钠碱烟气脱硫吸收液生物转化成单质硫的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碱吸收-微生物烟气脱硫技术以钠碱溶液吸收烟气中的SO2形成SO32-/SO42-,再利用厌氧微生物还原SO32-/SO42-形成S2-,最后采用好氧微生物氧化S2-生成单质硫(SO),实现硫资源的回收利用。论文着重研究钠碱吸收-生物脱硫工艺中的生物过程,以模拟SO2碱吸收液为处理对象,考察了好氧反应器的启动与运行,厌氧好氧反应器的串联和运行,以及单质硫产品的表征。
     在容积为45L的内循环生物流化床好氧反应器内,利用无色硫细菌将模拟废水中的S2-氧化为S0。在流化床内温度30±2℃、pH值7.50+0.50及进水pH值7.00~7.50、COD:N:P=100:5:1的条件下启动并运行反应器。28d后,反应器内形成大量微生物体,当有机物和S2-负荷稳定在3.73kgCOD·m-3·d-1和1.09kgS2-.m-3·d-1时,相应的脱除率维持在78%和90%以上,理论S0产率为75%左右。考察了水力停留时间(HRT)和曝气量对反应器处理效果的影响,在进水S2-浓度和有机物浓度分别为200mg·L-1和800mg·L时,适宜HRT为8h,最佳曝气量为60-90L·h-1。
     以厌氧反应器出水作为好氧反应器进水,在反应器内温度30±2℃、厌氧段进水pH值7.50~8.50和COD:N:P=100:5:1的条件下,完成厌氧好氧反应器的串联。19~30d期间,厌氧-好氧串联生物脱硫体系的有机物和SO42-负荷稳定在5.8±0.1kgCOD·m-3·d-1和1.8±0.1kgS042-m-3·dq-1,相应的脱除率平均为91.2%和85.8%,理论S0产率平均为63.9%,最高可达76%左右;两个反应器内微生物量丰富,且好氧反应器内无厌氧菌污染。通过水量、水质负荷冲击以及二次启动实验,考察厌氧-好氧串联体系运行效能,结果表明该生物体系具备良好的抗冲击能力和恢复能力。
     在厌氧-好氧串联体系运行稳定的基础上,采用响应曲面分析法研究主要因素的影响情况并优化工艺条件,得到以理论S0产生率为主要函数响应值的模拟方程,并计算出最优工艺条件为:进水SO42-浓度1348mg·L-1,HRT为16h和曝气量165L·h-1。在该条件下运行串联体系5d,所得S0理论产率的实验结果为65.2%,与函数预测值符合良好,肯定了该模型的适用性。显著性检测结果表明所选的3个因素皆为显著项,同时HRT和进水SO42-浓度的交互作用显著于其余交互项。
     显微镜观察得到,沉淀池水样中富含淡黄色颗粒物质和膜片状物;扫描电镜结果表明固体硫产品由不规则的硫颗粒组成,且易汇聚形成较大硫颗粒:X射线衍射分析显示单质硫产品以斜方硫(a-sulfur)晶体的形式存在。考察了单质硫产品的组分及含量,得到产品中硫磺纯度达79%。
Alkali absorption-biological flue gas desulphurization technology includes absorbtion SO2 in flue gas to SO32-/SO42- by sodium hydroxide, anaerobic reduction of SO42- to S2- by the anaerobe and aerobic oxidation of S2- to sulfur element (S0) by the aerobium. In that case, the recovery of sulfur resources are achieved. This paper concentrated on the bio-process and investigated the start-up and running of the aerobic reactor, the tandem and process optimization of the anaerobic and aerobic reactors and the analysis of the sulfur product.
     The biological oxidation process of sulfide to sulfur with colorless sulfur bacteria was studied in an aerobic internal circulating bio-fluidized bed reactor (effective volume=45L) with the simulation sulfide -containing wastewater as influent. The reactor was started at 30±2℃temperature and 7.00~7.50 of pH and COD:N:P=100:5:1 for the influent. After 28 days, there were a large amount of myceliums in the reactor, and the organic loading rate reached over 3.73kgCOD·m-3·d-1and 1.09kgS2-·m-3·d-1 for the sulfide loading rate. The removal efficiency of organic and sulfide were more than 70 %and 85% respectively while the theoretical yield of sulfur was 75% approximately. In addition, hydraulic retention time (HRT) and the air aeration quantity were inspected. It was demonstrated that the optimum HRT value was 8h under the influent concentration of S2- and organic respectively for 200mg·L-1 and 800mg·L-1, and the best treatment effect of aeration was obtained at 60~90L·h-1.
