丙烷及乙苯氧化脱氢反应的新型催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文围绕丙烷、乙苯的氧化脱氢中新型催化材料的制备及其表征开展三部分工作。首先是高比表面的SiC的制备及其作为载体在丙烷氧化脱氢中应用;其次是模板法合成高比表面的CeO2和掺杂的CeO2作为催化剂在乙苯氧化脱氢中应用;最后为CeO2负载的纳米金催化剂在乙苯氧化脱氢中应用。具体内容如下:
     一、高比表面SiC的合成及其在丙烷氧化脱氢催化材料中应用研究
     丙烯是最早采用的化工原料,也是生产化工产品的重要烯烃之一。目前,丙烯绝大部分来源于石脑油等蒸气裂解乙烯的联产以及石油的催化裂化,石化资源的严重短缺使得该工艺难以满足日益增长的需求;而通过丙烷直接脱氢制取丙烷又存在在热力学受限、操作温度高、催化剂易失活的缺点。如果在丙烷脱氢原料中引入少量氧气(氧化脱氢),不仅能降低反应温度,而且催化剂不易失活,因此丙烷氧化脱氢近年来得到了极大关注。目前,在丙烷氧化脱氢催化研究中,催化剂载体主要为SiO2、Al2O3等传统材料。在高温高空速条件下,由于载体导热能力差,反应释放的热量极易在催化剂表面引发“热点效应”,即催化剂床层局部温度远高于平均温度。由于丙烷氧化脱氢的产物丙烯化学性质活泼,极易发生深度氧化,因而导致目标产物选择性降低。SiC材料具有极高的导热能力和优良的机械强度,广泛地应用于催化、电子等研究领域。目前,有报道指出使用SiC载体负载VPO催化剂在丁烷选择氧化制取马来酸酐反应中,较传统SiO2能显著降低热点效应而获得高选择性。此外,SiC材料在处理汽车尾气的三效催化反应、CH4部分氧化等多相放热反应中也有广泛应用。
     在众多SiC材料合成方法中,溶胶-凝胶法具有操作简单,原料价廉的优点,因此被广泛采用。然而该方法制备的SiC比表面偏低(低于100 m2·g-1),因而不适合作为载体负载钒氧化物应用于丙烷氧化脱氢反应。本文在上述传统的溶胶-凝胶法制备SiC材料中做了改进,即在硅胶水解前,加入了一定比例的有机硅。N2吸脱附结果表明:有机硅的加入能显著提高SiC比表面,且引入有机硅的憎水碳链越长,硅胶干燥过程中体积坍缩程度越小,最后制得的SiC孔径越小,比表面越高。由此,通过C1、C4、C6、C8等不同碳链长度有机硅的系统调变,可以制得孔径在8-30 nm,比表面为150-360 m2·g-1的SiC。XRD和HRTEM表明制得的SiC为面心立方结构(β-SiC)。使用NH4VO3-甲醇浸渍法,将V2O5分散到SiC后,在600℃、C3H8/O2/N2=1/1/4(总流量:30 mL·min-1,催化剂50mg)条件下评估催化剂活性。结果表明:催化活性随V2O5的负载量增大而迅速增大,而相应的丙烯选择性则逐渐降低;在V2O5负载量为1.5 wt%时,丙烯选择性为62.1%,收率为20.2%;而在同等V2O5负载量下的SiO2和Al2O3催化剂的丙烯选择性较低,分别为51.0%,47.8%。实验中采用双热电偶测试了热点效应,结果显示:SiC负载的催化剂床层比设定温度偏差为16℃,而SiO2、Al2O3则分别55、78℃。此结果证实了SiC的高导热能力能显著地降低热点效应而缓解丙烯深度氧化。此外,通过XPS、H2-TPR表征结果发现,SiC表面的一层SiO2薄膜对分散V2O5起着至关重要的作用。
     二、高比表面CeO2基催化剂在乙苯氧化脱氢中催化研究
     苯乙烯是一种重要的基本有机化工原料,广泛应用于塑料、树脂和橡胶的合成,也是仅次于乙烯、丙烯、氯乙烯的第四位全球需求量最大的烯烃。目前,全球苯乙烯年生产能力在2500万吨以上,其中90%以上采用乙苯催化脱氢法生产。该工艺催化剂为K2O修饰的Fe2O3,由于乙苯直接脱氢是吸热反应,操作温度很高(650℃左右)。此外为了缓解催化剂积碳失活,原料中需要引入大量的水蒸气,因此该工艺存在能耗高、平衡转化率低等缺陷。乙苯氧化脱氢制取苯乙烯在热力学上具有很大的优势,且催化剂不易失活,能耗较低。目前在乙苯氧化脱氢研究领域,纳米碳管、碳纤维等碳质材料表现出极高的苯乙烯收率(-50%),但是由于碳材料质轻易燃,且难以成型,因此极不适于实际应用。CeO2是稀土氧化中在催化研究中使用最广泛的氧化物,以CeO2为基础的氧化物广泛地应用与处理汽车尾气的三效催化剂、CO氧化、CO2活性、NOx消除等反应。CeO2的诸多催化应用归结于其优良的储氧能力:贫氧环境下释放晶格氧,而富氧环境下储存晶格氧,即Ce4+和Ce3+能实现快速切换。在金属氧化物催化氧化脱氢反应中,晶格氧的移动、补充速率越快,则氧化脱氢速率越快。因此,近年来CeO2为基础的催化剂在氧化脱氢反应中催化应用受到了人们极大的关注。
     使用CTAB模板法,制备了一系列具有介孔结构的高比表面CeO2材料。N2吸脱附结果表明,焙烧温度越高,CeO2的比表面越低,XRD衍射峰宽化程度越高。作为催化剂应用于乙苯氧化脱氢(反应条件:450℃, EB/O2/N2=0.5/0.25/20,总流速:20.75 mL·min-1,催化剂50 mg),结果表明:高比表面的CeO2较低比表面的CeO2具有更高的催化活性(EB转化率:27.4%,苯乙烯选择性:87.0%)。H2-TPR谱图上发现高比表面的CeO2在200-450℃就表现出极强的还原峰,由此证实,比表面越高,晶格氧越活泼。在此结果基础上,在高比表面CeO2制备中掺入了10%的第二元金属离子(Al3+、Sn4+、Zr4+、Mn4+和Ni3+)以改善晶格氧活性。XRD结果表明,第二元金属离子的引入造成了CeO2晶格缺陷。催化实验结果表明,第二元金属离子的引入改变了CeO2的催化活性,其催化活性顺序依次为:Ce0.90Ni0.10Ox> Ce0.90Mn0.10ioOx> Ce0.90Sn0.10Ox> CeO2> Ce0.90Zr0.10Ox> Ce0.90Al0.10Ox。在此基础上,研究了不同Ni掺杂量的CeO2催化剂活性,结果表明:当Ni掺杂量为10%时,CeO2晶格缺陷程度最高。在乙苯氧化脱氢中(反应条件:500℃, EB/O2/N2=0.5/0.25/20,总流速:20.75 mL·min-1,催化剂50mg)达到了50%的苯乙烯得率。H2-TPR谱图结果表明:Ce0.90Ni0.10Ox较其他催化剂的低温还原峰的温度低,为284℃;同时H2-TOSC (500℃)结果表明:Ce0.90Ni0.10Ox在不同Ni掺杂量的CeO2催化剂中总储氧量最高,鉴于此,Ce0.90Ni0.10Ox快速的晶格氧迁移能力和较高的储氧量很好地解释了其在乙苯氧化脱氢中所表现出的极高的催化活性。
     三、CeO2负载的纳米金催化乙苯氧化脱氢研究
     金历来被认为是化学惰性的金属,相对于其他贵金属,金的催化潜力一直未能引起足够的重视。直至上世纪八十年代,Haruta等发现通过沉积-沉淀法制备Au/Fe2O3等催化剂能在CO低温氧化中表现出很高的催化活性,人们由此对金的催化开展了大量的工作。目前纳米金涉足多个催化领域,如氧化、加氢、异构化、多级串联反应等。尤其在选择氧化领域,纳米金被视为能够开展可持续、绿色化学的最佳催化剂。最近,科研工作者在醇、醛、胺等液相选择氧化反应中取得了一定的成果。相比之下,目前所报告的纳米金在烷烃、芳烃的选择氧化中的研究极少,其原因在于反应物和氧化产物的化学性质非常活泼,很容易在氧化气氛中发生催化燃烧。因此将纳米金应用于气相乙苯氧化脱氢反应不仅是对金在气相芳烃选择氧化领域中的一项重要补充,对开发新型乙苯氧化脱氢催化反应也有极其重要的现实意义。
     通过不同制备方法,合成了一系列的金属氧化物等负载的贵金属催化剂,诸如Pt/CeO2、Ru/CeO2、Au/Al2O3、Au/Mn2O3、Au/CeO2等。催化结果表明:使用Au/CeO2催化剂的催化性能较其他贵金属(Pt、Ru)和载体(HAP、MnO2、Fe2O3、TiO2和Al2O3)高,其原因归结于其他贵金属和载体上较易引发反应物或产物的深度氧化。基于此结果,使用NaOH-DP法,在CeO2沉积了不同负载量的纳米金颗粒。XRD和HR-TEM结果表明在低于6.0 wt%的Au负载量下,金颗粒(-3.5 nm)能很好地分散在CeO2载体上。在同等4.0 wt%负载量下,如使用普通浸渍法和CO(NH2)2-DP法,Au颗粒尺寸将明显增至5-10 nm左右。作为催化剂应用于乙苯氧化脱氢反应(条件:450℃, EB/O2/N2=0.5/0.25/20,总流速:20.75 mL·min-1,催化剂50 mg),结果表明:负载金后,能显著地提高CeO2的催化活性,且随着金负载量的增大,EB转化率逐渐增加,最终在采用NaOH-DP法得到的6.0 wt%Au负载量Au/CeO2催化剂上得到了60.9%的苯乙烯收率。H2-TPR结果表明,Au/CeO2在80℃的低温即出现还原峰,表明负载Au后,能显著提高CeO2晶格氧的迁移能力。采用H2-TOSC实验测试了Au/CeO2催化剂的在450℃下化学储氧量,结果表明:在低于6.0wt%负载量下,Au负载量越高,其化学储氧量越高,且与催化活性呈现出很好的顺变关联。
The present dissertation, involving the synthesis and characterizations of novel catalysts for oxidative dehydrogenation (ODH) of propane and ethylbenzene (EB), consists of three parts. The first part (Chapter III) is the synthesis of mesostructured SiC materials with high surface area and the study for ODH of propane as catalytic support. The second part (Chapter IV) reports the synthesis of ceria-base catalysts and the catalysis study for ODH of ethylbenzene. The last part (Chapter V) discusses the catalysis study of ceria-supported nanogold catalysts for ODH of EB.
     1. Synthesis of SiC materials with high surface area and the catalysis study for ODH of propane as catalytic support
     As one of major building blocks for modern petrochemical industry, propylene is widely used for the production of diverse products, ranging from rubbers to plastics. Nowadays, propylene are mostly produced by steam pyrolysis of naphtha (as coproduct of ethylene), and fluid catalytic cracking (FCC) in oil refining. As the oil gets scarcer and more expensive, the two convenient processes could not meet the tremendous demand of propylene. Meanwhile, the new process of the synthesis of propylene via the direct dehydrogenation (DH) of propane still presents some disadvantages, such as the thermodynamical limitations, high temperature, and easy deactivation. Alternatively, based on the introduction of oxygen into the feedstock, the process of ODH of propane could decrease the reaction temperature and simultaneously, prevent the deactivation and thus has spurred the interest as a promising route. Up to now, the