α-羰基二硫缩烯酮的合成及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界范围内对环境问题的日益重视,传统的有机反应面临挑战,有机溶剂的使用受到限制。如何从源头上消除或减少废物排放对有机合成而言是极具挑战性的研究课题。近年来,水作为有机合成反应介质的报道相继出现。因为它是一种廉价、安全、无污染的绿色溶剂,完全克服了大多数有机溶剂带来的易燃、易爆、易挥发、容易污染环境的缺点,水相中的有机合成越来越成为有机化学研究的热点。目前,水介质中的有机反应已经被成功应用到氧化、还原、缩合、迈克尔(Michael)加成、维悌希、偶联、取代、有机光化学、自由基反应等诸多反应中。
     ?-羰基二硫缩烯酮类化合物是有机合成中的重要中间体,它的结构特征赋予了其化学反应的多样性,从而被广泛应用于有机合成中。近十年来,我们课题组一直致力于?-羰基二硫缩烯酮的合成与应用研究,取得了一系列研究成果。特别是成功实现了以水为介质和无溶剂条件下,?-羰基二硫缩烯酮作为硫醇替代试剂的硫缩醛/酮化和硫杂迈克尔加成反应,解决了低分子量硫醇在反应中的环境与安全问题。为了在更多的反应中减少有机溶剂的使用,开发?-羰基二硫缩烯酮新型的水相有机反应仍是我们课题组研究工作的重要内容。
     本论文致力于发展?-羰基二硫缩烯酮在水介质中的新型有机反应。以?-羰基二硫缩烯酮的合成为基础,以发展新基元合成反应和合成新方法为目标,创建了一种新的[4 + 2]成环策略,由此建立了一种通用性强、步骤简洁的合成多取代吡喃酮化合物的新方法。同时,从?-羰基二硫缩烯酮类化合物出发,经羟醛缩合反应分别得到单、双缩合产物?-烯酰基二硫缩烯酮;经氨基噻吩一步合成具有生物活性的噻吩并喹啉杂环化合物,为噻吩并喹啉类化合物的合成提供了一种操作简单、条件温和、步骤简洁的新方法。论文工作主要包括以下三方面的内容:
     1.在水介质中、碱催化下,以2-(1,3-亚乙/丙二硫)亚甲基-2,4-戊二酮和芳醛为底物,通过羟醛缩合反应设计合成了一系列新的单缩合、双缩合及不对称缩合产物?-烯酰基二硫缩烯酮。该方法操作简单、条件温和,产物易于分离,产率高,化学选择性好。
     2.创建了[4 + 2]成环策略。利用[4 + 2]成环策略在水介质中、碱催化下,?-乙酰基二硫缩烯酮和不同的芳醛反应,先后通过羟醛缩合、共轭加成-消除的两步串联反应简洁地合成了一系列具有生物活性的二氢吡喃酮。
     3.从?-二羰基化合物出发设计合成了系列新的氨基噻吩化合物,后者在BF3·Et2O催化下进一步环合得到了一系列噻吩并喹啉,该反应操作简单、条件温和,产物易于分离,产率高,为噻吩并喹啉类化合物的合成提供了一种步骤简洁的新方法。
Environmental issues have attracted considerable attention of the world. Traditional organic reaction is facing the challenge for the limitation of the use of organic solvent. It is challenging research topic to avoid or reduce the waste for organic synthesis. Reacently, it was widely reported that water was used as organic reaction medium. Bing an easily available, cheap, safe and benign solvent, water avoid the disadvantages of most organic solvent, such as flamable, explosive, volatile and pollution.Organic synthesis in aqueous media has become active area of organic chemistry. Today, water as solvent has been applied to many organlic reactions such as oxidation, reduction, condensation, cycloaddition, coupling, Wittig, organic photochemistry, radical reactions.
     α-Oxo ketene-(S,S)-acetals are a kind of versatile intermediates used in organic synthesis. Base on its structure, it is widely used in organic synthesis. In the past decade, we have been devoting our efforts towards the synthesis and applications onα-oxo ketene-(S,S)-acetals and achieved interesting results. In particular, we successfully appliedα-oxo ketene-(S,S)-acetals as thiols equivalents in thioacetalization and Michael addition reactions in aqueous or solvent-free conditions, sorting out the environment and safety problems of thiols with low molecular weight used in organic reactions. To avoid the use of organic solvent, we has been investigating the novel organic reaction in water.
     In the present thesis, we devort our effort to develop novel organic reaction withα-oxo ketene-(S,S)-acetals in water. Aming to develop new basic reactions and new synthetic methods we developed a new [4 + 2] synthetic strategy from ?-oxo ketene-(S,S)-acetal chemistry based on synthetic design, providing a general and simple route to polysubstituted pyranons. Mono- and double condensed ?-alkenoyl ketene-(S,S)-acetals aere synthesized through aldol condensation reactions of ?,?-diacetyl ketene-(S,S)-acetals. An efficient synthesis of thieno[2,3-b]quinolines is developed from 2-aminothiophens. The thesis mainly include three aspects:
     1. The synthesis of mono-condensed and double condensed???-alkenoyl ketene-(S,S)-acetals has been developed via the aldol condensation of ?,?-diacetyl ketene-(S,S)-acetals with aromatic aldehydes in the presence of NaOH in water. The simple procedure, mild conditions, easy separation, high yields, high chemoselectivity, and especially that in relation to the current environmental concerns, make this protocol most attractive for academic research and practical applications.
     2. [4 + 2] Annulation strategy is developed. Dihydropyranones were synthesized via the formal [4+2] annulation of readily available ?-acetyl ketene-S,S-acetals with various aldehydes, involving tandem aldol reaction and conjugate addition-elimination reaction, in the presence of NaOH in water.
     3. A series of 2-aminothiophens were designed and synthesied, which were converted into substituted thieno[2,3-b]quinolines catlyzed BF3·Et2O. The thieno[2,3-b]quinoline synthesis is associated with advantages such as simple procedure, mild condition and high yields.
引文
[1] Kelber C.,über die Einwirkung von Schwefelkohlenstoff und ?tzkali auf Acetophenon[J].Chem. Ber, 1910, 43, 1252
    [2] Dieter R K.α-Oxo ketene dithioacetals and related compounds: versatile three carbon synthons[J]. Tetrahedron, 1986, 42, 3029
    [3] Junjappa, H., Ila, H., Asokan, C. V.,α-Oxo ketene-S,S-N,S-and-N,N-acetals: Versatile intermediates in organic synthesis[J]. Tetrahedron, 1990, 46, 5423
    [4] Kolb, M., Umpolung of the reactivity of carbonyl compounds through sulfur-containing ketene dithioacetals in organic synthesis: Recent development reagents[J]. Synthesis, 1997, 357
    [5] Yakoyama, M., Imamot, T., Organic Reactions of Carbon Disulfide[J]. Synthesis, 1984, 797
    [6] Rudorf W D, Schierhorn A, Augustin M. Reaktionen von o-halogenacetophenonen mit schwefelkohlenst off und phenylisothiocyanat[J]. Tetrahedron, 1979, 35 (4): 551-556.
    [7] Dieter R K, Fishpaugh J R. Synthesis of alpha-pyrones from vinylogous thiol esters and alpha-oxo ketene dithioacetals[J]. J Org Chem, 1988, 53(9):2031-2046
    [8] Chandrasekharam,M.,Bhat,L.,Ila,H.,Junjappa,H.. Reformatsky reaction on thiocarbonyl compounds: New C-C bond forming reaction[J].Tetrahedron Lett.1993,34,6439
    [9] Gompper R, Kunz R. Keten-Dichloride and N-Dichlormethylen-Sulfonamide[J].Chem. Ber, 1966, 99(9): 2900-2904
    [10] Wang, M., Xu, X. X., Liu, Q. et al..Iododecarboxylation ofα-carboxylate,α-cinnamoyl ketene cyclic dithioacetals [J] Synth. Commun. 2002, 32, 3437
    [11]赵玉龙,刘群,孙然等.α-溴代二硫缩烯酮的制备及其反应[J].高等学校化学学报,2002,23: 1901-1902.
    [12]赵玉龙,刘群,孙然等.α-硝基二硫缩烯酮的制备[J].高等学校化学学报,2004,25: 297-298.
    [13] Ouyang Y, Dong D W, Yu H F, et al. A clean, facile and practical synthesis of alpha-oxoketene S,S-acetals in water[J]. Adv Syn & Cat, 2006, 348 (1-2): 206-210.