     The anaerobic and aerobic reactors were tandemed in the way of using the anaerobic enfluent as aerobic influent under the condition of 30±2℃in two reactors and 7.50~8.50 of pH and COD:N:P=100:5:1 for the anaerobic influent. During 19~30 days, the organic and the SO42- loading rates of anaerobic reactor respectively reached 5.8±0.1kgCOD·m-3·d-1 and 1.8±0.1kgSO42-·m-3·d-1 with 91.2% of the removal efficiency of organic and 85.8% of the SO42- while the theoretical yield of sulfur was 63.9% on average. Furthermore, there were a large amount of myceliums in both reactor, and the aerobic bacteria was not polluted by anaerobic. The water quantity and quality shock lading experiment and the second start-up experiment were operated to observe the run efficiency of the anaerobic-aerobic tandem system. The result showed that the system was good at anti-shocking and resume.
     On the base of steady running of the anaerobic-aerobic tandem system, Response surface methodology was employed to decide the reciprocal influence of three main factors and to determinate the optimum operation conditions which were calculated from the simulation equation for S0 conversion at HRT of 16h, inlet SO42- concentration of 1348 mg·L-1 and air flow of 165 L·h-1. Statistical test showed that all three factors were significant and the interaction effect of HRT and inlet SO42- concentration was more remarkable than others. The results of demonstration test for 5 days, acquiring theoretical S0 yield efficiency of 65.2% on average which extremely approximate with the predicting value, illustrated that the equation had good applicability with the reactor system.
     Moreover, the light microscopic photographs of the effluent from aerobic reactor showed that there were lots of sulfur granules and membranaceous sulfur in effluent water. The observation of scanning electron microscope of sulfur product showed that the product was consisted of irregular crystal grains forming into larger particles. It is inferred that the sulfur product was present in the form of rhombic sulfur (a-sulfur) by X-Ray Diffraction analysis. The component and contents were mensurated and it is testified that the purity of sulfur product was 79% approximately.
引文
[1]孙克勤,钟秦.火电厂烟气脱硫系统设计、建造及其运行[M].北京:化学工业出版社,2005
    [2]陈俊峰,黄振仁,廖传华.烟气脱硫在我国的发展现状及研究进展[J].电站系统工程,2008,24(4):4-6
    [3]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社,2002
    [4]Pandey R A, Biswas R, Chakrabarti T, et al. Flue gas desulfurization:physicochemical and biotechnological approaches [J]. Critical Reviews in Environmental Science and Technology,2005,35: 571-622
    [5]管一明,李仁刚.湿式石灰石烟气脱硫工艺现状和发展[J].电力环境保护,1999,15(2):52-58
    [6]何伯述,郑显玉,常东武,等.温度对氨法脱硫率影响的实验研究[J].环境科学学报.2002,22(3):412-417
    [7]贾勇,钟秦,杜冬冬.填料塔氨法脱硫模型研究[J].中国电机工程学报,2009,29(14):52-57
    [8]吴忠标,刘越,谭人恩.双碱法烟气脱硫工艺的研究[J].环境科学学报,2001,21(5):534-537
    [9]National Research Council. Flue-gas desulfurization technology[M]. The United States:National Academies,1980
    [10]滕斌.半干法烟气脱硫的实验及机理研究[D].博士论文,浙江:浙江大学环境学院,2004
    [11]王艳锦,郑正,周培国,等.生物法烟气脱硫技术研究进展[J].中国电力,2006,39(6):56-60.