catalytic supports applied for ODH of propane are mainly traditional metal oxides such as SiO2, Al2O3. It is noteworthy that, in the heterogeneously exothermic reaction, the support with a low thermal conductivity cannot disperse the reaction heat well, issuing in partial hot spots on the surface of the catalyst bed, wherein the temperature is far beyond the average level. On the other hand, owing to its highly reactive nature, the propylene molecular in the vicinity of the hot spots is liable to consecutive oxidation, which leads to low selectivity of the target product. SiC material possesses highly thermal conductivity and excellent mechanical strength, which enables it wide application in the fields of catalysis, electronics, etc. Recently, Ledoux et al. has reported that the SiC-supported VPO catalyst demonstrated superior catalytic performance to SiO2-supported catalyst for the selective oxidation of butane into maleic acid, due to its high thermal conductivity. Moreover, SiC material has been extensively used as catalytic supports in the TWC catalytic system, partial oxidation of CH4, and other heterogeneously exothermal reactions.
     A wide range of methods have been reported for the synthesis of SiC materials and therein the sol-gel method presents the convenience and low cost and other several advantages, and therefore is widely used to fabricate the SiC materials. However, due to the low surface area (< 100 m2·g-1), the synthesized SiC material via sol-gel method is not suitable to load the vanadia catalyst for ODH of propane. In this paper, a given amount of alkyloxysilane is introduced into the precursor of the silica solution before the hydrolysis. The results of N2 adsorption-desorption indicated that the incorporation of alkyloxysilane can increase the surface area of SiC materials and the longer length of hydrophobic chain of alkyloxysilane was favorable for the higher surface area. Consequently, a series of mesostructuredβ-SiC with high surface area (151-350 m2·g-1) and tunable porosity (8-30 nm) were synthesized by adjusting the length of hydrophobic chain of alkyloxysilane (C1, C4, C6, and C8), which was confirmed by N2 adsorption-desorption, XRD, and HR-TEM techniques. Loaded with vanadia by wet impregnant method (NH4VO3-CH3OH), SiC was employed as catalyst support for ODH of propane to propylene (reaction temperature:600℃; C3H8/O2/N2=1/1/4; total gas velocity:30 mL·min-1; Catalyst weight:50 mg). The catalytic performances demonstrated the selectivity of propylene decreased with the increase of the loading amount of vanadia and the highest yield of propylene (20.2%) along with the selectivity of 62.1% was obtained when the loading amount was 1.5 wt%. However, as the counterparts, SiO2 and A12O3 gave low selectivity to propylene (51.0 and 47.8% respectively) under the identical reaction conditions. By employing two thermocouples, hot spot effect was tested and the results demonstrates the differential temperature for SiC-supported catalyst was 16℃, while the catalyst supported by SiO2 and A12O3 were 58 and 73℃respectively. The results above confirmed that, over the SiC-supported catalyst, high thermal conductivity could alleviate the hot spot effect and therefore prevent the deep oxidation of propylene. In addition, the results of XPS and H2-TPR characterizations revealed that the silica film on the surface of SiC material played a crucial role to disperse the vanadia species.
     2. Synthesis of ceria base catalysts and the catalysis study for ODH of ethyl benzene
     Styrene (ST) is an important monomer extensively used in the chemical industry for the manufacture of plastic, resin, and rubber, and ranks the forth place in the highest demand alkenes, only following ethylene, propylene, and vinychorine. Nowadays, the annual capacity of the styrene synthesis is above 25 Mt over the world. Therein,90% of styrene is commercially produced by means of the direct DH of EB over potassium-iron oxide as a catalyst at high temperature (ca.650℃) in presence of a lot of steam. Due to its highly endothermic nature, this conventional route suffers from several disadvantages such as intensive energy consumption and rapid coking. Alternatively, the ODH of EB has attracted considerable recent attention since it can be operated at lower temperatures and the EB conversion would not be equilibrium limited. Currently, among a range of catalysts reported for DH of EB, nanocarbon materials like carbon nanotubes and carbon nanofibers exhibit an excellent catalytic performance with a yield of ST of ca.50%. Nevertheless, the industrial application of the carbon-based catalysts has been till now prevented by their fine powder nature and intrinsically low resistance to combustion. As the most widely used oxide in the family of rare earth, Ceria (CeO2) is a key redox component in the catalyst formulations for many industrially important reactions, such as TWC catalysts for automobile exhaust treatment, CO2 activation, CO oxidation, and low temperature water-gas shift reaction. The success of ceria in various applications is largely attributed to its superior oxygen storage capacity, viz. releasing and storing the oxygen lattice species under the lean-O2 and rich-02 conditions respectively. In the reactions based on the oxidative dehydrogenation, high 02-supplying rate are favorable for the high catalytic performance and therefore ceria-based catalysts have been received tremendous attention in the ODH reactions.