    [14] Liu, Q., Zhao, Z. B., Synthesis of 1,1-dialkylthio-1,3,5-hexatrienes withα-Oxo ketene dithioacetals[J]. Chinese Chem Lett, 1992, 3241
    [15] Suresh, U., Ila, H., Junjappa, H., et al. Aromatic and heteroaromatic annelation studies on 3-[bis(methylthio)methylene]-1-methyloxindole: synthesis of carbazoles and an efficient route to pyrido[2,3-b]indoles[J].Tethahedron, 2001, 57, 781
    [16] Junjappa, H., Pranab K., U. K. Syam Kumar., V Sriram., H Ila. 1-Bis(methoxy)- 4-bis(methylthio)-3-buten-2-one: useful three carbon synthon for synthesis of five and six membered heterocycles with masked (or unmasked) aldehyde functionality[J]. Tetrahedron. 2003, 59, 2631-2639
    [17] Compper R, Topfl W. Ketenederivate.2. Reaktionen Substituier Ketenmercaptale[J]. Chem Ber, 1962, 95(12): 2871.
    [18] (a) Chauhan M S, Junjappa H. The Use ofα-Ketoketene S,S-Diacetals for a Novel Pyrimidine Synthesis[J]. Synthesis, 1974 (12), 880-882. (b) Singh L W, Gupta A K, Ila H, Junjappa H. A Facile Synthesis of 2-Amino-4-alkoxy-6-styryl- and 2-Amino-4-alkoxy-6-(4-aryl-1,3-butadienyl)-pyrimi- dines by Direct Cyclocondensation[J]. Synthesis, 1984 (6), 516-518.
    [19] Barun O, Ila H, Junjappa H. A Facile Access to 2-Methylthio/Alkoxy/Amino-3-acylimidazo [1,2-a]pyridines Based on Cupric Chloride Promoted Oxidative Ring Closure of -Oxoketene N,S-, N,O-, and N,N-Acetals[J]. J Org Chem, 2000, 65(5), 1583-1587.
    [20] Mahata P K, Venkatesh C, Syam Kumar U K, et al. Reaction of -Oxoketene-N,S-arylaminoacetals with Vilsmeier Reagents: An Efficient Route to Highly Functionalized Quinolines and Their Benzo/Hetero-Fused Analogues[J]. J Org Chem, 2003, 68(10): 3966-3975.
    [21] Kolb, M., Ketene dithioacerals in organic synthesis recent developments[J]. Synthesis. 1984, 797
    [22] Saquet, M., Thuillier, A.. composes organiques sulfures rearrangement dalcools allyliques sulfures[J] Bull. Soc. Chim. Fr.. 1966, 3969
    [23] Myrboh, B., Ila, H., Junjappa, H., Polarized ketene dithioacetals. 28. A new general highly stereoselective and regiospecific method for homologation of ketones to .alpha.,.beta.-unsaturated esters via .alpha.-oxoketene dithioacetals[J]. J. Org. Chem. 1983, 5327
    [24] Rao, C. S., Chakrasali, R. T., Ila, H., Junjappa, H., Reygio and chemoselective conjujate 1,4-reduction ofα-Oxo ketene dithioacetals with sodium borohydride and sodium cyanoborohydride[J]. Tedrahedron, 1990, 46, 2195
    [25] Myrboh, B., Singh, L. W., Ila, H., Junjappa, H., Partial Reductive Demethylthiolation of a-Ketoketene S,S-Acetals with Sodium Borohydride/Nickel Chloride: A New, General Method for 2-Methylthio-1-alkenyl Ketones [J].Synthesis, 1982, 307
    [26] Lan, Y. H., Qun, L., Dong, D. W.. Magnesium-mrthanol reduction of 2-(1,3-dithian-2-ylidene)-1-aryl ketene: a pacile roure toα-aryl-β-(1,3-dithane)alcohols[J]. Chinese Chem Lett, 1992, 3:417-418.
    [27]刘群,朱再明,胡玉兰等,α-羰基烯酮二硫代缩醛化学—β,β-1,3-亚丙二硫基-α,β-不饱和酮在镁-甲醇中的还原反应[J],东北师大学报(自然科学版).1994,1:115-120.
    [28] Hojo, M., Harada, H., Yoshizawa, J., et al, Samarium diiodide-promored reductive cieavage of carbon-sulfur bomds: a novel stereoselective generation of functionalized vinglsamarium species and synthesis ofβ-thiobutenolides[J]. J. Org. Chem. 1993, 58, 6541
    [29] Singh, G., Ila, H., Junjappa, H.. Cationic benzoannelation of active methylene ketones via oxoketendithioacetals[J]. Tetrahedron Letters, 1984, 25,5059
    [30] Balu, M. P., Singh, G., Ila, H.. Cycloaromatization ofα-oxoketen dithiacetals with benzylmagnesium chloride: A novel naphthalene annelation reaction[J]. Tetrahedron Lett. 1986, 27, 117
    [31] Ila, H., Junjappa, H.. Novel cycloaromatization in Reformatsky reaction onα-oxoketen dithiacetals: A regioselective synthesis of substituted ethyl 2-hydroxy-6-methylthiobenzoates[J]. Tetrahedron Lett.1988, 29, 497
    [32] Balu, M. P., Ila, H., Junjappa, H.. Cycloaromatization ofα-oxoketen dithiacetals with 2-picolyllithium:A facile quinolizinium cation annelation[J]. Tetrahedron Lett. 1987, 28, 3023
    [33] Gupta, A. K., Ila, H., Junjappa, H.. Aromatic annelation viaα-oxoketen dithiacetals: synthesis of thioreoycind dimetylethers[J]. Tetrahedron Lett. 1987, 28, 1459
    [34] Balu, M. P., Pooraneh, D., Ila, H., Junjappa, H.. Cycloaromatization ofα-oxoketen dithiacetals with 3-methyl-5-lithiomethylisoxazole: A new general approach for synthesis of substituted and annelated 1,2-benzisoxazoles[J]. Tetrahedron Lett. 1988, 29, 501
    [35] Dieter, R. K., Lin, Y. J., Dieter, J. W.. 1,3-Carbonyltransposition methodology employingα-oxoketen dithiacetals: Application in the synthesis of phenols and myodesmone[J]. J. Org. Chem. 1984, 49,3183
    [36] Barun, O., Nandi, S., Panda, K., Ila, H., Junjappa, H.. [4+2]Cycloaromatization of 4-bis(methylthio)-3-buten-2-one with active methylene ketones: a simple and facile phenol annulation[J]. J. Org. Chem. 2002, 67, 5398
    [37]刘群,徐柏玲,杨智蕴,α-氧代烯酮环二硫代缩酮化学(X. XII)-硫醇(酚)为亲核体的α-氧代烯酮环二硫代缩酮与2-甲基烯丙基氯化镁加成物的取代-环合芳构化反应[J].高等化学学报,1995,16: 1047-1050.
    [38] (a) Liu Q, Kocienski P K. A New Method for the Preparation of Phenold and Its Derivatives[J]. Chinese Chem Lett., 1991, 2(5): 353-355; (b)刘群,王子苓,董德文,杨智蕴.经由α-羰基烯酮环二硫代缩醛的取代-环合芳构化及分解反应[J].有机化学, 1995(15): 180-184
    [39] Kocienski P J, Pontiroli A, Qun L. Enantiospecific syntheses of pseudopterosin aglycones. Part 2. Synthesis of pseudopterosin K-L aglycone and pseudopterosin A-F aglycone via a B -> BA -> BAC annulation strategy[J]. J. Chem. Soc. Perkin.Trans.1, 2001(19): 2356-2366.
    [40]杨智蕴,王子苓,刘群等,α-羰基烯酮环二硫代缩醛(XV)-β,β-(1,3-亚丙二硫基)-α,β-不饱和芳酮与2-甲基烯丙基Grignard试剂加成物的酸催化取代-环合芳构化反应[J].高等化学学报,1994,15: 697-699.
    [41] Liu, Q., Yang, Z. Y.. Progress on the chemistry ofα-oxoketen dithiacetals[J]. Chinese J. Org. Chem. 1992, 12, 225
    [42] Compper R., Topfl W. K. Pyrazole und Isoxazole aus Ketenmercaptalen [J] Chem.Ber., 1962, 95, 2881.
    [43] Rudorf W. D., Augustin M. Acylketene S,S-Acetals and Acylketene S,N-Acetals as Buildingsets for Heterocycles-5-Cyanopyrimidines [J] J. Prakt. Chem., 1978, 320,585-599.
    [44] Purkayasha M. I., Ila H., Junjappa H. Regioselective Synthesis of 5-Alkylthio- and 3-Alkylthioisoxazoles from Acylketene Dithioacetals [J] Synthesis, 1989, 20-24
    [45] Wang M-X, Liu Y, Huang Z-T. Novel and Convenient Synthesis of Polyfunctionalized Quinolines, Quinolones and their Annulation Reactions [J]. Tetrahedron Lett, 2001, 42: 2553-2555.
    [46] Sun S G, Liu Y C, Liu Q, et al. One-Pot Synthesis of Substituted Pyridines via Vilsmeier-Haack Reaction of Acyclic Ketene-S, S-acetals [J]. Synlett, 2004, 1731-1734.
