超高效液相色谱—质谱联用技术在药物分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高效液相色谱-质谱法(UPLC-MS)是21世纪初发展起来的一种分析技术,它是结合了UPLC的高效分离能力与MS的高灵敏度和极强的专属性的分离检测技术。它具有应用范围广、分离能力强、灵敏度高、分析速度快和自动化程度高等特点,目前已成为有机物分析,特别是药物分析的重要方法之一。
     本论文开展了应用新型串联色谱柱分离头孢菌素类药物的研究;超高效液相色谱-多级质谱串联技术对仙鹤草提取物中仙鹤草酚的研究;以及超高效液相色谱-多级质谱串联柱后添加过渡金属在线区分黑鳗藤提取物中C21甾体糖苷同分异构体的研究。此外,论文详细综述了色谱质谱联用技术的工作原理以及其在药物分析中的应用。
     首先,对多孔壳层Halo-C_(18)柱、Zorbax Eclipse XDB-C_(18)柱、Zorbax SB-C_(18)柱、ACQUIT UPLC BEH-C_(18)柱以及多孔壳层Halo-C_(18)与Zorbax SB-C_(18)的串联柱分离分析头孢菌素类药物进行了比较研究。结果表明:Halo-C_(18)柱的分离效果明显优于Zorbax Eclipse XDB-C_(18)柱和Zorbax SB-C_(18)柱。串联柱的柱效、分离度几乎达到ACQUIT UPLC BEH-C_(18)柱的水平,而其柱压却只有UPLC柱的一半。多孔壳层Halo-C_(18)串联柱在一定程度上可以取代超高压色谱柱在常规液相色谱仪上实现高通量快速分离。
     其次,应用液质联用技术(UPLC/ESI-IT-MS~n)结合在线的高分辨HPLC/ESI-TOF-MS对仙鹤草藤茎中的仙鹤草酚进行快速筛选。实验还对仙鹤草酚的[M-H]-离子的质谱裂解机理进行探讨,得到表征其三个环单元取代基的特征碎片离子,进而成功鉴定了仙鹤草藤茎中19个具有抗肿瘤活性的仙鹤草酚结构,其中有12个是新化合物。
     最后,由于金属离子常常能诱导化合物的质谱裂解模式发生改变这为鉴定化合物结构提供了新的契机。在以前研究的基础上,本实验对在线的过渡金属离子诱导的C_(21)甾体糖苷的质谱裂解机理进行了详细系统的研究。并依据C_(21)甾体糖苷-过渡金属离子复合物的质谱裂解机理成功区分了两对由非还原末端单糖异构引起的同分异构体。
Ultra performance liquid chromatography and mass spectrometry (UPLC-MS) has grown to become a mature and routinely used technique in analytical chemistry since 2004. UPLC-MS is an online coupling system of UPLC, a separation technique that can be applied to the extremely complex mixtures, and MS, the most sensitive method of molecular analysis that has the potential to yield information of the molecular weight as well as the structure of the analyte. It provides a low limit of detection and as an identifier for structural information.UPLC-MS has become a powerful and important technique and method in analysis of medicines in the complex mixtures.
     In this thesis, we comparative study on the separation of cephalosporins by the new rapid liquid chromatography column. We successfully developed electrospray ionization tandem mass spectrometry coupled with ultra performance liquid chromatography to screen for agrimols with potent activity against Staphylococcus aureus from Rhinacanthus nasutus ( L.) Kurz and C_(21) steroidal glycosides with immunological activities from Stephanotis mucronata. In order to differentiate isomers in extracts, we also investigated C_(21) steroidal glycosides by ultra performance liquid chromatography tandem mass spectrometry using ferrous chloride as a postcolumn reagent based on previous investigations of offline regioisomer characterization of C21 steroidal glycosides. In addition, the principle of LC-MS technique and its extensive application in pharmaceutical analysis were reviewed in detail.
     First, the characteristics and performance of five different C_(18)-bonded silica columns including Halo-C_(18) column, Zorbax Eclipse XDB-C_(18) column, Zorbax SB-C_(18) column, ACQUIT UPLC BEH-C_(18) column and the coupled column of Halo-C_(18) column and Zorbax SB-C_(18) column to separate the cephalosporins in the gradient elution mode were investigated. The results indicate that the Halo-C_(18) column provides a higher performance than that of Zorbax Eclipse XDB-C_(18) column and Zorbax SB-C_(18) column. Furthermore, the efficiency and resolution of the coupled column were nearly same as that of UPLC column. However, the back pressure of the coupled column was 50 % lower than that of the UPLC column. It is obvious that the coupled column can offer rapid, high performance separation of compounds instead of UPLC column with a conventional chromatography instrument.
     Second, Ultra performance liquid chromatography tandem mass spectrometry was developed for screening of grimols which were homologous series in the roots of R.nasutus by means of online high–resolution HPLC/TOF-MS. Fragmentation pathways and major fragment ions were determined. As a result, nineteen phloroglucinol derivatives including five groups of isomeric compounds are rapidly analyzed and identified, and twelve of these are observed here for the first time in this plant.