     In the present work, a series of mesostructured ceria with high surface area has been prepared via template-assisted precipitation method. The results of N2 adsorption-desorption revealed that the surface area of ceria samples decrease with the increment of the calcination temperature, accompanied by the wider peak in the corresponding XRD patterns. In the reaction of ODH of EB to ST (reaction temperature:450℃; EB/O2/N2=0.5/0.25/20; 20.75 mL·mim-1; Catalyst weight:50 mg), the CeO2-500 sample with the highest surface area displayed the highest catalytic performance with the EB convention of 30% and ST selectivity of 82%. By analysis of the H2-TPR profiles, it is found the CeO2-500 sample presented a highly intense reduction peak at 200-450℃compared with other samples with low surface areas, which revealed that high surface are would favor the mobility of lattice oxygen species and consequently enhance the catalytic activity. As to the results above,10 wt% of the second metal species as dopant (Al3+, Sn4+, Zr4+, Mn4+, and Ni3+) were introduced into the ceria samples. The XRD patterns indicated the second metal species have been incorporated into the ceria lattice and leads to the lattice defeats. As catalysts for ODH of EB, the introduction of other metal ions haves changed the catalytic activity of the pristine ceria and the order of the catalytic activity was as follows:Ce0.90Ni0.10Ox> Ce0.90Mn0.10Ox> Ce0.90Sn0.10Ox> CeO2> Ce0.90Zr0.10Ox> Ce0.90Al0.10Ox (reaction temperature:500℃; EB/O2/N2=0.5/0.25/20; 20.75 mL·min-1; Catalyst weight:50 mg). To further investigate the effect of the amount of Ni on the catalytic performance, a series of Ni-doped ceria catalysts were studied for ODH of EB and the highest yield of ST (ca.50%) was obtained over Ce0.90Ni0.10Ox catalyst. The XRD patterns revealed that the Ce0.90Ni0.10Ox sample presented a highest lattice defeat, compared with other Ni-doped ceria catalysts, which is correlated with the corresponding reduction peak with the lowest temperature at ca.284℃in H2-TPR profiles, indicating the Ce0.90Ni0.10Ox possessed the considerable lattice oxygen mobility rate. Moreover, the H2-total oxygen storage experiments proved that the Ce0.90Ni0.10Ox catalyst possessed the highest oxygen storage capacity at 500℃, which could explained the highest catalytic performances in ODH of EB.
     3. Catalysis study of ceria supported nanogold catalysts for ODH of ethylbenzene
     Gold has been originally labeled as a chemically inert metal and long disregarded for catalytic applications. Compared with other noble metals such as Pt and Ru, the catalytic potential of gold has not been received considerable attention. Since Haruta discovered a remarkable activity of supported gold nanoparticles (NPs) in CO oxidation, catalysis by gold has become one of the most intensively studied topics in chemistry. Currently, gold could become a highly active and selective catalyst in many reactions including oxidation, hydrogenation, selective isomerization, and one-pot multistep reactions. Of particular interest to the current chemical community is the Au-catalyzed selective oxidation, which is believed to be essential for the development of new alternative and greener routes toward sustainability. Recently, several liquid phase aerobic oxidations, including the selective oxidation of alcohols, aldehydes, and amines have been developed. Despite significant research effort, there have been few studies on the selective oxidation of less reactive hydrocarbons in the gas phase over the supported Au nanoparticles probably due to the fact that both the reactants and products are prone to undesired combustion in the presence of molecular oxygen at high temperatures. In the context, the application of Au NPs into the ODH of EB in gas phase not only serves as a major supplement to the field of selective oxidative over Au catalyst in gas phase, but also presents a practical significance to develop a novel catalytic system for ODH of EB.
     A range of noble catalysts including Pt/CeO2, Ru/CeO2, Au/Al2O3, Au/Mn2O3, and Au/CeO2 were prepared via different methods and investigated for ODH of EB. Compared with Au/CeO2 catalysts, the Pt and Ru based catalyst, as well as other metal oxides supported Au catalyst demonstrated low selectivity to ST, due to the direct and deep combustion. Moreover, according the results of XRD patterns and HR-TEM images of the Au/CeO2 catalysts prepared by different methods, NaOH-DP, rather than urea-DP and wet impregnant methods, could assure a good dispersion of Au nanoparticles over ceria at the same loading amount of Au. In the ODH of EB, the existence of Au NPs could improve the catalytic activity of the pristine ceria and highest yield of 60.9% was obtained over 6.0 wt%Au/CeO2 catalyst. The results of H2-TPR profiles and H2-TOSC experiments revealed that the 6.0 wt%Au/CeO2 presented the highest OSC and oxygen mobility, which proved the highest catalytic performances.
引文
[1]刘雪斌,朱海欧,葛庆杰,李文钊,徐恒泳.烃类选择氧化制低碳烯烃的研究进展[J].化学进展,2004,16(6):900-910.
    [2]Brazdil J. F. Strategies for the selective catalytic oxidation of alkanes [J]. Topics in Catalysis,2006,38 (4):289-294.
    [3]周宏中.国内外丙烯市场现状及发展趋势[J].化工技术经济,2004,22(009):28-31.
    [4]中国化工信息中心.世界炼化生产一体化的发展趋势[EB/OL].:中国化工信息网,2004-7-6.
    [5]Kogan S. B., Herskowitz M. Selective propane dehydrogenation to propylene on novel bimetallic catalysts [J]. Catalysis Communications,2001,2 (5): 179-185.
    [6]张伟德,李基涛,傅锦坤,陈兆远,古萍英,万惠霖.丙烷在Ni-Mg-Mo-O催化剂上的氧化脱氢[J].天然气化工,2000,25(4):1-4.
    [7]Cavani F., Ballarini N., Cericola A. Oxidative dehydrogenation of ethane and propane:How far from commercial implementation? [J]. Catalysis Today,2007, 127(1-4):113-131.
    [8]Frank B., Dinse A., Ovsitser O., Kondratenko E. V., Schom cker R. Mass and heat transfer effects on the oxidative dehydrogenation of propane (ODP) over a low loaded VOx/Al2O3 catalyst [J]. Applied Catalysis A:General,2007,323 66-76.
    [9]Batiot C., Hodnett B. K. The role of reactant and product bond energies in determining limitations to selective catalytic oxidations [J]. Applied Catalysis A: General,1996,137(1):179-191.
    [10]Blasco T., Nieto J. M. L. Oxidative dehydrogenation of short chain alkanes on supported vanadium oxide catalysts [J]. Applied Catalysis A:General,1997, 157(1-2):117-142.
    [11]Kung H. H. Oxidative dehydrogenation of light (C2 to C4) alkanes [J]. Advances in Catalysis,1994,40:1-38.
    [12]Albonetti S., Cavani F., Trifiro F. Key aspects of catalyst design for the selective oxidation of paraffins [J]. Catalysis Reviews,1996,38 (4):413-438.
    [13]Hodnett B. K. Heterogeneous catalytic oxidation:fundamental and technological aspects of the selective and total oxidation of organic compounds [M]. Wiley,2000:12-13.
    [14]照日格图,李文钊.丙烷氧化脱氢反应催化剂体系研究进展[J].天然气化工:C1化学与化工,2003,28(1):15-20.
    [15]Chaar M. A., Patel D., Kung H. H. Selective oxidative dehydrogenation of propane over V-Mg-O catalysts [J]. Journal of Catalysis,1988,109 (2): 463-467.
    [16]Bosch H., Janssen F. Formation and control of nitrogen oxides [J]. Catalysis Today,1988,2 (4):369-379.
    [17]Ramstetter A., Baerns M. Infrared spectroscopic investigation of the adsorption states of 1-butene,1,3-butadiene, furan,2,5H-furanone, and maleic anhydride on alumina-supported V2O5-P2O5 catalyst:I. Adsorption under nonreactive conditions [J]. Journal of Catalysis,1988,109 (2):303-313.
    [18]Ledoux M. J., Crouzet C., Pham-Huu C., Turines V., Kourtakis K., Mills P. L. Lerou J. J. High-yield butane to maleic anhydride direct oxidation on vanadyl pyrophosphate supported on heat-conductive materials:β-SiC, Si3N4, and BN [J]. Journal of Catalysis,2001,203 (2):495-508.
    [19]Ueda W., Lee K. H., Yoon Y. S., Moro-Oka Y. Selective oxidative dehydrogenation of propane over surface molybdenum-enriched MgMoO4 catalyst [J]. Catalysis Today,1998,44 (1-4):199-203.