    [47] Li Y, Liang F, Bi X, et al. Intramolecular Thia-anti-Michael Addition of a Sulfur Anion to Enones: A Regiospecific Approach to Multisubstituted Thiophene Derivatives[J]. J Org Chem, 2006, 71: 8006-8010.
    [48] Bi X, Dong D, Liu Q, et al. [5+1] Annulation: A Synthetic Strategy for Highly Substituted Phenols and Cyclohexenones[J]. J Am Chem Soc, 2005, 127: 4578.
    [49] Yus M, Na′jera C, Foubelo F. The role of 1,3-dithianes in natural product synthesis[J]. Tetrahedron, 2003, 59: 6147–6212.
    [50] Greene T W, Peter G M. Protective Groups in Organic Synthesis, Third Edition [M]. John Wiley & Sons, Inc. 1999.
    [51] Sartori G, Ballini R, Bigi F. et al. Protection (and Deprotection) of Functional Groups in Organic Synthesis by Heterogeneous Catalysis [J]. Chem. Rev, 2004, 104: 233-236.
    [52] Horikawa Y, Fujiwara T, Takeda T. New carbonyl Olefination Using Thioacetals [J]. J. Am. Chem. Soc. 1997, 119: 1127-1128.
    [53] Fujiwara T, Kato Y, Takeda T. Ring-Closing Metathesis of Titanium-Carbene Complexes Prepared from Thioacetals Having a Carbon-Carbon Double Bond [J].Tetrahedron, 2000, 56: 4859- 4869.
    [54] Takeda T, Taguchi H, Fujiwara T. Titanocene(II)-promoted desulfurizative acylation of thioacetals with alkanenitriles [J]. Tetrahedron Lett. 2000, 41: 65–68.
    [55] Liu Q, Che G B, Yu H F.et al. The First Nonthiolic, Odorless 1,3-Propanedithiol Equivalent and Its Application in Thioacetalization [J]. J. Org. Chem. 2003, 68: 9148-9150.
    [56] Dong D, Ouyang Y, Yu H, et al. Chemoselective thioacetalization in water: 3-(1,3-dithian-2-ylidene) pentane-2,4-dione as an odorless, efficient, and practical thioacetalization reagent. J Org Chem, 2005, 70 (11): 4535-4537.
    [57] Oare D A, Heathbcock C H. Topics in Stereochemistry, in: E L. Eliel, S.H. Wilten (Eds.), Wiley, NY, vol. 9, 1989, p. 277.
    [58] Zhu S R, Theodore C. The Preparation of Synthetically Useful Carbonyl-Protectedδ-and ?-Lithio Ketones via Reductive Lithiation [J]. Tetrahedron, 1997, 52: 17607-17624.
    [59] Bandini M, Cozzi P G, Giacomini M. etal. Sequential One-Pot InBr 3-Catalyzed 1,4- then 1,2-Nucleophilic Addition to Enones [J]. J. Org. Chem. 2002, 67: 3700-3704.
    [60] Garg S K, Kumar R, Chakraborti A K. Zinc Perchlorate Hexahydrate Catalysed Conjugate Addition of Thiols toα,β-?Unsaturated Ketones [J]. Synlett 2005, 9: 1370-1374
    [61] Garg S K, Kumar R, Chakraborti A K. Copper(II) tetrafluoroborate as a novel and highly efficient catalyst for Michael addition of mercaptans to ?,?-unsaturated carbonyl compounds [J]. Tetrahedron Lett. 2005, 46: 1721-1724.
    [62] Firouzabadi H, Iranpoor N, Jafari A A. H3PW12O40 as a Useful Recyclable Heterogeneous Catalyst for the Facile and Highly Efficient Michael Addition Reaction of Thiols to a,b-Unsaturated Ketones [J]. Synlett. 2005, 2: 299–303.01.02.205
    [63] Wabnitz T C, Spencer J B. A General, Br?nsted Acid-Catalyzed Hetero-Michael Addition of Nitrogen,Oxygen, and Sulfur Nucleophiles [J]. Org. lett. 2003, 12: 2141-2144.
    [64] Wabnitz T C, Yu J Q, Spencer J B. A General, Polymer-Supported Acid Catalyzed Hetero-Michael Addition[J], Synlett, 2003, 7: 1070-1072.
    [65] Mujahid Alam M, Varala R, Adapa S R. Conjugate addition of indoles and thiols with electron- deficient olefins catalyzed by Bi(OTf)3 [J], Tetrahedron Lett. 2003, 44: 5115–5119.
    [66] Srivastava N, Banik B K. Bismuth Nitrate-Catalyzed Versatile Michael Reactions [J], J. Org. Chem. 2003, 68: 2109-2114.
    [67] Choudary B M, Kantam M L, Venkat R C R. etal. The first example of Michael addition catalysed by modified Mg–Al hydrotalcite [J]. Journal of Molecular Catalysis A: Chemical, 1999, 146, 279–284.
    [68] Shinde P D, Mahajan V A, Borate H B. etal. Li–X-type zeolite mediated Michael addition of thiols to cyclic enones and its application in the synthesis of 13-thiaprostaglandins [J]. Journal of Molecular Catalysis A: Chemical, 2004, 216: 115–119.
    [69] Zahouily M, Abrouki Y, Rayadh A. Na2CaP2O7, a new catalyst for Michael addition [J], Tetrahedron Lett. 2002, 43: 7729–7730.
    [70] Ranu B C, Dey S S, Hajra A. Catalysis by an ionic liquid: efficient conjugate addition of thiols to electron deficient alkenes catalyzed by molten tetrabutylammonium bromide under solvent-free condit [J]. Tetrahedron, 2003, 59: 2417–2421.
    [71] Yadav J S, Reddy B V S, Baishya G. Green Protocol for Conjugate Addition of Thiols to ?,?-Unsaturated Ketones Using a [Bmim]PF6/H2O System [J]. J. Org. Chem. 2003, 68: 7098-7100.
    [72] Ranu B C, Dey S S. Catalysis by ionic liquid: a simple, green and efficient procedure for the Michael addition of thiols and thiophosphate to conjugated alkenes in ionic liquid [pmIm]Br [J]. Tetrahedron, 2004, 60: 4183–4188.
    [73] Dong D, Yu H, Ouyang Y, Liu, et al. Thia-Michael Addition Reactions Using 2-[Bis(alkylthio) methylene]- 3-oxo-N-o-tolylbutanamides as Odorless and Efficient Thiol Equivalents[J]. Synlett, 2006 (2): 283-287.
    [74] Mori,Y.;Manabe, K.;Kobayashi, S. Catalytic Use of a Boron Source for Boron Enolate Mediated Stereoselective Aldol Reactions in Water[J]. Angew. Chem., Int. Ed. 2001,40, 2815.
    [75] Lubineau A. Water-promoted organic reactions :aldol reaction under neutral conditions [J ] . J Org Chem ,1986 ,51 :2142.
    [76] Kobayashi S ,Nagayama S ,Busujima T. Catalytic asymmet ric Mukaiyama Aldol reactions in aqueous media[J ] . Tetrahedron ,1999 ,55 :8739.
    [77] Lubineau, A. Water-promoted organic reactions: aldol reaction under neutral conditions [J].J. Org. Chem. 1986,51, 2142.
    [78] Shoichi S ,Seiji S ,Takashi S ,et al . Water-soluble calixarenes as new inverse phase-transfer catalysts : their applicaton to Aldol-type condensation and Michael addition reactions in water [J ] . Tetrahedron ,2001 ,57 (29) :6169.
    [79] Therapia K,Panagiotis K,Nikitas R ,et al . A new protocol for a regioselective Aldol condensation asan alternative convenient synthesis ofβ-ketols andα,β-unsaturated ketones[J ] . J Org Chem ,2002 ,67 (13) :4615.
    [80] Bigi, F.;CarloIni, S.;Ferrari, L.; Maggi, R. Clean synthesis in water. Part 2: Uncatalysed condensation reaction of Meldrum's acid and aldehydes[J]. Tetrahedron Lett. 2001, 42, 5203.
    [81] Amantini D ,Fringuelli F ,Piermatti O ,et al . Water ,a clean ,inexpensive ,and reusable reaction medium:one-pot synthesis of ( E)-2-aryl-1-cyano-1-nitroethenes[J ] . Green Chem ,2001 ,3 :229.
    [82]史达清,庄启亚,陈景,等.水溶剂中芳醛与5 ,5-二甲基-1 ,3-环己二酮的反应[J ] .有机化学,2003 ,23 (7) :694.
    [83] Shi D Q ,Chen J ,Zhuang Q Y,et al . The condensation of aromatic aldehydes with acidic methylene compounds in water [J ] . Chin Chem Lett ,2003 ,14 (12) :1242.
    [84]王静,史达清,庄启亚,等.水介质中3 ,3′-芳亚甲基双-4-羟基香豆素的洁净合成[J ] .有机化学, 2005, 25, 926.