    [12]Gerard M, Alfons J M. The ecology and biotechnology of sulphate-reducing bacteria[J]. Nature Reviews Microbiology,2008,6:441-454
    [13]李亚新,陈丽华.利用硫酸盐还原菌烟道气生物脱硫技术[J].环境科学与技术,2003,26(3):51-53
    [14]王浩源.高浓度硫酸盐废水治理技术的研究[J].环境导报,2001,1(1):22-25
    [15]张克强,朱文亭,张蕾,等.含硫酸盐高有机物浓度酵母生产废水两相厌氧处理[J].城市环境与城市生态,2002,15(6):42-44
    [16]刘潮清.石油脱硫新方法-生物脱硫[J].化工时刊,1995,(10):31-32
    [17]胡凯光,汪爱河,冯志刚,等.硫酸盐还原菌及在处理硫酸盐废水中的作用[J].铀矿冶,2007,26(1):48-52
    [18]Postgate J R. The Sulfate reducing bacteria[M]. UK:Cambridge University Press, Cambridge,1984
    [19]Butlin K R, Adams M E, Thomas M. The Isolation and cultivation of sulphate-reducing bacteria[J]. Gen Microbiol,1949,3:46-59
    [20]Middleton A G, Lawrence A W. Kinetics of microbial sulfate reduction[J]. Water Pollution Control Federation,1977,49:16-59
    [21]Widdel F, Pfenning N. A new anaerobic sporing, acetate-oxidizing, sulfate reducing bacterium, desulfotomaculum (emend) acetoxi-dans[J]. Archives of Microbiology,1977,112:119-122
    [22]Maree J P, Strydom W F. Biological sulphate removal in an upflow packed bed reactor[J]. Water Research,1985,19(9):1101-1106
    [23]Robertson L A, Kuenen J G. The colorless sulfur-oxidizing bacteria. In:bergey's manual of determinative bacteriology[J]. The Prokaryotes,1993, (1):385-413
    [24]翁酥颖,戚蓓静,史家梁,等.环境微生物学[M].北京:科学出版社,1985
    [25]杨景亮,赵毅,任洪强.废水中硫化物生物净化影响因素的研究[J].环境工程,1999,17(4):11-13
    [26]Kuenen J G, Robertson L A. The use of natural bacterial populations for the treatment of sulphur-contamining wastewater[J]. Biodegradation,1992, (3):239-254
    [27]赵毅,周云.微生物技术在烟气脱硫中的应用[J].电力环境保护,2008,24(1):1-4
    [28]石慧芳,陈春涛,刘启旺,等.微生物烟气脱硫技术及其研究方向[J].郑州轻工业学院学报(自然科学版),2002,17(2):100-103
    [29]王小燕,张永奎,梁斌.微生物脱硫工艺条件的研究[J].环境科学,2003,24(5):44-48
    [30]Kimberley T, Vikrama B, Mehdi N. Bacteria of the sulphur cycle:An overview of microbiology, biokinetics and their role in petroleum and mining industries[J]. Biochemical Engineering Journal, 2009,44:73-94
    [31]缪应祺.废水生物脱硫机理及技术[M].北京:化学工业出版社,2004
    [32]Kuenen J G. Colourless sulphur bacteria and their role in the sulphur cycle[J]. Plant and Soil,1975,43: 49-76
    [33]杨超,丁丧兰,刘敏.硫化物生物氧化的研究进展及应用[J].四川化工,2007,10(3):46-49
    [34]Saleem H, Julie S, Rebow M, et al. Large-scale cultivation of yhiobacillus denitrificans to support pilot and field tests of a bioaugmentation process for microbial oxidation of sulfides[J]. Applied Biochemistry and Biotechnology,1994, (45):925-934
    [35]任南琪,王爱杰,李建政,等.硫化物氧化及新工艺[J].哈尔滨工业大学学报,2003,35(3):265-268
    [36]方艳,闵小波,柴立元,等.硫酸盐还原菌生理特性及其在废水处理的应用[J].工业安全与环保,2006,32(5):17-19
    [37]Sublette K L, Gwozdz K L. An economic analysis of microbial reduction of sulfur dioxide as a means of byproduct recovery from regenerble processes for flue gas desulfurization[J]. Applied Biochemistry and Biotechnology,1991,28(29):635-646
    [38]Selvaraj P T, Little M, Kaufman E N. Analysis of immobiolized cell bioreactor for desulfurization of flue gases and sulfite/sulfate-laden wastewater[J]. Biodegradation,1997,8:227-236
    [39]Gangagni Rao, P Ravichandram, Johny Joseph, et al. Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria[J]. Journal of Hazardous Materials,2007,147:718-725
    [40]万海清,苏仕军,朱家骅,等.硫酸盐还原菌的生长因子及脱硫性能的研究[J].高校化学工程学报,2004,18(2):218-223
    [41]汤兵,徐锦妙.高负荷厌氧生物反应器研究进展及其应用[J].科技导报,2011,3:76-79
    [42]S Lucas, Zeeman G, Jules B, et al. A review:the anaerobic treatment of sewage in UASB and EGSB reactors[J]. Bioresource Technology,1998,65:175-190
    [43]李玲,贺延龄,顾昕.两相UASB反应器处理含高浓度硫酸盐废水[J].环境科学与技术,2011,2:136-138
    [44]邱广亮.微生物法脱除工业烟气二氧化硫的研究[D].博士论文,天津:天津大学,2006.