    [20]刘永梅.丙烷氧化脱氢制丙烯纳米催化剂的制备,表征及应用[D].上海:复旦大学,2004.
    [21]Wan H. L., Zhou X. P., Weng W. Z., Long R. Q., Chao Z. S., Zhang W. D., Chen M. S., Luo J. Z., Zhou S. Q. Catalytic performance, structure, surface properties and active oxygen species of the fluoride-containing rare earth (alkaline earth)-based catalysts for the oxidative coupling of methane and oxidative dehydrogenation of light alkanes [J]. Catalysis Today,1999,51 (1): 161-175.
    [22]Zhang W., Zhou X., Tang D., Wan H., Tsai K. Oxidative dehydrogenation of propane over fluorine promoted rare earth-based catalysts [J]. Catalysis Letters, 1994,23(1):103-106.
    [23]Miachon S., Landrivon E., Aouine M., Sun Y., Kumakiri I., Li Y, Prokopova O. P., Guilhaume N., Giroir-Fendler A., Mozzanega H. Nanocomposite MFI-alumina membranes via pore-plugging synthesis:Preparation and morphological characterisation [J]. Journal of Membrane Science,2006,281 (1-2):228-238.
    [24]Mota S., Miachon S., Volta J. C., Dalmon J. A. Membrane reactor for selective oxidation of butane to maleic anhydride [J]. Catalysis Today,2001,67 (1-3): 169-176.
    [25]Dalmon J. A., Cruz-Lopez A., Farrusseng D., Guilhaume N., Iojoiu E., Jalibert J. C., Miachon S., Mirodatos C., Pantazidis A., Rebeilleau-Dassonneville M. Oxidation in catalytic membrane reactors [J]. Applied Catalysis A:General, 2007,325 (2):198-204.
    [26]Yang W., Wang H., Zhu X., Lin L. Development and application of oxygen permeable membrane in selective oxidation of light alkanes [J]. Topics in Catalysis,2005,35 (1):155-167.
    [27]Liu Y. M., Cao Y., Yi N., Feng W. L., Dai W. L., Yan S. R., He H. Y., Fan K. N. Vanadium oxide supported on mesoporous SBA-15 as highly selective catalysts in the oxidative dehydrogenation of propane [J]. Journal of Catalysis,2004,224 (2):417-428.
    [28]Martra G., Arena F., Coluccia S., Frusteri F., Parmaliana A. Factors controlling the selectivity of V2O5 supported catalysts in the oxidative dehydrogenation of propane [J]. Catalysis Today,2000,63 (2-4):197-207.
    [29]Bulushev D. A., Kiwi-Minsker L., Rainone F., Renken A. Characterization of surface vanadia forms on V/Ti-oxide catalyst via temperature-programmed reduction in hydrogen and spectroscopic methods [J]. Journal of Catalysis,2002, 205(1):115-122.
    [30]Das N., Eckert H., Hu H., Wachs I. E., Walzer J. F., Feher F. J. Bonding states of surface vanadium (V) oxide phases on silica:structural characterization by vanadium-51 NMR and Raman spectroscopy [J]. The Journal of Physical Chemistry,1993,97 (31):8240-8243.
    [31]Wachs I. E. Raman and IR studies of surface metal oxide species on oxide supports:Supported metal oxide catalysts [J]. Catalysis Today,1996,27 (3-4): 437-455.
    [32]Chen K., Xie S., Iglesia E., Bell A. T. Structure and properties of zircon ia-supported molybdenum oxide catalysts for oxidative dehydrogenation of propane [J]. Journal of Catalysis,2000,189 (2):421-430.
    [33]Eckert H., Wachs I. E. Solid-state 51V NMR structural studies on supported vanadium (V) oxide catalysts:vanadium oxide surface layers on alumina and titania supports [J]. Journal of physical chemistry,1989,93 (18):6796-6805.
    [34]Leveles L., Fuchs S., Seshan K., Lercher J. A., Lefferts L. Oxidative conversion of light alkanes to olefins over alkali promoted oxide catalysts [J]. Applied Catalysis A:General,2002,227 (1-2):287-297.
    [35]Lemonidou A. A., Nalbandian L., Vasalos I. A. Oxidative dehydrogenation of propane over vanadium oxide based catalysts:Effect of support and alkali promoter [J]. Catalysis Today,2000,61 (1-4):333-341.
    [36]Mamedov E. A., Corberan C. Oxidative dehydrogenation of lower alkanes on vanadium oxide-based catalysts. The present state of the art and outlooks [J]. Applied Catalysis A:General,1995,127 (1-2):1-40.
    [37]GrzybowskaSwierkosz B. Vanadia-titania catalysts for oxidation of o-xylene and other hydrocarbons [J]. Applied Catalysis A-General,1997,157 (1-2): 263-310.
    [38]Xu J., Chen M., Liu Y.-M., Cao Y., He H.-Y., Fan K.-N. Vanadia supported on H2O2-detemplated mesoporous SBA-15 as new effective catalysts for the oxidative dehydrogenation of propane [J]. Microporous and Mesoporous Materials,2009,118 (1-3):354-360.
    [39]Ying F., Li J. H., Huang C. J., Weng W. Z., Wan H. L. Direct synthesis and superior catalytic performance of V-containing SBA-15 mesoporous materials for oxidative dehydrogenation of propane [J]. Catalysis Letters,2007,115 (3-4): 137-142.
    [40]Solsona B., Blasco T., Lopez Nieto J. M., Pena M. L., Rey F., Vidal-Moya A. Vanadium oxide supported on mesoporous MCM-41 as selective catalysts in the oxidative dehydrogenation of alkanes [J]. Journal of Catalysis,2001,203 (2): 443-452.
    [41]Liu Y. M., Feng W. L., Li T. C., He H. Y., Dai W. L., Huang W., Cao Y., Fan K. N. Structure and catalytic properties of vanadium oxide supported on mesocellulous silica foams (MCF) for the oxidative dehydrogenation of propane to propylene [J]. Journal of Catalysis,2006,239 (1):125-136.
    [42]Solsona B., Nieto J. M. L., Diaz U. Siliceous ITQ-6:A new support for vanadia in the oxidative dehydrogenation of propane [J]. Microporous and Mesoporous Materials,2006,94 (1-3):339-347.
    [43]张洪涛,徐重阳.Sol-Gel法制备纳米碳化硅粉体的研究[J].功能材料,2000,31(4):366-368.
    [44]潘裕柏,江东亮.碳化硅陶瓷粉末制备的发展[J].硅酸盐通报,1994,13(4):46-51.
    [45]Ledoux M. J., Pham-Huu C. Silicon carbide-a novel catalyst support for heterogeneous catalysis [J]. Cattech,2001,5 (4):226-246.
    [46]Vix-Guterl C., Alix I., Gibot P., Ehrburger P. Formation of tubular silicon carbide from a carbon-silica material by using a reactive replica technique: infra-red characterisation [J]. Applied Surface Science,2003,210 (3-4): 329-337.
    [47]Vix-Guterl C., Alix I., Ehrburger P. Synthesis of tubular silicon carbide (SiC) from a carbon-silica material by using a reactive replica technique:mechanism of formation of SiC [J]. Acta Material ia,2004,52 (6):1639-1651.
    [48]Pham-Huu C., Keller N., Ehret G., Ledoux M. J. The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential [J]. Journal of Catalysis,2001,200 (2):400-410.
    [49]Pesant L., Matta J., Garin F., Ledoux M. J., Bernhardt P., Pham C., Pham-Huu C. A high-performance Pt/P-SiC catalyst for catalytic combustion of model carbon particles (CPs) [J]. Applied Catalysis A:General,2004,266 (1):21-27.
    [50]Shi Y. F., Meng Y., Chen D. H., Cheng S. J., Chen P., Yang H. F., Wan Y., Zhao D. Y. Highly ordered mesoporous silicon carbide ceramics with large surface areas and high stability [J]. Advanced Functional Materials,2006,16 (4): 561-567.
    [51]王浩,李效东,于富成,金东杓.三维有序多孔SiC陶瓷的制备及表征[J].中国科学:E辑,2006,36(3):259-269.
    [52]Tanaka H., Kurachi Y. Synthesis of β-SiC powder from organic precursor and its sinterability [J]. Ceramics International,1988,14 (2):109-115.
    [53]郭向云,靳国强,梁萍,王冬华.一种碳化硅介孔材料及其制备方法[P].CN02130060.7.