    [85]史达清,陈景,吴楠,等.水介质中芳醛与-1-苯基-3-甲基-5-吡唑啉酮的缩合反应研究[J ] .有机化学,2005 ,25 (4) :405.
    [86]宛瑜,陈景,庄启亚,等.水溶剂中芳醛与巴比妥酸、硫代巴比妥酸的缩合反应[J ] .徐州师范大学学报(自然科学版) ,2004 ,22 (2) :47.
    [87] Kool, E. T.;BIeslow, R. Dichotomous salt effects in the hydrophobic acceleration of the benzoin condensation[J]. J. Am. Chem. Soc. 1988, 110, 1596.
    [88] Jayachandran J P ,Balakrishnan J ,Wang M L. Phase-transfer-catalyzed Darzens condensation of chloroacetonit rile with cyclohexanone using aqueous sodium hydroxide and a new phase t ransfer catalyst [J ] . J Mol Cat A : Chem ,2000 ,152 (1~2) :91.
    [89] Shi D Q ,Zhang S ,Zhuang Q Y,et al . Clean synthesis in water :Darzens condensation reaction of aromatic aldehydes with phenacylochloride[J ] . Chin J Chem ,2003 ,21 :680.
    [90]史达清,张姝,庄启亚,等.水溶剂中反-2 ,3-环氧-1-苯基-3-(2′-硝基-5′-氯苯基)-1-丙酮的合成及产物的晶体结构[J ] .结构化学,2004 ,23 (12) :1436.
    [91] Kamaljit, S.;Jasbi, S.;Harjit, S.A synthetic entry into fused pyran derivatives through carbon transfer reactions of 1,3-oxazinanes and oxazolidines with carbon nucleophiles [J].Tetrahedron, 1996,52, 14273.
    [92] Jin, T. S. ;Wang,A.Q.;Cheng,Z.L.;Li, T. S. A clean and simple synthesis of 6-amino- 4-aryl-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole in water[J] Synth. Commun. 2005, 35, 137-143.
    [93] Jin, T. S. ;Wang,A.Q.;Cheng,Z.L.;Zhang, J. S. A clean method for producing 4-aryl-7,7-dimethyl-5-oxo-3,4,5,6,7, 8-hexahydrocoumarin in aqueous media[J]J. Chem. Res., Synop. 2004, 457.
    [94] Wang,J.;Shi, D. Q.;Zhang, Q. Y.;Wang, X. S. Tu, S. J. Clean Synthesis ofα,α-Bis(4- hydroxycoumarin-3-yl)Toluene in Aqueous Media[J] Chin.J.Org.Chem,2005,25, 926
    [95] (a)Jin, T. S.;Zhang, J. S.;Xiao, J. C.;Wang, A. Q.;Li, T. S. Clean Synthesis of 1,8-Dioxo-octahydroxanthene Derivatives Catalyzed by p-Dodecylbenezenesulfonic Acid in Aqueous Media[J]. Synlett, 2004,866. (b)Jin, T. S.;Zhang, J. S.;Wang, A. Q.;Zhang, F. S. Synthesis of 3,3,6,6-Tetramethyl-9-aryl- 1,8-dioxo-1,2,3,4,5,6,7,8-octahydroxanthene in Aqueous Media[J]. Chin. J. Org. Chem. 2005, 25, 335.
    [96] Jin, T. S.;Zhang, J. S.;Guo, T. T.;Whng, A. Q. One-Pot Clean Synthesis of 1,8-Dioxo- decahydroacridines Catalyzed by p-Dodecylbenezenesulfonic Acid in Aqueous Media [J].Synthesis, 2004, 2001.
    [97] Shi, D. Q.;Mou, J.;Zhuang, Q. Y.;Wamg, X.. S. Synthesis of Ethyl 2,7,7-Trimethyl-5-oxo-4-aryl- 1,4,5,6,7,8- Hexahydroquinoline-3-Carboxylate in Water[J] Chin. J. Org. Chem. 2004, 24, 1569.
    [98]史达清,张姝,庄启亚,王香善,屠树江,胡宏纹,水中苯并[h]色烯衍生物的洁净合成[J].有机化学,2003, 23, 1419.
    [99]史达清,陈景,吴楠,庄启业,王香善,水介质中芳醛与1-苯基-3-甲基-5-吡唑啉酮的缩合反应研究[J].有机化学,2005,25,405.
    [100] Breslow, R.;Maitra, U.;Rideout, D. Selective diels-alder reactions in aqueous solutions and suspensions [J].Tetrahedron Lett. 1983, 24, 1901.
    [101] Oppolzer, W. Intramolecular Cycloadditions of C,O and C,N Multiple Bonds to ortho- Quinodimethanes[J]. Angew.Chem.,Int. Ed. Engl. 1972, 11, 1031.
    [102] Braillon, B.;Lasne, M. C.;Ripool, J. L.;DeIlis, J. M. Methanimine[J] New J. Chem. 1982, 6, 121.
    [103] (a)Grieco, P. A.;Parker, D. T.;Fobare, W. F.;Ruckle, R. Retro aza Diels-Alder reactions: acid catalyzed heterocycloreversion of 2-azanorbornenes in water at ambient temperature [J].J. Am. Chem. Soc. 1987, 109, 5859. (b)wijnen, J. w.;eNgberts, J. B. F. N. : A hetero retro Diels-Alder reaction in aqueous solution: A dramatic water-induced increase of the equilibrium constant and inhibition of cycloreversion [J]Liebigs Ann. Rec. l997, 1085.
    [104] Inoue, Y.; Araki, K.;Shiraislli, Sunusual solvent effecton the cycloadditions of aromatic nitrile N-oxide with alkyl substituted para-benzoquinones inethanol-water systems[J]. Bull. Chem. Soc. Jpn. 1991, 64, 3079.
    [105] Rao, K. R.;Bhanumathi, N.;Sattur, P. B. Baker's yeast catalyzed asymmetric cycloaddition of nitrileoxides to C=C bond : Improved chiral recognition by usingβ-cyclodextrin[J] Tetrahedron Lett. 1990, 31, 3201.
    [106] (a)Venkatraman, S.;Li, C. J. Carbon?Carbon Bond Formation via Palladium-Catalyzed Reductive Coupling in Air[J] Org. Lett. 1999,1,1133. (b)Venkatraman, S.;Huang, T. S.;Li, C. Carbon-Carbon Bond Formation via Palladium-Catalyzed Reductive Coupling of Aryl Halides in Air and Water[J] J. Adv.Synth.Catal. 2002, 344, 399. (c)Molander, G. A.;Bio1atto, B. Efficient Ligandless Palladium-Catalyzed Suzuki Reactions of Potassium Aryltrifluoroborates[J]. Org. Lett. 2002,4,1867. (d)Sakurai, H.;Tsukuda, T.;Hirao, T. Pd/C as a Reusable Catalyst for the Coupling Reaction ofHalophenols and Arylboronic Acids in Aqueous Media [J].J. Org. Chem. 2002, 67, 2721. (e)Arcadi, A.;Cedchelli, G.;Chiadni, M.; Correa, M.;Zorzan, D. A Mild and Versatile Method for Palladium-Catalyzed Cross-Coupling of Aryl Halides in Water and Surfactants[J]Eur. J. Org. Chem. 2003, 4080. (f)Friesen, R. W.;Trimble, L. A. : Comparison of the Suzuki cross-coupling reactions of 4,7- dichloroquinoline and 7-chloro-4-iodoquinoline with arylboronic acids using phosphine-free palladium catalysis in water[J]Can. J. Chem. 2004,82,206. (g)Bedford, R. B.;Blalre, M. E.;Butts, C. P.;Holder, D. The Suzuki coupling of aryl chlorides in TBAB–water mixtures[J]. Chem. Commun. 2003, 466. (h)Najera, C.;Gil-Molto, J.;Karlstroem, Suzuki-Miyaura and Related Cross-Couplings in Aqueous Solvents Catalyzed by Di(2-pyridyl)methylamine-Palladium Dichloride Complexes [J].S. Adv. Synth..Catal. 2004, 346, 1798.
    [107] (a)Boteua, L.;Najera, C. A Convenient Oxime-Carbapalladacycle-Catalyzed Suzuki Cross-Coupling of Aryl Chlorides in Water [J]. Angew. Chem., Int. Ed. 2002, 41, 179. (b)Baleizao, C.;Corma, A.;Garcia, H.;Leyva, A Oxime Carbapalladacycle Covalently Anchored to High Surface Area Inorganic Supports or Polymers as Heterogeneous Green Catalysts for the Suzuki Reaction in Water. [J].. J. Org. Chem. 2004, 69, 439. (c)Colacot, T. J.;Gore, E. S.;Kuber, A. High-Throughput Screening Studies of Fiber-Supported Catalysts Leading to Room-Temperature Suzuki Coupling. [J] Organometallics, 2002,21,3301.