     At last, The fragmentation patterns of compound induced by metal ion can be significantly altered, allowing new opportunities for structural determination. We have systemically investigated fragmentation patterns of C_(21) steroidal glycosides induced using the ferrous chloride as a postcolumn reagent, the non-reducing end glycoside stereoisomers were differentiated.
引文
[1] Rossi DT, Sinz MW. Mass spectrometry in drug discovery[M]. New York: Marce Dekker, 2002, 171-214.
    [2] Lee MS, Kerns EH. LC/MS applications in drug development[J].Mass Spectrometry Review,1999,18:187-279.
    [3]陈耀祖,涂亚平.有机质谱原理及应用[M].北京:科学出版社, 2000. 1-6.
    [4] Field FH, Franklin JL. Electron impact phenomena and the properties of gaseous ions[M].New York:Academic Press,1957,349-359.
    [5] Field FH, Munson MSB. Chemical Ionization Mass spectrometry. V.Cycloparaffms [J]. J.Am.Chem.Soc, 1967, 89:4272-4280.
    [6] Barber M, Bordoli RS, Sedgwick RD, Tyler AN. Fast atom bombardment of solids as ion source in mass spectrometry[J].Nature,1981,293:270-275.
    [7] Barber M, Bordoli RS, Sedgwick RD, Tyler AN. FAB-MS of Cobala-mines[J]. Biomed Mass Spectrom, 1981, 8:492-495.
    [8] Surman DJ, Vickerman JC.Fast Atom bombardment quadrupole mass-spectrometry [J].J.Chem.Soc.Chem.Commun.1981, 7:324-325.
    [9] Karas M, Bachmann D, Hillenkamp F. Influence of the wavelength in high irradiance ultraviolet laser desorption mass spectrometry of organic molecules[J].Anal. Chem., 1985, 57:2935-2939.
    [10] Allwood DA,Dreyfus RW,Perera IK,Dyer PE.UV Optical absorption of matrices used for matrix-assisted laser desorption/ionization[J].Rapid Commun Mass Spectrom,1996, 10:1575-1578.
    [11] Karas M,Hillenkamp F.Laser desorption ionization of proteins with molecular masses exceeding 10000 dalton[J].Anal Chem.1988, 60:2299-2301.
    [12] Karas M,Bachmann D,Bahr U,Hillenkamp F.Matrix-assisted ultraviolet laser desorption of non-volatile compounds[J]. Int.J.Mass Spectrom. Ion Processes, 1987, 78:53-68.
    [13] Wood TD, Schweikhard L, Marshall AG.Mass-to-charge ratio upper limits for matrix-assisted laser desorption fourier-transform ion-cyclotron resonance mass-spectrometry[J]. Anal.Chem., 1992, 64:1461-1469.
    [14] Fenn JB,Mann M,Meng CK,Wong SF.Whitehouse CM.Electrospray ionization formass-spectrometry of large biomolecules[J]. Science, 1989, 246:64-71.
    [15] Fenn JB,Mann M, Meng CK,Wong SF,Whitehouse CM. Electrospray ionization principles and practice[J]. Mass Spectrom. Rev., 1990, 9:37-70.
    [16] Whitehouse CM, Dreyer RN,Yamashita M,Fenn JB.Electrospray interface for liquid chromatographs and mass spectrometers[J]. Anal. Chem., 1985, 57:675-679.
    [17] Andrews CL, VourosP, Harsch A.Analysis of DNA adducts using high-performance separation techniques coupled to electrospray ionization mass spectrometry [J]. Journal of Chromatography A, 1999, 856:515-526.
    [18] Voyksner RD, Electrospray Ionization Mass Spectrometry[M].New York:John Wiley &Sons,1997.323-341.
    [19] Issaq HJ,Janini GM,Chan KC,Veenstra TD.Sheathless electrospray ionization interfaces for capillary electrophoresis-mass spectrometric detection:advantages and limitations[J]. Journal of Chromatography A, 2004, 1053:37-42.
    [20] Valaskovic GA, Kelleher NL, Mclafferty FW. Attomole protein characterization by capillary electrophoresis-mass spectrometry [J].Science 1996, 273:1199-1202.
    [21] Severs JC, Smith RD. In Electrospray Ionization Mass Spectrometry[M].New York: Wiley,1997.Chap 10.
    [22] Mateus L, Cherkaoui S, Christen P, Veuthey J. Simultaneous determination of scopolamine, hyoscyamine and littorine in plants and different hairy root clones of Hyoscyamus muticus by micellar electrokinetic chromatography[J].Electrophoresis,1999,20:3402-3409.
    [23] Despeyroux D, Jennings KR. Biological Mass Spectrometry Present and Future[M]. Chichester: John Wiley&Sons, 1994. 227-238.
    [24]曾泳淮,林树昌.分析化学仪器分析部分[M].北京:高等教育出版社, 2004.
    [25] Behymer TD, Bellar TA, Budde WL,Liquid chromatography/particle beam/mass spectrometry of polar compounds of environmental interest[J].Anal., Chem..1990, 62(15):1686-1690.