    [45]范琳.微生物法脱除燃煤烟气中SO2的研究[D].硕士论文,内蒙古:内蒙古师范大学,2004
    [46]Martijn F M, Tom W T, Piet N L, et al. High rate sulfate reduction at pH 6 in a pH-auxostat submerged membrance bioreactor fed with formate[J]. Water Research,2008,42:2439-2448
    [47]许吉现.生物脱硫工艺中单质硫的生成率分析[J].中国给水排水,2004,19(3):96-97
    [48]Janssen A J H, Sleyster R. Biological sulphide oxidation in a fed-batch reactor[J]. Biotech Bioeng, 1995,47:327-333
    [49]张克强,黄文星,季民,等.含硫化物废水生物处理过程中单质硫的形成特性[J].农业环境科学学报,2006,25(2):522-526
    [50]Buisman C J N, Geraats B G.. Optimization of sulfur production in a biotechnological sulfide removing reactor[J]. Biotechnology and Bioengineering,1990,35:50-56
    [51]左剑恶,袁琳,胡纪萃,等.利用无色硫细菌氧化废水中硫化物的研究[J].环境科学,1995,16(6):7-10
    [52]Buisman C J N, ljspeert P, Lettinga G. Kinetic parameters of a mixed culture oxidizing sulfide and sulfur with oxygen[J]. Biotechnology and Bioengineering,1991,38:813-820
    [53]Buisman C J N, Ben W, Lettinga G. Biotechnological sulphide removel in three polyurethane carrier reactors:stirred, biorotor reactor and upflow reactor[J]. Water Research,1990,24(2):245-251
    [54]Buisman C J N, Lettinga G. Sulphide removal from anaerobic waste treatment effluent of a papermill[J]. Water Research,1990,24(3):313-319
    [55]Qiu G L, Zhao K, Li Y L. Thiobacillus thioparus immobilized by magnetic porous beads:preparation and characteristic[J]. Enzyme and Microbial Technology,2006,39(4):770-777
    [56]Ruitenberg R, Schultz C E, Buisman C J N. Bio-oxidation of minerals in air-lift loop bioreactors[J]. International Journal of Mineral Processing,2001,62:271-278
    [57]Buisman C J N, Uspeert P, Janssen A, et al. Kinetics of chemical and biological sulphide oxidation in aqueous solutions[J]. Water Research,1990,24(5):667-671
    [58]杨景亮,左剑恶,胡纪翠.两相厌氧工艺处理含硫酸盐有机废水的研究[J].环境科学,1995,16(3):8
    [59]Lee K H, Sublette K. L. Simultaneous combinedmicrobial removal of sulfur dioxide and nitric oxide from a gas stream[J]. Applied Biochemistry and Biotechnology,1991,28(1):623-624
    [60]Buisman C J N, Prins W L. New process forbiological flue gas desulphurization[A]. Symposium on Waste Gas Cleaning[C]. Heidelberg:University of Heidelberg Press,1994,161-281
    [61]王英刚,张秀君.生化法烟气脱硫技术综述[J].四川环境,2009,28(3):61-65
    [62]Ligy P, Deshusses M A. Sulfur dioxide treatment from flue gases using a biotrickling filter-bioreactor system[J]. Environmental Science Technology,2003,37(9):1978-1982
    [63]Zee F P V, Villaverde S, Garcia P A, et al. Sulfide removal by moderate oxygenation of anaerobic sludge environments[J]. Bioresource Technology,2007,98:518-524
    [64]Armando G S, Revah S. The effect of chemical oxidation on the biological sulfide oxidation by an alkaliphilic sulfoxidizing bacterial consortium[J]. Enzyme and Microbial Technology,2007,40: 292-298