    [108] Stille, J. F. The Palladium-Catalyzed Cross-Coupling Reactions of Organotin Reagents with Organic Electrophiles [New Synthetic Methods (58)]. [J]. Angew. Chem., Int. Ed. Engl. 1986,25,508.
    [109] Tueting, D. R.;Echavarren, A. M.;Stille, J. K. Palladium catalyzed coupling of organostannanes with vinyl epoxides[J]. Tetrahedron 1989, 45, 979.
    [110] Zhang, H. C.;DaVis, G. D. Water facilitation of palladium-mediated coupling reactions[J]. Organometallics, 1993,12,1499.
    [111] Kalyanam, N.;Venkateswara Rao, G. Novel reductive coupling of aldimines by indium under aqueous conditions [J].Tetrahedron Lett.1993, 34, 1647.
    [112] Heck, R. F Palladium-catalyzed reactions of organic halides with olefins[J].. Acc. Chem. Res. 1979, 12,146.
    [113] (a)Bumagin, N. A.;Andryuchova, N. P.;Beletskaya, I. P. Izv. Akad. Nauk SSSR. 1988, 6, 1449. (b)Bumagin, N. A.;Mom, P. G.;Beletskaya, I. P. Synthesis of substituted cinnamic-acids and cinnamonitriles viapalladium catalyzed coupling reactionn of aryl halides with acrylic-acid and acrylonitrile in aqeous-media[J].J. Organomet. Chem. 1989, 371, 397. (c)Bumagin, N. A.; BykoV, V. V.;Sukhomlinova, L. I.;Tolstaya, T. P.; Beletshya, I. P. Palladium-catalyzed arylation of styrene and acrylic-acid in water[J]J. Organomet. Chem. 1995, 486, 259.
    [114] Bumagin, N. A.;Sukhomlinova, L. I.;Bancllikov, A. N.;Tblstaya, T. P.;Beletskaya, I. P.Palladium-Catalyzed arylation of acrylic-acid by diaryliodonium salts in water [J] Bull. Russ. Acad. Sci. 1992, 41, 2130.
    [115] Jeffery, T.Heck-type reactions in water [J].Tetrahedron Lett . 1994,35,3051.
    [116] Roshchin, A. I.;Bumagin, N. A.;Beletskaya, I. P. Palladium-Catalyzed reactions of diphenyl- difluorosilane and diphenyldietoxisilane with aril halides in aqueous dimethylformamide [J] Dokl. Akad. Nauk 1994, 334, 602-604.
    [117] (a)Feuerstein, M.;Laurenti, D.; Doucet, H.; Santelli, M. Palladium-tetraphosphine catalysed allylic substitution in water [J].Tetrahedron Lett 2001, 42, 2313. (b)Genet, J. P.;Savignac, M. Recent developments of palladium (0) catalyzed reactions in aqueous medium [J] J. Organomet. Chem. 1999, 576, 305. (c)Uozumi, Y.;Danji, H.;Nayashi, T. Palladium-catalyzed asymmetric allylic substitution in aqueous media using amphiphilic resin-supported MOP ligands. [J]. Tetrahedron Lett 1998, 39, 8303.
    [118] Uozumi, Y.;Shibatomi, K. Catalytic Asymmetric Allylic Alkylation in Water with a Recyclable Amphiphilic Resin-Supported P,N-Chelating Palladium Complex[J]. J. Am. Chem. Soc. 2001,123,2919.
    [119] (a)Labinger, J. A.;Nerring, A. M.;Nercaw, J. E. Selective hydroxylation of methyl groups by platinum salts in aqueous medium. Direct conversion of ethanol to ethylene glycol[J].J. Am. Chem. Soc. 1990, 112, 5628. (b)Lin, M.;Sen, A. The agglutination of erythrocytes by influenza virus is strongly inhibited by liposomes incorporating an analog of sialyl gangliosides. [J]. J. Am. Chem. Soc. 1992,114, 7303.
    [120] Frohn, M.;Dalkiewicz, M.;Tu, Y.; Wang, Z. X.;Shi, Y. Highly Regio- and Enantioselective Monoepoxidation of Conjugated Dienes[J]. J. Org. Chem. 1998, 63, 2948.
    [121] Finguelli, F.;Pizzo, F.;Vaccaro, L. Cobalt (II) Chloride-Catalyzed Chemoselective Sodium Borohydride Reduction of Azides in Water. [J].Synthesis. 2000, 646.
    [122] Petrier, C.;Luche, J. L. Ultrasonically improved reductive properties of an aqueous Zn---NiCl2 system-2. Regioselectivity in the reduction of (?)-carvone [J].Tetrahedron Lett .1987,28,2351.
    [123] (a)Russell, M. G.;Warren, S. Synthesis of new water-soluble phosphonium salts and their Wittig reactions in water[J] J. Chem. Soc. Perkin. Trans. I. 2000, 505. (b)Russell, M. G.;Warren, S. Wittig reactions in water. Synthesis of new water-soluble phosphonium salts and their reactions with substituted benzaldehydes. [J]. Tetrahedron Lett 1998, 39, 7995.
    [124] Lubineau, A.;Auge, J. Water-promoted organic reactions. Michael addition of nitroalkanes to methylvinylketone under neutral conditions. [J]. Tetrahedron Lett 1992, 33, 8073.
    [125] Keller, E.;Feringa, B. L. Ytterbium triflate catalyzed Michael additions ofβ-ketoesters in water [J].Tetrahedron Lett 1996, 37, 1879.
    [126] Lubineau A ,Auge J . Water-promoted organic reactions: Michael addition of nitroalkanes to methyl vinyl ketone under neutral conditions. [J ] . Tetrahedron Lett ,1992 ,33 :8073.
    [127] Ballini R ,Bosica G. The Michael reaction of nit roalkanes with conjugated enones in aqueous media[J ] . Tetrahedron Lett 1996 ,37 :8027.
    [128] Shoichi S ,Seiji S ,Takashi S ,et al . Water-soluble calixarenes as new inverse phase-transfer catalysts: their applicaton to Aldol-type condensation and Michael addition reactions in water. [J] .Tetrahedron ,2001 ,57 (29) :6169.
    [129]史达清,张姝,庄启亚,等.水中α,β-不饱和酮与3-甲基-1-苯基-2-吡唑啉-5-酮的加成反应[J ] .有机化学,2003 ,23(9) :1036.
    [130] Silva, F. M. D.;Jones, J. Organic reaction in water. Part 3: Diastereoselectivity in Michael additions of thiophenol to nitro olefins in aqueous media [J]J. Braz. Chem. Soc. 2001, 12, 135.
    [131] Ramamurthy, V. Organic photochemistry in organized media [J].Tetrahedron 1986, 42, 5753.
    [132] Liu, J. H.;Weiss, R. G. Anomalous effects during aromatic nucleophilic photosubstitutions of 2- and 4-fluoroanisoles in solvent mixtures of water and tert-butyl alcohol[J].J. Org. Chem. 1985,50,3655.
    [133] (a) Yorimtsu, H.;Shinokubo, H.;Oshima, K. Radical Reaction by a Combination of Phosphinic Acid and a Base in Aqueous Media[J]Bull. Chem. Soc. Jpn. 2001, 74, 225. (b)Miyabe, H.;Ueda, M.;Natio, T. N-Sulfonylimines as an excellent acceptor for intermolecular radical reactions. [J]. Chem. Commun. 2000, 2059. (c)Miyabe, H.;Ueda, M.;Nalio, T. Free-Radical Reaction of Imine Derivatives in Water[J]. J. Org. Chem. 2000, 65, 5043. (d)Shaw, H.;Pedmuner, H. D.;Gu, C.;Quibuyen, T. O. Free-Radical Bromination of Selected Organic Compounds in Water. [J]. J. Org. Chem. 1997, 62, 236.
    [134] Yorimitsu, H.;Nalcamura, T.;Shinokubo,H.;Oshima,K.; Omoto,K.;Fujimoto, H. Powerful Solvent Effect of Water in Radical Reaction: Triethylborane-Induced Atom-Transfer Radical Cyclization in Water [J].J. Am. Chem. Soc. 2000, 122, 11041.
    [135]史达清.水介质中有机反应的最新研究进展徐州师范大学学报. 2005,2,1-10
    [136] (a)Li, C. J. Organic Reactions in Aqueous Media with a Focus on Carbon?Carbon Bond Formations: A Decade Update [J].Chem. Rev. 2005, 105, 3095. (b)Li, C. J.; Chen, L. Organic chemistry in water [J].Chem. Soc. Rew. 2006, 35, 68.