    [54]郭向云,靳国强,梁萍,王冬华.一种高比表面积碳化硅及其制备方法[P].CN02130064.X.
    [55]Zheng Y., Zheng Y., Lin L. X., Ni J., Wei K. M. Synthesis of a novel mesoporous silicon carbide with a thorn-ball-like shape [J]. Scripta Materialia, 2006,55 (10):883-886.
    [56]Yao Z. Y., Qin F. G., Ren Z. Z., Wang X. M., Liu Z. K., Huang D. D., Lin L. Y., Lau W. M. Study on preparation of GaN and CoSi2 epitaxial films by mass analyzed low energy dual ion beam epitaxy [J]. Vacuum,1992,43 (11): 1059-1060.
    [57]Bautista F. M., Campelo J. M., Luna D., Marinas J. M., Quiros R. A., Romero A. A. Screening of amorphous metal-phosphate catalysts for the oxidative dehydrogenation of ethylbenzene to styrene [J]. Applied Catalysis B: Environmental,2007,70 (1-4):611-620.
    [58]丁中海,顾雄毅,隋志军,周兴贵.乙苯脱氢制苯乙烯工艺流程模拟[J].石油化工,2009,38(4):412-418.
    [59]Mimura N., Saito M. Dehydrogenation of ethylbenzene to styrene over Fe2O3/Al2O3 catalysts in the presence of carbon dioxide [J]. Catalysis Today, 2000,55 (1-2):173-178.
    [60]Hong D. Y., Chang J. S., Lee J. H., Vislovskiy V. P., Jhung S. H., Park S. E., Park Y. H. Effect of carbon dioxide as oxidant in dehydrogenation of ethylbenzene over alumina-supported vanadium-antimony oxide catalyst [J]. Catalysis Today,2006,112 (1-4):86-88.
    [61]Dulamita N., Maicaneanu A., Sayle D. C., Stanca M., Craciun R., Olea M., Afloroaei C., Fodor A. Ethylbenzene dehydrogenation on Fe2O3-Cr2O3-K2CO3 catalysts promoted with transitional metal oxides [J]. Applied Catalysis A: General,2005,287(1):9-18.
    [62]Bautista F. M., Campelo J. M., Luna D., Marinas J. M., Quiros R. A., Romero A. A. Screening of amorphous metal-phosphate catalysts for the oxidative dehydrogenation of ethylbenzene to styrene [J]. Applied Catalysis B-Environmental,2007,70 (1-4):611-620.
    [63]叶兴南.二氧化碳气氛下乙苯催化脱氢研究[D].上海:复旦大学,2004.
    [64]Cavani F., Trifiro F. Alternative processes for the production of styrene [J]. Applied Catalysis A:General,1995,133 (2):219-239.
    [65]Reddy B. M., Lakshmanan P., Loridant P., Yamada Y, Kobayashi T., Lopez-Cartes C., Rojas T. C., Fernandez A. Structural characterization and oxidative dehydrogenation activity of V2O5/CexZr1-xO2/SiO2 catalysts [J]. Journal of Physical Chemistry B,2006,110 (18):9140-9147.
    [66]Zhao T. J., Sun W. Z., Gu X. Y, Ronning M., Chen D., Dai Y. C., Yuan W. K., Holmen A. Rational design of the carbon nanofiber catalysts for oxidative dehydrogenation of ethylbenzene [J]. Applied Catalysis A:General,2007,323 135-146.
    [67]Kustrowski P., Segura Y., Chmielarz L., Surman J., Dziembaj R., Cool P., Vansant E. F. VOx supported SBA-15 catalysts for the oxidative dehydrogenation of ethylbenzene to styrene in the presence of N2O [J]. Catalysis Today,2006,114 (2-3):307-313.
    [68]Vrieland G. E., Menon P. G. Nature of the catalytically active carbonaceous sites for the oxydehydrogenation of ethylbenzene to styrene:A brief review [J]. Applied Catalysis,1991,77 (1):1-8.
    [69]秦国彤,徐绍平.炭质催化剂上乙苯氧化脱氢制苯乙烯[J].炭素技术,1998,(3):20-22.
    [70]Sui Z., Zhou J., Dai Y., Yuan W. Oxidative dehydrogenation of propane over catalysts based on carbon nanofibers [J]. Catalysis Today,2005,106 (1-4): 90-94.
    [71]Su D. S., Zhang J., Frank B., Thomas A., Wang X., Paraknowitsch J., Schlogl R. Metal-Free Heterogeneous Catalysis for Sustainable Chemistry [J]. ChemSusChem,2001,3(2):169-180.
    [72]Zhang J., Liu X., Blume R., Zhang A., Schlogl R., Su D. S. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane [J]. Science, 2008,322 (5898):73.
    [73]Liang C., Xie H., Schwartz V., Howe J., Dai S., Overbury S. H. Open-Cage Fullerene-like Graphitic Carbons as Catalysts for Oxidative Dehydrogenation of Isobutane [J]. J. Am. Chem. Soc,2009,131 (22):7735-7741.
    [74]Pereira M. F. R., Figueiredo J. L., Orfao J. J. M., Serp P., Kalck P., Kihn Y. Catalytic activity of carbon nanotubes in the oxidative dehydrogenation of ethylbenzene [J]. Carbon,2004,42 (14):2807-2813.
    [75]Delgado J. J., Chen X., Tessonnier J. P., Schuster M. E., Del Rio E., Schl gl R., Su D. S. Influence of the microstructure of carbon nanotubes on the oxidative dehydrogenation of ethylbenzene to styrene [J]. Catalysis Today,2009,
    [76]Delgado J. J., Su D. S., Rebmann G., Keller N., Gajovic A., Schlogl R. Immobilized carbon nanofibers as industrial catalyst for ODH reactions [J]. Journal of Catalysis,2006,244 (1):126-129.
    [77]Su D. S., Maksimova N. I., Mestl G, Kuznetsov V. L., Keller V., Schlogl R., Keller N. Oxidative dehydrogenation of ethylbenzene to styrene over ultra-dispersed diamond and onion-like carbon [J]. Carbon,2007,45 2145-2151.
    [78]Keller N., Maksimova N. I., Roddatis V. V., Schur M., Mestl G., Butenko Y. V., Kuznetsov V. L., Schlogl R. The catalytic use of onion-like carbon materials for styrene synthesis by oxidative dehydrogenation of ethylbenzene [J]. Angewandte Chemie-International Edition,2002,41 (11):1885-1888.
    [79]Li P., Li T., Zhou J.-H., Sui Z.-J., Dai Y.-C., Yuan W.-K., Chen D. Synthesis of carbon nanofiber/graphite-felt composite as a catalyst [J]. Microporous and Mesoporous Materials,2006,95 (1-3):1-7.
    [80]Rinaldi A., Zhang J., Mizera J., Girgsdies F., Wang N., Hamid S. B. A., Schlogl R., Su D. S. Facile synthesis of carbon nanotube/natural bentonite composites as a stable catalyst for styrene synthesis [J]. Chemical Communications,2008, (48):6528-6530.
    [81]王红.用于乙醇水蒸气重整Co/CeO2催化剂的研究[D].天津:天津大学,2007.
    [82]Ricken M., N lting J., Riess I. Specific heat and phase diagram of nonstoichiometric ceria (CeO2-x) [J]. Journal of Solid State Chemistry,1984,54 (1):89-99.
    [83]Trovarelli A. Catalysis by ceria and related materials [M]. Imperial College Pr, 2002:15-17.
    [84]Boaro M., Giordano F., Recchia S., Santo V. D., Giona M., Trovarelli A. On the mechanism of fast oxygen storage and release in ceria-zirconia model catalysts [J]. Applied Catalysis B:Environmental,2004,52 (3):225-237.
    [85]Trovarelli A., De Leitenburg C., Dolcetti G. Design better cerium-based oxidation catalysts [J]. CHEMTECH,1997,27:32-37.
    [86]王建新,傅立新,黎维彬.汽车排气污染治理及催化转化器[M].北京:化学工业出版社,2000:105-106.
    [87]Zhao M. W., Shen M. Q., Wang J. Effect of surface area and bulk structure on oxygen storage capacity of Ce0.67Zr0.33O2 [J]. Journal of Catalysis,2007,248 (2): 258-267.
