics,2005,5(7):1746-1757.
    11.Alban, A, David, SO, Bjorkesten, L, Andersson, C, Sloge, E, Lewis, S, Currie, I. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard[J]. Proteomics,2003,3(1):36-44.
    12.Mary-Huard, T, Daudin, JJ, Baccini, M, Biggeri, A, Bar-Hen, A. Biases induced by pooling samples in microarray experiments[J]. Bioinformatics,2007,23(13):1313-1318.
    13.Patton, WF, Beechem, JM. Rainbow's end: the quest for multiplexed fluorescence quantitative analysis in proteomics[J]. Curr Opin Chem Biol,2002,6(1):63-69.
    14.Tumani, H, Lehmensiek, V, Lehnert, S, Otto, M, Brettschneider, J.2D DIGE of the cerebrospinal fluid proteome in neurological diseases[J]. Expert Review of Proteomics,2010,7(1):29-38.
    15.Focking, M, Boersema, PJ, O'Donoghue, N, Lubec, G, Pennington, SR, Cotter,. DR, Dunn, MJ. 2-D DIGE as a quantitative tool for investigating the HUPO Brain Proteome Project mouse series[J]. Proteomics,2006,6(18):4914-4931.
    16.Miklos, GL, Rubin, GM. The role of the genome project in determining gene function: insights from model organisms[J]. Cell,1996,86(4):521-529.
    17.Wildgruber, R, Harder, A, Obermaier, C, Boguth, G, Weiss, W, Fey, SJ, Larsen, PM, Gorg, A. Towards higher resolution:two-dimensional electrophoresis of Saccharomyces cerevisiae proteins using overlapping narrow immobilized pH gradients[J]. Electrophoresis,2000,21(13): 2610-2616.
    18.Zuo, X, Speicher, DW. Comprehensive analysis of complex proteomes using microscale solution isoelectrofocusing prior to narrow pH range two-dimensional electrophoresis[J]. Proteomics, 2002,2(1):58-68.
    19.Huber, LA, Pasquali, C, Gagescu, R, Zuk, A, Gruenberg, J, Matlin, KS. Endosomal fractions from viral K-ras-transformed MDCK cells reveal transformation specific changes on two-dimensional gel maps[J]. Electrophoresis,1996,17(11):1734-1740.
    20.Molloy, MP, Herbert, BR, Walsh, BJ, Tyler, MI, Traini, M, Sanchez, JC, Hochstrasser, DF, Williams, KL, Gooley, AA. Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis[J]. Electrophoresis,1998,19(5):837-844.
    21.Han, MJ, Herlyn, M, Fisher, AB, Speicher, DW. Microscale solution IEF combined with 2-D DIGE substantially enhances analysis depth of complex proteomes such as mammalian cell and tissue extracts[J]. Electrophoresis,2008,29(3):695-705.
    22.0'Farrell, PH. High resolution two-dimensional electrophoresis of proteins[J]. J Biol Chem, 1975,250(10):4007-4021.
    23.Tumani, H, Teunissen, C, Sussmuth, S, Otto, M, Ludolph, AC, Brettschneider, J. Cerebrospinal fluid biomarkers of neurodegeneration in chronic neurological diseases[J]. Expert Review of Molecular Diagnostics,2008,8(4):479-494.
    24.Hu, Y, Malone, JP, Fagan, AM, Townsend, RR, Holtzman, DM. Comparative proteomic analysis of intra-and interindividual variation in human cerebrospinal fluid[J]. Molecular & Cellular Proteomics,2005,4(12):2000.
    25.Brettschneider, J, Mogel, H, Lehmensiek, V, Ahlert, T, Sussmuth, S, Ludolph, AC, Tumani, H. Proteome analysis of cerebrospinal fluid in amyotrophic lateral sclerosis (ALS)[J]. Neurochemical research,2008,33(11):2358-2363.
    26.Lehmensiek, V, Sussmuth, S, Tauscher, G, Brettschneider, J, Felk, S, Gillardon, F, Tumani, H. Cerebrospinal fluid proteome profile in multiple sclerosis[J]. Multiple sclerosis,2007,13(7):840.
    27.Qin, Z, Qin, Y, Liu, S. Alteration of DBP levels in CSF of patients with MS by proteomics analysis[J]. Cellular and molecular neurobiology,2009,29(2):203-210.
    28.Carrette, O, Demalte, I, Scherl, A, Yalkinoglu, O, Corthals, G, Burkhard, P, Hochstrasser, DF, Sanchez, JC. A panel of cerebrospinal fluid potential biormarkers for the diagnosis of Alzheimer's disease[J]. Proteomics,2003,3(8):1486-1494.
    29.Brechlin, P, Jahn, O, Steinacker, P, Cepek, L, Kratzin, H, Lehnert, S, Jesse, S, Mollenhauer, B, Kretzschmar, HA, Wiltfang, J. Cerebrospinal fluid-optimized two-dimensional difference gel electrophoresis (2-D DIGE) facilitates the differential diagnosis of Creutzfeldt-Jakob disease[J]. Proteomics,2008,8(20):4357-4366.