    1. (a) Rideout, D. C.; Breslow, R. Hydrophobic acceleration of Diels-Alder reactions[J] J. Am. Chem. Soc. 1980, 102, 7816-7817. (b) Breslow, R Hydrophobic effects on simple organic reactions in water. [J]. Acc. Chem. Res. 1991, 24, 159-164. (c) Breslow, R. Determining the Geometries of Transition States by Use of Antihydrophobic Additives in Water[J] Acc. Chem. Res. 2004, 37, 471-478.
    2. (a) Cornils, B.; Herrmann, W. A. Eds.; Aqueous-Phase Organometallic. Catalysis.;Concepts and Applications ,Wiley-VCH: Weinheim; 1998. (b) Grieco, P. A..Organic Synthesis in Water; Ed. Thomson Science: Glawsgow, Scotland, 1998. (c) Li, C. -J.; Chan, T. -H..Organic Reactions in Aqueous Media; John Wiley & Sons: New York, 1997. (d) Kobayashi, S.; Manabe, K. In Stimulating Concepts in Chemistry; Shibasaki, M.; Stoddart, J. F.; Vogtle, F. Eds.; Wiley-VCH: Weinheim; 2000. (e) Moens, L.; Abraham, M. Eds.. Clean Solvents: Alternative Media for Chemical Reactions and Processing, ACS Symposium Series 819; American Chemical Society: Washington, DC, 2002.
    3. (a) Li, C. -J. Organic reactions in aqueous media - with a focus on carbon-carbon bond formation. [J] Chem. Rev. 1993, 93, 2023-2035. (b) Genet, J. P.; Savignac, M. Recent developments of palladium (0) catalyzed reactions in aqueous medium [J] J.Organomet. Chem. 1999, 576, 305-317. (c) Fringuelli, F.; Piermatti, O.; Pizzo, F.; Vaccaro, L. Recent Advances in Lewis Acid Catalyzed Diels-Alder Reactions in Aqueous Media[J]Eur. J. Org. Chem. 2001, 439-452. (d) Kobayashi, S.; Manabe, K. Development of Novel Lewis Acid Catalysts for Selective Organic Reactions in Aqueous Media. [J] Acc. Chem. Res. 2002, 35, 209-217. (e) Akiya, N.; Savage, P. E. Roles of Water for Chemical Reactions in High-Temperature Water. [J]. Chem. Rev. 2002, 102, 2725-2750. (f) Li, C. -J Organic Reactions in Aqueous Media with a Focus on Carbon?Carbon Bond Formations: A Decade Update. [J]. Chem. Rev. 2005, 105, 3095-3166. (g) Lindstrom, U. M. Stereoselective Organic Reactions in Water. [J] Chem. Rev. 2002, 102, 2751-2772.
    4. (a) Kobayashi, S.; Manabe, K. Development of Novel Lewis Acid Catalysts for Selective Organic Reactions in Aqueous Media. [J] Acc. Chem. Res. 2002, 35, 209-217. (b) Manabe, K.; Mori, Y.; Kobayashi, S. A Bronsted acid-surfactant-combined catalyst for Mannich-type reactions of aldehydes, amines, and silyl enolates in water[J]Synlett 1999, 1401-1402. (c) Manabe, K.; Kobayashi, S. Mannich-Type Reactions of Aldehydes, Amines, and Ketones in a Colloidal Dispersion System Created by a Br?nsted Acid?Surfactant-Combined Catalyst in Water[J](d) Manabe, K.; Sun, X.-M.; Kobayashi, S. Dehydration Reactions in Water. Surfactant-Type Br?nsted Acid-Catalyzed Direct Esterification of Carboxylic Acids with Alcohols in an Emulsion System. [J]. J. Am. Chem. Soc. 2001, 123, 10101-10102. (e) Kobayashi, S.; Wakabayashi, T. Scandium trisdodecylsulfate (STDS). A new type of lewis acid that forms stable dispersion systems with organic substrates in water and accelerates aldol reactions much faster in water than in organic solvents[J]Tetrahedron Lett. 1998, 39, 5389-5392.
    5. (a) Siskin, M.; Katritzky, A. R. Reactivity of Organic Compounds in Superheated Water: General Background[J] Chem. Rev. 2001, 101, 825-836. (b) Otto, S.; Engberts, J. B. F. N.; Kwak, J. C. T Million-Fold Acceleration of a Diels?Alder Reaction due to Combined Lewis Acid and Micellar Catalysis in Water[J]. J. Am. Chem. Soc. 1998, 120, 9517-9525. (c) Rispens, T.; Engberts, J. B. F. N. Efficient Catalysis of a Diels?Alder Reaction by Metallo-Vesicles in Aqueous Solution. [J] Org. Lett. 2001, 3, 941-943. (d) Genet, J. P.; Savignac, M. Recent developments of palladium (0) catalyzed reactions in aqueous medium [J]. J.Organomet. Chem. 1999, 576, 305-317. (e) Fringuelli, F.; Piermatti, O.; Pizzo, F.; Vaccaro, L. Recent Advances in Lewis Acid Catalyzed Diels-Alder Reactions in Aqueous Media[J] Eur. J. Org. Chem. 2001, 439-455.
    6. Ouyang, Y.; Dong, D.; Yu, H.; Liang, Y.; Liu, Q. A Clean, Facile and Practical Synthesis of -Oxoketene S, S-Acetals in Water. [J].Adv. Synth. Catal. 2006, 348, 206-210.
    7. Dong, D.; Ouyang, Y.; Yu, H.; Liu, Q.; Liu, J.; Wang, M.; Zhu, J. Chemoselective Thioacetalization in Water:3-(1,3-Dithian-2-ylidene)pentane-2,4-dione as an Odorless, Efficient, and Practical Thioacetalization Reagent[J] J. Org. Chem. 2005, 70(11), 4535-4537.
    8. Y. Ouyang,, D.Dong, Yongjiu Liang, Yanyan Chai,,Qun Liu. Acid-Promoted Thioacetalization in Water using 2-(1,3-Dithian-2-ylidene)malonic Acid as an Odorless and Efficient Thioacetalization Reagent, Synthetic Communications, 2007, 37, 993-1000.
    9. Yanyan Chai, Dewen Dong*,Yan Ouyang. Thia-Michael Addition Reactions in Water Using 3- [Bis(Alkylthio) Methylene] Pentane-2,4-Diones as Odorless and Efficient Thiol Equivalents. Letters in Organic Chemistry, 2007, 4, 281-284.
    1. a) D. L. Boger, S. H. Weinreb Hetero-Diels-Alder Methodology in Organic Synthesis, academic Press, New York, 1987; b) H. B. Kagan Comprehensive Organic Chemistry; Pergamon: Oxford, 1992; Vol. 8; c) H. R. Horton, L. A. Moran, R. S. Ochs, J. D. Rawn, K. G. Scrimgeour, Principles of Biochemistry, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 1996; d) K. C. Nicolaou, E. J. Sorensen, Classics in Total Synthesis, Wiley-VCH, Weinheim, 1996; e) R. Noyori Asymmetric Catalysis in Organic Synthesis; Wiley: New York, 1994.
    2. a) S. J. Danishefsky, Aldrichim Acta 1986, 19, 59–68; b) R. R. Schmidt, Hetero-Diels-Alder reaction in highly functionalized natural product synthesis[J] Acc. Chem. Res. 1986, 19, 250–259; c) T. L. B. Boivin, Synthetic routes to tetrahydrofuran, tetrahydropyran, and spiroketal units of polyether antibiotics and a survey of spiroketals of other natural products [J]Tetrahedron 1987, 43, 3309–3362; d) W. Oppolzer, I. Rodriguez, An Efficient Enantioselective Synthesis of (-)-Serricorole. [J] Helv. Chim. Acta 1993, 76, 1275–1281; e) S. J. Danishefsky, M. T. Bilodeau, Glycals in Organic Synthesis: The Evolution of Comprehensive Strategies for the Assembly of Oligosaccharides and Glycoconjugates of Biological Consequence [J]. Angew. Chem., Int. Ed. 1996, 35, 1380–1419; f) E. J. Corey, A. Guzman-Perez,The Catalytic Enantioselective Construction of Molecules with Quaternary Carbon Stereocenters. [J]. Angew. Chem., Int. Ed. 1998, 37, 388–401; g) L. F. Tietze, Curr. Org. Chem. 1998, 2, 19-62; h) K. A. J?rgensen, Catalytic Asymmetric Hetero-Diels-Alder Reactions of Carbonyl Compounds and Imines. [J]. Angew. Chem., Int. Ed. 2000, 39, 3558–3588.
    3. a) S. J. Danishefsky, W. H. Pearson, B. E. Segmuller, Total synthesis of (.+-.)-3-deoxy-D-manno-2-octulopyranosate [J]. J. Am. Chem. Soc. 1985, 107, 1280–1285; b) S. J. Danishefsky, M. P. DeNinno, Totally Synthetic Routes to the Higher Monosaccharides [J]. Angew. Chem., Int. Ed. 1987, 26, 15–23.