    [88]王敏炜,魏文龙,罗来涛.CeO2的制备及其在催化剂载体中的应用研究进展[J].化工进展,2006,25(005):517-519.
    [89]Bernal S., Blanco G., Cauqui M. A., Corchado M. P., Larese C., Pintado J. M., Rodriguez-Izquierdo J. M. Cerium-terbium mixed oxides as alternative components for three-way catalysts:a comparative study of Pt/CeTbOx and Pt/CeO2 model systems [J]. Catalysis Today,1999,53 (4):607-612. [90] Trovarelli A., de Leitenburg C., Boaro M., Dolcetti G. The utilization of ceria in industrial catalysis [J]. Catalysis Today,1999,50 (2):353-367.
    [91]Jia L., Shen M., Hao J., Rao T., Wang J. Dynamic oxygen storage and release over Mn0.1Ce0.9Ox and Mn0.1Ce0.6Zr0.3Ox complex compounds and structural characterization [J]. Journal of alloys and compounds,2008,454 (1-2): 321-326.
    [92]Deng W., Flytzani-Stephanopoulos M. On the issue of the deactivation of Au-ceria and Pt-ceria water-gas shift catalysts in practical fuel-cell applications [J]. Angewandte Chemie-International Edition,2006,45 (14):2285-2288.
    [93]Andreeva D., Idakiev V., Tabakova T., Ilieva L., Falaras P., Bourlinos A., Travlos A. Low-temperature water-gas shift reaction over Au/CeO2 catalysts [J]. Catalysis Today,2002,72 (1-2):51-57.
    [94]Deng W., Frenkel A. I., Si R., Flytzani-Stephanopoulos M. Reaction-Relevant Gold Structures in the Low Temperature Water-Gas Shift Reaction on Au-CeO2 [J]. Journal of Physical Chemistry C,2008,112 (33):12834-12840.
    [95]Blank J. H., Beckers J., Collignon P. F., Rothenberg G. Redox kinetics of ceria-based mixed oxides in selective hydrogen combustion [J]. Chemphyschem,2007,8 (17):2490-2497.
    [96]Reddy B. M., Rao K. N., Reddy G. K., Khan A., Park S. E. Structural characterization and oxidehydrogenation activity of CeO2/Al2O3 and V2O5/CeO2/Al2O3 catalysts [J]. Journal of Physical Chemistry C,2007,111 (50): 18751-18758.
    [97]Sakurai H., Akita T., Tsubota S., Kiuchi M., Haruta M. Low-temperature activity of Au/CeO2 for water gas shift reaction, and characterization by ADF-STEM, temperature-programmed reaction, and pulse reaction [J]. Applied Catalysis A:General,2005,291 (1-2):179-187.
    [98]蒋晓原,周仁贤.CeO2对CuO/Al2O3分散状态及催化性能的影响[J].分子催化,1999,13(003):176-180.
    [99]Rothenberg G., de Graaf E. A. B., Bliek A. Solvent-free synthesis of rechargeable solid oxygen reservoirs for clean hydrogen oxidation [J]. Angewandte Chemie International Edition,2003,42 (29):3366-3368.
    [100]Hirano T. Dehydrogenation of ethylbenzene over potassium-promoted iron oxide containing cerium and molybdenum oxides [J]. Applied Catalysis,1986, 28 119-132.
    [101]Murugan B., Ramaswamy A. V. Defect-site promoted surface reorganization in nanocrystalline ceria for the low-temperature activation of ethylbenzene [J]. Journal of the American Chemical Society,2007,129 (11):3062-3063.
    [102]王东辉,程代云,郝郑平.纳米金催化剂及其应用[M].北京:国防工业出版社,2006:1-3.
    [103]陶泳,高滋.金的催化作用[J].化学世界,2005,46(2):114-117.
    [104]Bond G. C., Thompson D. T. Catalysis by gold [J]. Catalysis Reviews,1999,41 (3):319-388.
    [105]Bond G. The Early History of Catalysis by Gold:A review of the literature before 1978 [J]. Gold Bulletin,2008,41 (3):235-241.
    [106]王路存,苏方正,黄新松,曹勇.高性能纳米金催化剂的研究进展[J].石油化工,2007,36(009):869-875.
    [107]许立信.负载型纳米金催化剂上环己烷氧化研究[D].杭州:浙江大学,2007.
    [108]王东辉,郝郑平.纳米金催化剂上CO低(常)温氧化的研究[J].化学进展,2002,14(5):360-367.
    [109]Comotti M., Li W. C., Spliethoff B., Schuth F. Support effect in high activity gold catalysts for CO oxidation [J]. Journal of the American Chemical Society, 2006,128 (3):917-924.
    [110]Haruta M. Size-and support-dependency in the catalysis of gold [J]. Catalysis Today,1997,36(1):153-166.
    [111]Haruta M., Dat M. Advances in the catalysis of Au nanoparticles [J]. Applied Catalysis A:General,2001,222 (1-2):427-437.
    [112]Prati L., Rossi M. Gold on Carbon as a New Catalyst for Selective Liquid Phase Oxidation of Diols [J]. Journal of Catalysis,1998,176 (2):552-560.
    [113]Abad A., Concepcion P., Corma A., Garcia H. A collaborative effect between gold and a support induces the selective oxidation of alcohols [J]. Angewandte Chemie International Edition,2005,44 (26):4066-4069.
    [114]Solsona B. E., Garcia T., Jones C., Taylor S. H., Carley A. F., Hutchings G. J. Supported gold catalysts for the total oxidation of alkanes and carbon monoxide [J]. Applied Catalysis A:General,2006,312 67-76.
    [115]Gsior M., Grzybowska B., Samson K., Ruszel M., Haber J. Oxidation of CO and C3 hydrocarbons on gold dispersed on oxide supports [J]. Catalysis Today, 2004,91 131-135.
    [116]Gluhoi A. C., Bogdanchikova N., Nieuwenhuys B. E. Total oxidation of propene and propane over gold-copper oxide on alumina catalysts:Comparison with Pt/Al2O3 [J]. Catalysis Today,2006,113 (3-4):178-181.
    [117]缪少军,邓友全.一种新的甲烷低温燃烧催化剂Au-Pt/Co3O4 [J]分子催化,2001,15(4):263-266.
    [118]Abate S., Arrigo R., Schuster M. E., Perathoner S., Centi G., Villa A., Su D., Schlogl R. Pd nanoparticles supported on N-doped nanocarbon for the direct synthesis of H2O2 from H2 and O2 [J]. Catalysis Today,2010, doi:10.1016/j.cattod.2010.01.027.
    [119]Landon P., Collier P. J., Papworth A. J., Kiely C. J., Hutchings G. J. Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst [J]. Chemical communications (Cambridge, England),2002, (18):2058.
    [120]Edwards J. K., Solsona B. Switching Off Hydrogen Peroxide Hydrogenation in the Direct Synthesis Process [J]. Science,2009,323 (5917):1037.
    [121]Pina C. D., Falletta E., Prati L., Rossi M. Selective oxidation using gold [J]. Chemical Society Reviews,2008,37 (9):2077-2095.
    [122]Chen L., Hu J., Richards R. Intercalation of Aggregation-Free and Well-Dispersed Gold Nanoparticles into the Walls of Mesoporous Silica as a Robust "Green" Catalyst for n-Alkane Oxidation [J]. Journal of the American Chemical Society,2009,131 (3):914.
    [123]Zhao R., Ji D., Lv G., Qian G., Yan L., Wang X., Suo J. A highly efficient oxidation of cyclohexane over Au/ZSM-5 molecular sieve catalyst with oxygen as oxidant [J]. Chemical communications,2004,2004 (7):904-905.
    [124]Bravo-Suarez J. J., Bando K. K., Lu J., Fujitani T., Oyama S. T. Oxidation of propane to propylene oxide on gold catalysts [J]. Journal of Catalysis,2008, 255(1):114-126.
    [1]Blasco T., Nieto J. M. L. Oxidative dehydrogenation of short chain alkanes on supported vanadium oxide catalysts [J]. Applied Catalysis A:General,1997, 157(1-2):117-142.
    [2]Cavani F., Ballarini N., Cericola A. Oxidative dehydrogenation of ethane and propane:How far from commercial implementation? [J]. Catalysis Today,2007, 127(1-4):113-131.