    30.Lehmensiek, V, Sussmuth, S, Brettschneider, J, Tauscher, G, Felk, S, Gillardon, F, Tumani, H. Proteome analysis of cerebrospinal fluid in Guillain-Barre syndrome (GBS)[J]. Journal of neuroimmunology,2007,185(1-2):190-194.
    31. Jin, T, Hu, LS, Chang, M, Wu, J, Winblad, B, Zhu, J. Proteomic identification of potential protein markers in cerebrospinal fluid of GBS patients[J]. European journal of neurology,2007,14(5): 563-568.
    32.Ray, S, Britschgi, M, Herbert, C, Takeua-Uchimura, Y, Boxer, A, Blennow, K, Friedman, LF, Galasko, DR, Jutel, M, Karydas, A. Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins[J]. Nature Medicine,2007,13(11):1359-1362.
    33.Stuhler, K, Pfeiffer, K, Joppich, C, Stephan, C, Jung, K, Muller, M, Schmidt, O, van Hall, A, Hamacher, M, Urfer, W, Meyer, HE, Marcus, K. Pilot study of the Human Proteome Organisation Brain Proteome Project: applying different 2-DE techniques to monitor proteomic changes during murine brain development[J]. Proteomics,2006,6(18):4899-4913.
    34.Frohlich, T, Helmstetter, D, Zobawa, M, Crecelius, AC, Arzberger, T, Kretzschmar, HA, Arnold, GJ. Analysis of the HUPO Brain Proteome reference samples using 2-D DIGE and 2-D LC-MS/MS[J]. Proteomics,2006,6(18):4950-4966.
    35.McNair, K, Broad, J, Riedel, G, Davies, CH, Cobb, SR. Global changes in the hippocampal proteome following exposure to an enriched environment[J]. Neuroscience,2007,145(2): 413-422.
    36.01k, S, Turchinovich, A, Grzendowski, M, Stuhler, K, Meyer, HE, Zoidl, G, Dermietzel, R. Proteomic analysis of astroglial connexin43 silencing uncovers a cytoskeletal platform involved in process formation and migration[J]. Glia,2010.58(4):494-505.
    37.Raggiaschi, R, Lorenzetto, C, Diodato, E, Caricasole, A, Gotta, S, Terstappen, GC. Detection of phosphorylation patterns in rat cortical neurons by combining phosphatase treatment and DIGE technology[J]. Proteomics,2006,6(3):748-756.
    38.Jiang, L, Fang, J, Moore, DS, Gogichaeva, NV, Galeva, NA, Michaelis, ML, Zaidi, A. Age-associated changes in synaptic lipid raft proteins revealed by two-dimensional fluorescence difference gel electrophoresis[J]. Neurobiol Aging,2010,31:2146-2159.
    39.Freeman, WM, VanGuilder, HD, Bennett, C, Sonntag, WE. Cognitive performance and age-related changes in the hippocampal proteome[J]. Neuroscience,2009,159(1):183-195.
    40.Schmitt, A, Bauer, M, Heinsen, H, Feiden, W, Falkai, P, Alafuzoff, I, Arzberger, T, Al-Sarraj, S, Bell, JE, Bogdanovic, N, Bruck, W, Budka, H, Ferrer, I, Giaccone, G, Kovacs, GG, Meyronet, D, Palkovits, M, Parchi, P, Patsouris, E, Ravid, R, Reynolds, R, Riederer, P, Roggendorf, W, Schwalber, A, Seilhean, D, Kretzschmar, H. How a neuropsychiatric brain bank should be run:a consensus paper of Brainnet Europe II[J]. J Neural Transm,2007,114(5):527-537.
    41.Crecelius, A, Gotz, A, Arzberger, T, Frohlich, T, Arnold, GJ, Ferrer, I, Kretzschmar, HA. Assessing quantitative post-mortem changes in the gray matter of the human frontal cortex proteome by 2-D DIGE[J]. Proteomics,2008,8(6):1276-1291.
    42.Keck, S, Nitsch, R, Grune, T, Ullrich, O. Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer's disease[J]. Journal of Neurochemistry,2003,85(1):115-122.
    43.Gillardon, F, Klo, A, Berg, M, Neumann, M, Mechtler, K, Hengerer, B, Dahlmann, B. The 20S proteasome isolated from Alzheimer's disease brain shows post-translational modifications but unchanged proteolytic activity[J]. Journal of Neurochemistry,2007,101(6):1483-1490.
    44.Chou, JL, Shenoy, DV, Thomas, N, Choudhary, PK, LaFerla, FM, Goodman, SR, Breen, GAM. Early dysregulation of the mitochondrial proteome in a mouse model of Alzheimer's disease[J]. Journal of proteomics,2010,74(4):466-479.