    4. M. Reiter, S. Ropp, V. Gouverneur, Oxidative Cyclization ofβ-Hydroxyenones with Palladium(II): A Novel Entry to 2,3-Dihydro-4H-pyran-4-ones[J]. Org. Lett. 2004, 6, 91–94.
    5. a) J. D. Rainier, S. P. Allwein, J. M. Cox, A Highly Efficient Synthesis of the Hemibrevetoxin B Ring System[J]. Org. Lett. 2000, 2, 231-234; b) J. M. Cox, J. D. Rainier, C-Glycosides to Fused Polycyclic Ethers. An Efficient Entry into the A?D Ring System of Gambierol.[J]. Org. Lett. 2001, 3, 2919–2922; c) Y. Yamashita, S. Saito, H. Ishitani, S. Kobayashi, Chiral Hetero Diels?Alder Products by Enantioselective and Diastereoselective Zirconium Catalysis. Scope, Limitation, Mechanism, and Application to the Concise Synthesis of (+)-Prelactone C and (+)-9-Deoxygoniopypyrone[J]. J. Am. Chem. Soc. 2003, 125, 3793–3798.
    6. a) S. J. Danishefsky, J. F. Kerwin, S. Kobayashi, Lewis acid catalyzed cyclocondensations of functionalized dienes with aldehydes[J]. J. Am. Chem. Soc. 1982, 104, 358–360;b) S. J. Danishefsky, J. F. Kerwin, On the Lewis acid catalyzed cyclocondensation of silyloxydienes with .alpha.,.beta.-unsaturated aldehydes[J] J. Org. Chem. 1982, 47, 3183–3184.
    7. a) S. J. Danishefsky, E. Larson, D. Askin, N. Kato, On the scope, mechanism and stereochemistry of the Lewis acid catalyzed cyclocondensation of activated dienes with aldehydes: an application to the erythronolide problem[J]. J. Am. Chem. Soc. 1985, 107, 1246–1255; b) S. J. Danishefsky, C. J. Maring, A new approach to the synthesis of hexoses: an entry to (.+-.)-fucose and (.+-.)-daunosamine. [J]. J. Am. Chem. Soc. 1985, 107, 1269–1274; c) S. J. Danishefsky, D. C. Myles, D. F. Harvey, Expeditious synthesis of the polypropionate sector of rifamycin S by reiterative Diene-Aldehyde cyclocondensation reactions[J] J. Am. Chem. Soc. 1987, 109, 862–867; d) S. J. Danishefsky, S. DeNinno, P. Lartey, A concise and stereoselective route to the predominant stereochemical pattern of the tetrahydropyranoid antibiotics: an application to indanomycin[J]. J. Am. Chem. Soc. 1987, 109, 2082–2089; e) S. J. Gould, R. L. Eisenburg, L. R. Hillis, Synthesis directed towards putative advanced intermediates in sarubicin A biosynthesis Tetrahedron 1991, 47, 7209–7218; f) R. Annunziata, M. Cinquini, F. Cozzi, P. G. Cozzi, L. Raimondi, Diastereoselective cyclocondensation of electron-rich dienes with chiral thio-substituted aldehydes[J] J. Org. Chem. 1992, 57, 3605–3609; g) M. T. Reetz, G. Gans?uer, Tetrahedron 1993, 49, 6025–6030; h) G. Yang, D. C. Myles, The synthesis of the C-9 to C-21 sector of discodermolide: An efficient route to the C13–14 Z-trisubstituted alkene[J]Tetrahedron Lett. 1994, 35, 2503-2504; i) M. T. Burger, W. C. Still Improved Synthesis of Functionalized Podand Ionophores[J]., J. Org. Chem. 1996, 61, 775–777; j) P. A. Evans, J. D. Nelson, Stereoselective Synthesis of Dihydropyran-4-ones via a Formal Hetero Diels?Alder Reaction and Ceric Ammonium Nitrate Dehydrogenation[J] J. Org. Chem. 1996, 61, 7600–7602; k) W. Yang, D. Shang, Y. Liu, Y. Du, X. Feng, Highly Enantioselective Synthesis of 2,6-Disubstituted and 2,2,6-Trisubstituted Dihydropyrones: A One-Step Synthesis of (R)-(+)-Hepialone and Its Analogues [J] J. Org. Chem. 2005, 70, 8533–8537.
    8. a) M. Bednarski, C. Maring, S. Danishefsky, Chiral induction in the cyclocondensation of aldehydes with siloxydienes[J]Tetrahedron Lett. 1983, 24, 3451–3454; b) K. Maruoka, T. Itoh, T. Shirasaka, H. Yamamoto, Asymmetric hetero-Diels-Alder reaction catalyzed by a chiral organoaluminum reagent[J]. J. Am. Chem. Soc. 1988, 110, 310–312; c) Q. Gao, T. Maruyama, M. Mouri, H. Yamamoto, Asymmetric hetero Diels-Alder reaction catalyzed by stable and easily prepared chiral (acyloxy)borane (CAB) catalysts[J] J. Org. Chem. 1992, 57, 1951–1952; d) E. J. Corey, C. L. Cywin, T. D. Roper, Enantioselective Mukaiyama-aldol and aldol-dihydropyrone annulation reactions catalyzed by a tryptophan-derived oxazaborolidine[J]Tetrahedron Lett. 1992, 33, 6907–6910; e) Q. Gao, K. Ishihara, T. Maruyama, M. Mouri, H. Yamamoto, Synthesis directed towards putative advanced intermediates in sarubicin A biosynthesis [J]Tetrahedron 1994, 50, 979–988; f) K. Mikami, O. Kotera, Y. Motoyama, H. Sakaguchi, Lanthanide Bis-trifluoromethanesulfonylamides as a New Type of Asymmetric Catalysts for Hetero Diels-Alder Reaction with Danishefsky's Diene in the Presence of Water[J]Synlett 1995, 975–977; g) G. E. Keck, X.-Y. Li, D. Krishnamurthy, Catalytic Enantioselective Synthesis of Dihydropyronesvia Formal Hetero Diels-Alder Reactions of "Danishefsky's Diene" with Aldehydes[J] J. Org. Chem. 1995, 60, 5998–5999; h) H. Du, J. Long, J. Hu, X. Li, K. Ding, 3,3‘-Br2-BINOL-Zn Complex: A Highly Efficient Catalyst for the Enantioselective Hetero-Diels?Alder Reaction [J]. Org. Lett. 2002, 4, 4349–4352.
    9. a) X.-F. Yang, J.T. Mague, C.-J. Li Diastereoselective Synthesis of Polysubstituted Tetrahydropyrans and Thiacyclohexanes via Indium Trichloride Mediated Cyclizations1. [J], J. Org. Chem. 2001, 66, 739–747; b) J. S. Yadav, B. V. Subba Reddy, G. Mahesh Kumar, Ch. V. S. R. Murthy, Montmorillonite clay catalyzed in situ Prins-type cyclisation reaction[J]Tetrahedron Lett. 2001, 42, 89–91; c) S. Marumoto, J. J. Jaber, J. P. Vitale, S. D. Rychnovsky, Synthesis of (?)-Centrolobine by Prins Cyclizations that Avoid Racemization[J]. Org. Lett. 2002, 4, 3919-3922. d) S. Gelin, R. Gelin, Bull. Soc. Chim. Fran. 1969, 4091–4102.
    10. J. D. Winkler, K. Oh, A One-Step Synthesis of 2,3-Dihydro-4H-pyran-4-ones from 3-Ethoxy α,β-Unsaturated Lactones[J] Org. Lett. 2005, 7, 2421–2423.
    11. D. W. Jeffery, M. V. Perkins, J. M. White, Synthesis of an Analogue of the Marine Polypropionate Tridachiahydropyrone[J] Org. Lett. 2005, 7, 407–409.
    12. a) B. Gao, Z. Yu, Z. Fu, X. Feng, A convenient and versatile approach to 2,3-dihydro-4H-pyran-4-ones via tandem aldol reaction-conjugate addition [J] Tetrahedron Lett. 2006, 47, 1537–1539; b) D. S. Matteson, H.-W. Man, O.C. Ho, Asymmetric Synthesis of Stegobinone via Boronic Ester Chemistry[J] J. Am. Chem. Soc. 1996, 118, 4560–4566.
    [1] Campos P J, Anon E, Malo M C, et al. A versatile synthesis of pyrrolo-, furo- and thienopyridines via photocyclization of 3-amino-2-alkene imines in an acid medium [J]. Tetrahedron 1999, 55(49): 14079-14088.