    [3]Teixeira-Neto A. A., Marchese L., Landi G., Lisi L., Pastore H. O. [V, Al]-MCM-22 catalyst in the oxidative dehydrogenation of propane [J]. Catalysis Today,2008,133 1-6.
    [4]Ledoux M. J., Pham-Huu C. Silicon carbide-a novel catalyst support for heterogeneous catalysis [J]. Cattech,2001,5 (4):226-246.
    [5]Pham-Huu C., Keller N., Ehret G., Ledoux M. J. The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential [J]. Journal of Catalysis,2001,200 (2):400-410.
    [6]Ledoux M. J., Crouzet C., Pham-Huu C., Turines V., Kourtakis K., Mills P. L., Lerou J. J. High-yield butane to maleic anhydride direct oxidation on vanadyl pyrophosphate supported on heat-conductive materials:β-SiC, Si3N4, and BN [J]. Journal of Catalysis,2001,203 (2):495-508.
    [7]Shen X. N., Zheng Y., Zhan Y. Y, Cai G. H., Xiao Y H. Synthesis of porous SiC and application in the CO oxidation reaction [J]. Materials Letters,2007,61 (26):4766-4768.
    [8]Sun W. Z., Jin G. Q., Guo X. Y. Partial oxidation of methane to syngas over Ni/SiC catalysts [J]. Catalysis Communications,2005,6 (2):135-139.
    [9]孙卫中,莫若飞,靳国强,郭向云.不同载体的镍基催化剂在甲烷部分氧化反应中的催化行为[J].天然气化工:C1化学与化工,2006,31(006):1-5.
    [10]Nguyen P., Edouard D., Nhut J. M., Ledoux M. J., Pham C., Pham-Huu C. High thermal conductive β-SiC for selective oxidation of H2S:A new support for exothermal reactions [J]. Applied Catalysis B:Environmental,2007,76 (3-4): 300-310.
    [11]Keller N., Pham-Huu C., Ledoux M. J. Continuous process for selective oxidation of H2S over SiC-supported iron catalysts into elemental sulfur above its dewpoint [J]. Applied Catalysis A:General,2001,217 (1-2):205-217.
    [12]Pham-Huu C., Bouchy C., Dintzer T., Ehret G., Estournes C., Ledoux M. J. High surface area silicon carbide doped with zirconium for use as catalyst support. Preparation, characterization and catalytic application [J]. Applied Catalysis A:General,1999,180 (1-2):385-397.
    [13]Guo X. Y., Jin G. Q., Hao Y. J. Morphology-controlled synthesis of nanostructured silicon carbide [A]. 见:Silicon Carbide 2004-Materials, Processing and Devices [C]. San Francisco, CA, United States:Materials Research Society, Warrendale, PA 15086, United States,2004:77-82.
    [14]Xu J., Chen M., Liu Y.M., Cao Y, He H.Y., Fan K.N. Vanadia supported on H2O2-detemplated mesoporous SBA-15 as new effective catalysts for the oxidative dehydrogenation of propane [J]. Microporous and Mesoporous Materials,2009,118 (1-3):354-360.
    [15]Zheng Y, Zheng Y, Lin L. X., Ni J., Wei K. M. Synthesis of a novel mesoporous silicon carbide with a thorn-ball-like shape [J]. Scripta Materialia, 2006,55 (10):883-886.
    [16]Ahmed Y. M. Z., El-Sheikh S. M. Influence of the pH on the Morphology of Sol-Gel-Derived Nanostructured SiC [J]. Journal of the American Ceramic Society,2009,92 (11):2724-2730.
    [17]Liu Z., Shen W., Bu W., Chen H., Hua Z., Zhang L., Li L., Shi J., Tan S. Low-temperature formation of nanocrystalline β-SiC with high surface area and mesoporosity via reaction of mesoporous carbon and silicon powder [J]. Microporous and Mesoporous Materials,2005,82 (1-2):137-145.
    [18]Jin G. Q., Guo X. Y. Synthesis and characterization of mesoporous silicon carbide [J]. Microporous and Mesoporous Materials,2003,60 (1-3):207-212.
    [19]Liu Y. M., Cao Y., Yi N., Feng W. L., Dai W. L., Yan S. R., He H. Y, Fan K. N. Vanadium oxide supported on mesoporous SBA-15 as highly selective catalysts in the oxidative dehydrogenation of propane [J]. Journal of Catalysis,2004,224 (2):417-428.
    [20]Liu Y. M., Feng W. L., Li T. C., He H. Y., Dai W. L., Huang W., Cao Y, Fan K. N. Structure and catalytic properties of vanadium oxide supported on mesocellulous silica foams (MCF) for the oxidative dehydrogenation of propane to propylene [J]. Journal of Catalysis,2006,239 (1):125-136.
    [21]Ivanova S., Vanhaecke E., Dreibine L., Louis B., Pham C., Pham-Huu C. Binderless HZSM-5 coating on β-SiC for different alcohols dehydration [J]. Applied Catalysis A:General,2009,359 (1-2):151-157.
    [22]Wang Q., Sun W. Z., Jin G. Q., Wang Y. Y., Guo X. Y. Biomorphic SiC pellets as catalyst support for partial oxidation of methane to syngas [J]. Applied Catalysis B:Environmental,2008,79 (4):307-312.
    [1]Cavani F., Trifiro F. Alternative processes for the production of styrene [J]. Applied Catalysis A:General,1995,133 (2):219-239.
    [2]Reddy B. M., Lakshmanan P., Loridant P., Yamada Y., Kobayashi T., Lopez-Cartes C., Rojas T. C., Fernandez A. Structural characterization and oxidative dehydrogenation activity of V2O5/CexZr1-xO2/SiO2 catalysts [J]. Journal of Physical Chemistry B,2006,110 (18):9140-9147.
    [3]Bautista F. M., Campelo J. M., Luna D., Marinas J. M., Quiros R. A., Romero A. A. Screening of amorphous metal-phosphate catalysts for the oxidative dehydrogenation of ethylbenzene to styrene [J]. Applied Catalysis B-Environmental,2007,70 (1-4):611-620.
    [4]Mestl G., Maksimova N. I., Keller N., Roddatis V. V., Schlogl R. Carbon nanofilaments in heterogeneous catalysis:An industrial application for new carbon materials? [J]. Angewandte Chemie-International Edition,2001,40 (11): 2066-2068.
    [5]Su D. S., Maksimova N. I., Mestl G., Kuznetsov V. L., Keller V., Schlogl R., Keller N. Oxidative dehydrogenation of ethylbenzene to styrene over ultra-dispersed diamond and onion-like carbon [J]. Carbon,2007,45 2145-2151.
    [6]Albonetti S., Cavani F., Trifiro F. Key aspects of catalyst design for the selective oxidation of paraffins [J]. Catalysis Reviews,1996,38 (4):413-438.
    [7]秦国彤,徐绍平.炭质催化剂上乙苯氧化脱氢制苯乙烯[J].炭素技术,1998,(3):20-22.
    [8]Pereira M. F. R., Figueiredo J. L., Orfao J. J. M., Serp P., Kalck P., Kihn Y. Catalytic activity of carbon nanotubes in the oxidative dehydrogenation of ethylbenzene [J]. Carbon,2004,42 (14):2807-2813.
    [9]Delgado J. J., Chen X., Tessonnier J. P., Schuster M. E., Del Rio E., Schlogl R., Su D. S. Influence of the microstructure of carbon nanotubes on the oxidative dehydrogenation of ethylbenzene to styrene [J]. Catalysis Today,2009,
    [10]Delgado J. J., Su D. S., Rebmann G., Keller N., Gajovic A., Schlogl R. Immobilized carbon nanofibers as industrial catalyst for ODH reactions [J]. Journal of Catalysis,2006,244 (1):126-129.
    [11]Zhao T. J., Sun W. Z., Gu X. Y., Ronning M., Chen D., Dai Y. C., Yuan W. K., Holmen A. Rational design of the carbon nanofiber catalysts for oxidative dehydrogenation of ethylbenzene [J]. Applied Catalysis a-General,2007,323 135-146.
    [12]Keller N., Maksimova N. I., Roddatis V. V., Schur M., Mestl G., Butenko Y. V., Kuznetsov V. L., Schlogl R. The catalytic use of onion-like carbon materials for styrene synthesis by oxidative dehydrogenation of ethylbenzene [J]. Angewandte Chemie-International Edition,2002,41 (11):1885-1888.