    [65]Friedrich C G, Rother D, Bardischewsky F, et al. Oxidation of reduced inorganic sulfur compounds by bacteria:emergence of a common mechanism[J]. Applied and Environmental Microbiology,2001, 67(7):2873-2882
    [66]Gonzalez S B M, Briones G R, Razo F E, et al. Inhibition of sulfate reduction by iron, cadmium and sulfide in granular sludge[J]. Journal of Hazardous Materials,2009,172(1):400-407
    [67]Shiratori T, Sonta H. Application of iron-oxidizing bacteria to hydrometallurgical flue dust treatment and H2S desulfurization [J]. FEMS Microbiology Reviews,1993, 11:165-174
    [68]Gasiorek J. Microbial removal of sulfur dioxide from a gas stream[J]. Fuel Processing Technology, 1994,40:129-138
    [69]Imaizumi T T. Some industrial applications of inorganicmicrobial oxidation[A]. Presented atworkshop on biotechnology for the Mining, MetalRefining and fossil fuel processing industry[C]. Biotechnology and Bioengineering Symposium,1998,16:157-160
    [70]马艳玲,赵景联,杨伯伦.微生物法处理含硫工业废气[J].现代化工,2002,22(3):48-51
    [71]Webster T S, Kargi F, Claude D L. Biofiltration of odors:toxics and volatile organic compounds from publicy owned treatment works[J]. Environmental Process,1996,15(30):141-146
    [72]徐毅,钟芎芳,蔡文六.微生物法脱除煤炭中黄铁矿硫[J].微生物学报,1990,30(2):134-140
    [73]姚传忠,张克强,季民,等.排硫硫杆菌生物强化处理含硫废水[J].中国给水排水,2004,20(2):57-59
    [74]干永川,陈光明,李建新,等.细菌温法烟气脱硫试验研究初探[J].中国电机工程学报,2004,24(8):233-237
    [75]刘启旺,张知见,吕静,等.硫酸盐还原菌的驯化及脱硫性能研究[J].中国电机工程学报,2009,29(17):51-55
    [76]王英刚,高丹,林静文,等.烟气脱硫微生物培养操作条件及反应器启动工艺特性研究[J].现代化工,2005,25(5):40-43
    [77]赖庆柯,张永奎.气升式反应器中微生物烟气脱硫研究[J].环境工程学报,2007,5:80-83
    [78]蒋文举,童小双,朱晓帆.微生物法液相氧化SO2[J].环境科学,2006,27(5):8410-845
    [79]解庆林,李亚伟,李丽芳.糖蜜酒精废水微氧厌氧生物脱硫[J].环境工程,2006,26(4):17-19
    [80]王乃光,温高,石慧芳等.液相生化法烟气脱硫试验研究——电厂中试试验综合测试[C].华北地区五省市化学学术研讨会:内蒙古大学学报(自然科学版),2001:34-37
    [81]苏丹.垃圾渗滤液脱除烟气二氧化硫体系的研究[J].硕士论文,四川:四川大学,2003
    [82]汪诚文,金小达,贾捍卫等.烟气生物脱硫污泥中单质硫的回收工艺中试研究[J].环境科技,2010,23(2):1-3
    [83]曹从荣,柯建明,崔高峰,等.荷兰的烟气生物脱硫工艺[J].国外科技,2002,38(2):38-39
    [84]李亚新,苏冰琴,耿诏宇,等.生物法处理含硫酸盐酸性废水及回收单质硫工艺[J].工业给排水,2000,26(8):28-30
    [85]阮文权,顾建,邹华.一种将含硫化合物转化为单质硫的生物脱硫技术[P].CN:101104132,2008-01-16
    [86]中国石油化工股份有限公司,中国石油化工股份有限公司抚顺石油化工研究院.内循环微生物反应器及石油微生物脱硫系统[P].CN:101109005,2008-01-23
    [87]丁忠浩,沈超,蒋磊,等.微生物循环燃煤烟气脱硫设备[P].CN:201324600,2009-10-14
    [88]谭玉芳.碱吸收-微生物烟气脱硫硫酸盐厌氧还原的研究[D].硕十论文,南京:南京理工大学,2010
    [89]赵毅,马双忱,黄建军,等.烟气循环流化床同时脱硫脱氮实验研究[J].中国电机工程学报,2005,25(2):120-124
    [90]GB/T16489-1996.水质硫化物的测定:亚甲基蓝分光光度法[S].1996-08-01
    [91]国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法[M].第四版,北京:中国环境科.学出版社,2002,139-141
    [92]HJ/T 56-2000.固定污染源排气中二氧化硫的测定:碘量法[S].2000-12-07
    [93]Steudel R. Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes[J]. Industrial & Engineering Chemistry Research,1996,35: 1417-1423
    [94]Visser J M, Robertson L A, Verseveld H W, et al. Sulfur production by obligately chemolithoautotrophic Thiobacillus species[J]. Applied and Environmental Microbiology,1997,63(6): 2300-2305