    [2] BurkiR S A, Cardozo M G, Cushing T D, et al. US 2 004 097 485[P], 2004
    [3] Shestopalov A M, Naumov A, Synthesis of substituted 2-amino-3-cyano-7,9- dimethyl-4H- pyrano[2 ',3 ': 4,5]thieno[2,3-b]pyridines [J]. Russ Chem Bull, 2003, 52(6): 1380-1385
    [4] Peinador C, Moreim M J, Quintela J M, An efficient iminophosphorane-mediated synthesis for pyrido[3',2':4,5]thieno[3,2-d] pyrimidine derivatives [J]. Tetrahedron 1994, 50(22): 6705-6714
    [5] Rioja I, Ubeda A, Terencio M C, et al. An anti-inflammatory ditriazine inhibiting leukocyte functions and expression of inducible nitric oxide synthase and cyclo-oxygenase-2 [J]. Eur J Pharmacology, 2000, 397(1): 207-217
    [6] Buchstaller H P, Siebert C D, Steinmetz R, et al. Synthesis of thieno[2,3-b]pyridinones acting as cytoprotectants and as inhibitors of [H-3]Glycine binding to the N-methyl-D-aspartate (NMDA) receptor [J]. J Med Chem, 2006, 49(3): 864-871
    [7] Shanmugam P, Kanakarajan K, Soundararajan N, et al. Thienoquinolines Part 1. Synthesis of Thieno[2,3-b]-quinolines [J]. Synthesis, 1976, 4, 253-254
    [8] Shanmugam P, Soundararajan N, Kanakarajan K, Thienoquinolines. Part 6. Reaction of 2-chloro-3-(1,2-dibromoethyl)-quinolines with thiourea: a convenient synthesis of thieno[2,3-b]-quinolines [J]. J Chem Soc, Perkin Trans 1, 1977, 1, 2024
    [9] Shanmugam P, Tiruvengadam T K, Soundararajan N, Thienoquinolines .5. Improved synthesis of 2,3-dihydrothieno[2,3-b]quinoline and its derivatives [J]. Org Prep Proceed Int, 1976, 8(6): 279-282
    [10] Gnanasekaran A, Souundararajan N, Shanmugam P, Thienoquinolines; Part VIII1. A Three-Step Synthesis of Thieno[2,3-b]quinolines from Anilines [J]. Synthesis, 1977, 9, 612-613.
    [11] Gnanasekaran A, Suresh J R, Shanmugam P, [J]. Sulfur Lett, 1993, 17, 15-19.
    [12] Rajendran S P, Shanmugam P, An Improved Synthesis of thieno [2,3-b]quinoline via S-Oxides [J]. Org Prep Proceed Int, 1994, 26(3): 349-352
    [13] Meth-Cohn O, Narine B, Tarnowski B, A versatile new synthesis of quinolines and related fused pyridines, Part 5. The synthesis of 2-chloroquinoline-3-carbaldehydes [J]. J Chem Soc, Perkin Trans 1, 1981, 1, 1520-1530.
    [14] Lohray B B, Lohray V B, Srlvastava B K, et al. Novel tetrahydro-thieno pyridyl oxazolidinone: an antibacterial agent [J]. Bioorg Med Chem, 2004, 12(17): 4557-4564
    [15] Nadkarni S S, Patel H M, PCT Int Appl WO 2004 074 215[P], 2004
    [16] Kaigorodova E A. Vasilin V K, Tymorin V A, et al. Russ RU 2 232 765[P], 2004
    [17] Iyengar R R, Judd A S, Zhao Gang, et al. US Pat Appl PIlbl, Us 2 005 038 068[P], 2005
    [18] Khmm L R H, Shabtai J, McCoy D R, US 3 579 526[P], 1971
    [19] Norio S, Toshiyuki Y, JP 2 002 053 579[P], 2002
    [20] Cardoso C R, de Brito F C F, da Silva K C M, et al. Design, synthesis and pharmacological evaluation of novel pyrazolo[3,4-b]thieno[2,3-d]pyridine acid derivatives: A new class of anti-inflammatory and anti-platelet agents [J]. Bioorg Med Chem, 2002, 12(1): 9-12
    [21] Maki Y, Hideaki T, Kunio I, Yukinari H, PCT Int Appl WO 2 005 012 310[P], 2005
    [22] Kaigorodova E A, Osipova A A, Konyushkin L D, et al. Synthesis and transformations of 3-(1H-pyrrol-1-yl)thieno[2,3-b]pyridines [J]. Russian Chem Bull, 2004, 53(4): 853-859
    [23] Barker J M, Huddleston P R, Holmes D, Thienopyridines .6. synthesis and nucleophilic-substitution of some chlorothieno[2,3-b]pyridine derivatives, and comparisons with the analogous quinoline compounds [J]. J Chem Res Synop, 1985, 7, 214-215
    [24] Quintela J M, Peinador C, Gomalez L M, et al. Synthesis and pharmacological evaluation of some 8-cyanopyrido[3 ',2 ': 4,5]thieno[3,2-d]triazine derivatives as inhibitors of nitric oxide and eicosanoid biosynthesis [J]. J Med Chem, 1999, 42(22): 4720-4724
    [25] Alvarez-Samnds R, Peinador C, Quintela J M, Iminophosphoranes in heterocyclic chemistry. A simple one-pot synthesis of pyridothienopyridazines and pyrimidothienopyridazines [J]. Tetrahedron 2001, 57(25): 5413-5420
    [26] Bonini C, Chiummieto L, Funicello M, Spagnolo P, N-(3-benzo[b]thienyl)iminophosphoranes toward the synthesis of benzo[b]thieno[3,2-b]pyridines: Reactivity and alternative regioselectivity with alpha,beta-unsaturated ketones and aldehydes [J]. Tetrahedron 2000, 56(11): 1517-1521
    [27] Bonini C, D`Auria M, Funicello M, et al. Novel N-(2-benzo[b]thienyl)iminophosphoranes and their use in the synthesis of benzo[b]thieno[2,3-b]pyridines [J]. Tetrahedron 2002, 58(18): 3507-3512
    [28] Cruz-Almanza R, Diaz-Torres E, Miranda L D, et al. 2D 1H and 13C NMR in the conformation of 4-aryl derivatives of thieno[3,2-c]pyridines [J]. Spectrochimica Acta Part A, 1999, 55(5): 1035-1048
    [29] Newkome G R, Paudler W W, Contemporary Heterocyclie Chemistry [M], New York: John Wiley&Sons, 1982, 234, 237
    [30] Adachi I, Hiramatsu Y, Ueda M, et al. JP 62 010 087[P], 1987
    [31] A1-Onwan F, Mohareb R M, Ei-Khair A A, Synthesis and biological effects of new derivatives of benzotriazole as antimicrobial and antifungal agents [J]. Heterocyclic Chem, 2002, 39(5): 877-883
    [32] Barker J M, Huddleston P R, Chadwick N, et al. Thienopyridines .3. preparation of some 6-substituted 7-hydroxythieno [3,2-b] pyridin-5(4H)-ones, and some reactions of 7-hydroxythieno [3,2-b] pyridin-5(4H)-one [J]. J Chem Res Synop, 1980, 1, 6-7
    [33] Shinkwin A E, Whish W J D, Threadgil M D, Synthesis of thiophenecarboxamides, thieno [3,4-c] pyridin-4(5H)-ones and thieno[3,4-d]pyrimidin-4(3H)-ones and preliminary evaluation as inhibitors of poly(ADP-ribose)polymerase (PARP) [J]. Bioorg Med Chem, 1999, 7(2): 297-308
    [34] Broggini G. Chiesa K, Marchi I D, et al. Efficient approach to the unknownisoxazolo[3,4-d]thieno[2,3-b]pyridine system by regioselective intramolecular nitrone cycloadditions [J]. Tetrahedron 2005, 61(14): 3525-3531
    [35] Thornton J, Implementing green chemistry. An environmental policy for sustainability [J]. Pure Appl Chem, 2001, 73(8): 1231-1236
    [36] Srivastava K P, Res J Chem Environ[J]. 2001, 5(2): 77-80.
    [37] Kim B S, Kim K, A facile and convenient synthesis of 3-alkylamino-5-arylthiophenes with a variety of substituents at C-2 and studies of reaction mechanisms [J]. J Org Chem, 2000, 65(12): 3690-3699
    [38] Lee J S, Lee D J, Kim B S, et al. Reactions of thiobenzoylketene S, N-acetals with silyl enol ethers of cyclic ketones in the presence of desilylating reagents: formation and desulfurization of thienolactams [J]. J Chem Soc, Perkin Tran 1, 2001, 21, 2774-2780
    [39] Dotsenko V V, Krivokolysko S G, Litvinov V P, Multicomponent one-pot synthesis of pyrido[3 ',2 ': 4,5]thieno[3,2-b]pyridines as a novel approach to condensed pyridines [J]. Mendeleev Commun, 2003, 6, 267-268
    [40] Sommen G, Comel A, Kirsch G, An Easy Access to Variously Substituted Thieno[2,3-b]pyrroles by Using Isothiocyanates [J]. Synlett, 2001, 11, 1731-1734.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700