    [13]Ledoux M. J., Pham-Huu C. Silicon carbide-a novel catalyst support for heterogeneous catalysis [J]. Cattech,2001,5 (4):226-246.
    [14]Zhao M. W., Shen M. Q., Wang J. Effect of surface area and bulk structure on oxygen storage capacity of Ce0.67Zr0.33O2 [J]-Journal of Catalysis,2007,248 (2): 258-267.
    [15]Andreeva D., Ivanov I., Ilieva L., Abrashev M. V. Gold catalysts supported on ceria and ceria-alumina for water-gas shift reaction [J]. Applied Catalysis A: General,2006,302 (1):127-132.
    [16]Mendes D., Garcia H., Silva V. B., Mendes A., Madeira L. M. Comparison of Nanosized Gold-Based and Copper-Based Catalysts for the Low-Temperature Water-Gas Shift Reaction [J]. Ind. Eng. Chem. Res,2009,48 (1):430-439.
    [17]Reddy B. M., Rao K. N., Reddy G. K., Khan A., Park S. E. Structural characterization and oxidehydrogenation activity of CeO2/Al2O3 and V2O5/CeO2/Al2O3 catalysts [J]. Journal of Physical Chemistry C,2007,111 (50): 18751-18758.
    [18]Luo M. F., Ma J. M., Lu J. Q., Song Y. P., Wang Y. J. High-surface area CuO-CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation [J]. Journal of Catalysis,2007,246 (1):52-59.
    [19]Blank J. H., Beckers J., Collignon P. F., Rothenberg G. Redox kinetics of ceria-based mixed oxides in selective hydrogen combustion [J]. Chemphyschem,2007,8(17):2490-2497.
    [20]Jia L., Shen M., Hao J., Rao T., Wang J. Dynamic oxygen storage and release over Mn0.1Ce0.9Ox and Mn0.1Ce0.6Zr0.3Ox complex compounds and structural characterization [J]. Journal of alloys and compounds,2008,454 (1-2): 321-326.
    [21]Boaro M., Giordano F., Recchia S., Santo V. D., Giona M., Trovarelli A. On the mechanism of fast oxygen storage and release in ceria-zirconia model catalysts [J]. Applied Catalysis B:Environmental,2004,52 (3):225-237.
    [22]Ilieva L., Pantaleo G., Ivanov I., Nedyalkova R., Venezia A. M., Andreeva D. NO reduction by CO over gold based on ceria, doped by rare earth metals [J]. Catalysis Today,2008,139(3):168-173.
    [23]Ilieva L., Pantaleo G., Nedyalkova R., Sobczak J. W., Lisowski W., Kantcheva M., Venezia A. M., Andreeva D. NO reduction by CO over gold catalysts based on ceria supports, prepared by mechanochemical activation, modified by Me3+ (Me= Al or lanthanides):Effect of water in the feed gas [J]. Applied Catalysis B: Environmental,2009,90 (1-2):286-294.
    [1]Bond G. C., Thompson D. T. Catalysis by gold [J]. Catalysis Reviews,1999,41 (3):319-388.
    [2]Haruta M. Catalysis of gold nanoparticles deposited on metal oxides [J]. Cattech,2002,6(3):102-115.
    [3]Haruta M. When gold is not noble:catalysis by nanoparticles [J]. The Chemical Record,2003,3 (2):75-87.
    [4]Pina C. D., Falletta E., Prati L., Rossi M. Selective oxidation using gold [J]. Chemical Society Reviews,2008,37 (9):2077-2095.
    [5]Solsona B. E., Garcia T., Jones C., Taylor S. H., Carley A. F., Hutchings G. J. Supported gold catalysts for the total oxidation of alkanes and carbon monoxide [J]. Applied Catalysis A:General,2006,312 67-76.
    [6]Gsior M., Grzybowska B., Samson K., Ruszel M., Haber J. Oxidation of CO and C3 hydrocarbons on gold dispersed on oxide supports [J]. Catalysis Today, 2004,91 131-135.
    [7]Gluhoi A. C., Bogdanchikova N., Nieuwenhuys B. E. Total oxidation of propene and propane over gold-copper oxide on alumina catalysts:Comparison with Pt/Al2O3 [J]. Catalysis Today,2006,113 (3-4):178-181.
    [8]Bravo-Suarez J. J., Bando K. K., Lu J., Fujitani T., Oyama S. T. Oxidation of propane to propylene oxide on gold catalysts [J]. Journal of Catalysis,2008, 255(1):114-126.
    [9]Sakurai H., Akita T., Tsubota S., Kiuchi M., Haruta M. Low-temperature activity of Au/CeO2 for water gas shift reaction, and characterization by ADF-STEM, temperature-programmed reaction, and pulse reaction [J]. Applied Catalysis A:General,2005,291 (1-2):179-187.
    [10]Wang L. C., Huang X. S., Liu Q., Liu Y. M., Cao Y., He H. Y, Fan K. N., Zhuang J. H. Gold nanoparticles deposited on manganese (Ⅲ) oxide as novel efficient catalyst for low temperature CO oxidation [J]. Journal of Catalysis, 2008,259(1):66-74.
    [11]王路存,苏方正,黄新松,曹勇.高性能纳米金催化剂的研究进展[J].石油化工,2007,36(009):869-875.
    [12]Li Y., Fu Q., Flytzani-Stephanopoulos M. Low-temperature water-gas shift reaction over Cu-and Ni-loaded cerium oxide catalysts [J]. Applied Catalysis B: Environmental,2000,27 (3):179-191.
    [13]Xu J., Wang L. C., Liu Y. M., Cao Y., He H. Y., Fan K. N. Mesostructured CeO2 as an Effective Catalyst for Styrene Synthesis by Oxidative Dehydrogenation of Ethylbenzene [J]. Catalysis Letters,2009,133 (3):307-313.
    [14]Huang X. S., Sun H., Wang L. C., Liu Y. M., Fan K. N., Cao Y. Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation [J]. Applied Catalysis B:Environmental,2009, 90 (1-2):224-232.
    [15]Hagemeyer A., Heineke D. Catalyst for catalytic oxidative dehydrogenation of alkyl aromatic(s) and paraffin(s)-comprising oxide of e.g. bismuth, cobalt, chromium, iron, indium, nickel and metal or noble metal sol of e.g. silver@, gold@, platinum@, rhenium@, osmium, etc [P]. GB2297043-A.
    [16]Bautista F. M., Campelo J. M., Luna D., Marinas J. M., Quiros R. A., Romero A. A. Screening of amorphous metal-phosphate catalysts for the oxidative dehydrogenation of ethylbenzene to styrene [J]. Applied Catalysis B-Environmental,2007,70 (1-4):611-620.
    [17]Delgado J. J., Su D. S., Rebmann G., Keller N., Gajovic A., Schlogl R. Immobilized carbon nanofibers as industrial catalyst for ODH reactions [J]. Journal of Catalysis,2006,244 (1):126-129.
    [18]Zhang J., Su D., Zhang A., Wang D., Schlogl R., Hebert C. Nanocarbon as Robust Catalyst:Mechanistic Insight into Carbon-Mediated Catalysis [J]. Angewandte Chemie,2007,119 (38):7460-7464.
    [19]Su D. S., Maksimova N. I., Mestl G., Kuznetsov V. L., Keller V., Schlogl R., Keller N. Oxidative dehydrogenation of ethylbenzene to styrene over ultra-dispersed diamond and onion-like carbon [J]. Carbon,2007,45 2145-2151.
    [20]Rubini C., Cavalli L., Conca E. Catalyst for dehydrogenating ethylbenzene to styrene-comprises iron oxide, potassium oxide, magnesium and/or calcium oxide, cerium oxide, tungsten and/or molybdenum oxide and potassium ferrate [P].US6184174-B1.
    [21]Dulamita N., Maicaneanu A., Sayle D. C., Stanca M., Craciun R., Olea M., Afloroaei C., Fodor A. Ethylbenzene dehydrogenation on Fe2O3-Cr2O3-K2CO3 catalysts promoted with transitional metal oxides [J]. Applied Catalysis A: General,2005,287(1):9-18.
    [22]Oganowski W., Hanuza J., Kepiski L. Catalytic properties of Mg3(VO4)2-MgO system in oxidative dehydrogenation of ethylbenzene [J]. Applied Catalysis A: General,1998,171 (1):145-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700