    45.Dauer, W, Przedborski, S. Parkinson's disease: mechanisms and models[J]. Neuron,2003,39(6): 889-909.
    46.Jenner, P. Oxidative stress in Parkinson's disease[J]. Ann Neurol,2003,53 Suppl 3:S26-36; discussion S36-28.
    47.Jones, DC, Gunasekar, PG, Borowitz, JL, Isom, GE. Dopamine-induced apoptosis is mediated by oxidative stress and Is enhanced by cyanide in differentiated PC 12 cells[J]. J Neurochem, 2000,74(6):2296-2304.
    48.Hastings, TG, Lewis, DA, Zigmond, MJ. Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections [J]. Proc Natl Acad Sci U S A,1996,93(5):1956-1961.
    49.Spencer, JP, Jenner, P, Daniel, SE, Lees, AJ, Marsden, DC, Halliwell, B. Conjugates of catecholamines with cysteine and GSH in Parkinson's disease: possible mechanisms of formation involving reactive oxygen species[J]. J Neurochem,1998,71(5):2112-2122.
    50.Van Laar, VS, Dukes, AA, Cascio, M, Hastings, TG. Proteomic analysis of rat brain mitochondria following exposure to dopamine quinone: implications for Parkinson disease[J]. Neurobiol Dis,2008,29(3):477-489.
    51.Jenner, P. Pharmacology of dopamine agonists in the treatment of Parkinson's disease[J]. Neurology,2002,58(4 Suppl 1):S1-8.
    52.Kultima, K, Scholz, B, Alm, H, Skold, K, Svensson, M, Crossman, AR, Bezard, E, Andren, PE, Lonnstedt, I. Normalization and expression changes in predefined sets of proteins using 2D gel electrophoresis:a proteomic study of L-DOPA induced dyskinesia in an animal model of Parkinson's disease using DIGE[J]. BMC Bioinformatics,2006,7:475.
    53.Hong, Z, Liu, J, Xia, L, Pan, J, Xiao, Q, Lu, G, Liang, L, Chen, SD. Identification of glial-cell-line-derived neurotrophic factor-regulated proteins of striatum in mouse model of Parkinson disease[J]. Proteomics-Clinical Applications,2009,3(9):1072-1083.
    54.Deschepper, M, Hoogendoorn, B, Brooks, S, Dunnett, SB, Jones, L. Proteomic changes in the brains of Huntington's disease mouse models reflect pathology and implicate mitochondrial changes[J]. Brain Research Bulletin,2011, doi:10.1016/j.brainresbull.2011.1001.1012.
    55.Oikawa, S, Yamada, T, Minohata, T, Kobayashi, H, Furukawa, A, Tada-Oikawa, S, Hiraku, Y, Murata, M, Kikuchi, M, Yamashima, T. Proteomic identification of carbonylated proteins in the monkey hippocampus after ischemia-reperfusion[J]. Free Radical Biology and Medicine, 2009,46(11):1472-1477.
    56.Zhang, M, Huang, K, Zhang, Z, Ji, B, Zhu, H, Zhou, K, Li, Y, Yang, J, Sun, L, Wei, Z, He, G, Gao, L, He, L, Wan, C. Proteome alterations of cortex and hippocampus tissues in mice subjected to vitamin A depletion[J]. The Journal of Nutritional Biochemistry,2010, doi:10.1016/j.jnutbio.2010.1008.1012.
    57.Luppa, M, Sikorski, C, Luck, T, Ehreke, L, Konnopka, A, Wiese, B, Weyerer, S, Konig, HH, Riedel-Heller, SG. Age-and gender-specific prevalence of depression in latest-life-Systematic review and meta-analysis[J]. Journal of Affective Disorders,2010, doi:DOI:10.1016/j.jad. 2010.1011.1033.
    58.Fiske, A, Wetherell, JL, Gatz, M. Depression in older adults[J]. Annual review of clinical psychology,2009,5:363-389.
    59.Liu, Y, Yang, N, Hao, W, Zhao, Q, Ying, T, Liu, S, Li, Q, Liang, Y, Wang, T, Dong, Y, Ji, C, Zuo, P. Dynamic proteomic analysis of protein expression profiles in whole brain of Balb/c mice subjected to unpredictable chronic mild stress:Implications for depressive disorders and future therapies[J]. Neurochemistry International,2011, doi: DOI:10.1016/j.neuint.2011.1002.1019.
    60.Tandon, R, Nasrallah, HA, Keshavan, MS. Schizophrenia, "Just the Facts" 5. Treatment and prevention Past, present, and future[J]. Schizophrenia Research,2010,122(1-3):1-23.
    61.English, JA, Dicker, P, Focking, M, Dunn, MJ, Cotter, DR.2-D DIGE analysis implicates cytoskeletal abnormalities in psychiatric disease[J]. Proteomics,2009,9(12):3368-3382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700