    [95]Albert J H, Piet N, Alfons J M, et al. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification[J]. Science of the total environment,2009,407:1333-1343
    [96]布坎南R E,吉本斯N E,著.伯杰细菌鉴定手册[M].中国科学院微生物研究所《伯杰细菌鉴定手册》翻译组,译.北京:科学出版社,1984,634-635
    [97]李晶,胡婕伦,谢明勇,等.响应曲面法优化磷脂酶Lecitase Ultra用于茶油脱胶工艺的研究[J].食品科学,2008,29(9):326-330
    [98]Li Q H, Fu C L. Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein[J]. Food Chemistry,2005,92(4):701-706
    [99]Chandrika L P, Fereidoon S. Optimization of extraction of phenolic compounds from wheat using response surface methodology[J]. Food Chemistry,2005,93(1):47-56
    [100]Ambati P, Ayyanna C. Optimizing medium constituents and fermentation conditions for citric acid production from palmyra jaggery using response surface method[J]. World Microbiol Biotechnol, 2001,17(4):331-335
    [101]Khayeta M, Zahrimb A Y, Hilal N. Modelling and optimization of coagulation of highly concentrated industrial grade leather dye by response surface methodology[J]. Chemical Engineering Journal,2011,167:77-83
    [102]Deeng K D, Mohamed A R, Bhatia S. Process optimization studies of structured Cu-ZSM-5 zeolite catalyst for the removal of NO using design of experiments (DOE)[J]. Chemical Engineering Journal,2004,103:147-157
    [103]Raya S, Lalmanb J A. Using the Box-Benkhen Design (BBD) to minimize the diameter of electrospun titanium dioxide nanofibers[J], Chemical Engineering Journal,2011, (169):116-125
    [104]Sergio A N, Antonio V, Mun O, et al. Hydrogen sulfide oxidation by a microbial consortium in a recirculation reactor system:sulfur formation under oxygen limitation and removal of phenols[J]. American Chemical Society.2004,38:918-923
    [105]曹媛,王娟,钟秦.微生物烟气脱硫工艺中硫化物生物氧化与回收单质硫的研究[J].中国电机工程学报,2011,31(29):48-31
    [106]江元翔,高淑红,陈长华.响应面设计法优化腺苷发酵培养基[J].华东理工大学学报(自然科学版),2005,31(3):309-313
    [107]董发明,白喜婷.响应而法优化超声提取杜仲雄花中黄酮类化合物的工艺参数[J].食品科学,2008,29(8):227-231
    [108]罗玲泉,刘成国,周向荣.响应面法优化酸乳EPS提取工艺[J].中国乳品工业,2007,35(6):28-30
    [109]李建武.生物化学实验原理和方法[M].北京:北京大学出版社,1994,165
    [110]王镜岩.生物化学[M].北京:高等教育出版社,2002,231
    [111]肖焕新,商杰,吴俊逸,等.烟火药剂中硫磺含量测定方法的研究[J].火工品,2006,4:52-56
    [112]李军幸,张克强,季民,等.分光光度法测定微生物处理含硫化物废水中的单质硫含量[J].农业环境科学学报,2006,25(1):261-265
    [113]张秀娟,潘庆辉.用液-固萃取法测定复混肥中单质硫含量[J].广东化工,2010,5(7):234-243
    [114]赵由之,梁小兵,安宁,等.液相色谱法测定湖泊沉积物中单质硫[J].矿物学报,2006,1:202-206
    [115]Kalyuzhnyi S. Investigation of sulfate reduction in a UASB react or using ethanol as electron donor process[C]. International Conf on Anaerobic Digestion,1997,3(5):25-29
    [116]Xing C H, Wen X H, Qian Y, et al. Microfiltration membrane coupled bioreactor for urban wastewater reclamation[J]. Desalination,2001,141(1):63-73

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700