    [26] Niessen WMA, Tjaden UR, Greet JVD.Strategies in developing interfaces for coupling liquid chromatography and mass spectrometry[J]. J.Chromatogr. , 1991, 554(1):3-26.
    [27] Arpino P, Combined liquid chromatography mass spectrometry.Part I: Compling by means of a moving belt interface [J] .Mass Spectr.Rev. , 1989 ,8(1):35-55.
    [28] Wiilonghby RC, Browner RF,Monodisperse aerosol generation interface forcombining liquid chromatography with mass spectroscopy[J]. Anal.Chem. , 1984, 56(14):2626-2631.
    [29] Blakley CR, Vestal ML, Thermospray interface for liquid chromatography/mass spectrometry [J].Anal.Chem. , 1983, 55(4):750-754.
    [30] Whitehouse CM, Dreyer RN, Yamashita M, Fenn JB. Electrospray interface for liquid chromatographs and mass spectrometers [J].Anal.Chem. , 1985, 57(3):675-679.
    [31] Prime RB, Shushan B, ThermograVimetric analyzer/atmospheric pressure chemical ionization tandem triple quadrupole mass spectrometer system for evolved gas analysis[J].Anal.Chem.,1989,61(11):l159-l164.
    [32] Caprioli RM, Fan T, Cottrell JS. A continuous—flow sample probe for fast atom bombardment mass spectrum[J].Anal.Chem.,1986,58(14):2949-2954.
    [33] Cech NB, Enke CG, Practical implication of some recent studies in electrospray ionization fundamentals [J].Mass Spectro.Rev., 2001, 20: 354-362.
    [34] Gelpi E.Contributions of liquid chromatography-mass spectrometry to highlights of biomedical reseach[J].J.Chromatogr.A,2003,1000(1-2),567-581.
    [35] Brewer E, Henion J, Atmospheric pressure ionization LC/MS/MS techniques for drug disposition studies [J].J.Pharm.Sci., 1998, 87:395-402.
    [36] Iribame JV, Thomson BA.Evaporation of small ions from charged droplets [J]. Journal of Chem. Phys., l976, 64:2287-2294.
    [37] Thomson BA, Jribame JV.Evaporation of small ions from charged droplets [J].Journal of Chem. Phys., l979, 7l: 4451-4461.
    [38] Mehlis B, Kertscher U.Liquid chromatography/mass spectrometry of peptides of biological samples[J],Anal.Chim.Acta,1997,352(1):71-83.
    [39] Babu JM, Kumar YR, et al.Structural studies on the impurities of troglitazone [J]. Journal of Phamaceutical and Biomedical Analysis, 2003, 31: 271-281.
    [40] Li CJ, Kari UP, et al.Determination of degradation products of squalamine lactate using LC/MS [J]. Journal of Phamaceutical and Biomedical Analysis, 2003, 32:85-96.
    [41] Xu X, Bartlett MG, Stewart JT.Determination of degradation products of sumatriptan succinate using LC-MS and LC-MS-MS[J]. Journal of Phamaceutical and Biomedical Analysis, 2001, 26(3): 367-337.
    [42] Tata PNV, Schomo KS. Et al. LC/MS/MS analysis of vesnarinone and its principal metabolites in plasma and urine[J].Journalof Phamaceutical and Biomedical Analysis, 1999, 18(6):1037-1045. .
    [43] Fiori J, Bragieri M. et al. Liquid chromatography-tandem mass spectrometry for the identification of impurities in d-allethrin samples[J].Journal of Chromatography A, 2005,1099(1-2):149-156.
    [44] Ermer J. The use of hyphenated LC-MS technique for characterization of impurity profiles during drug development [J].Journal of Phamaceutical and Biomedical Analysis, 1998, 18(4-5):707-714.
    [45] Wu Yh.The use of liquid chromatography-mass spectrometry for the identification of drug degradation products in pharmaceutical formulations [J]. Biomedical Chromatography, 2000, 14(6): 384-396.
    [46] Fouda HG, Hobbs DC, Stambaugh JE, Sensitive assay for determination of hydroxyzine in plasma and its human pharmacokinetics [J]. J.Phann.Sci, 1979, 68:1456-1458.
    [47] Falkner FC, Fouda HG, Mullins FG. A gas chromatographic / mass spectrometric assay for flutroline, a gammacarboline antipsychotic agent, with direct derivatization on a moving needle injector[J]. Biomed. Mass Spectrom., l984, 11(9):482-485.
    [48] GarJand WA, Powel ML. Quantitative selected ion monitoring (QSIM) of drugs and /or drug metabolites in biological matrices [J].J. Chromatogr. Sci., 1981, 19: 392-434.
    [50] Fouda HG, Lukaszewicz J, Clark DA, Hulin B. Metabolism of a new thiazolidinedione hypoglycemic agent CP-68,722 in rat: Metabolite identification by gas chromatography mass spectrometry[J]. Xenobiotica, l99l, 21:925-934.
    [51] Perchalski RJ, Yost RA, Wilder BJ.Structural elucidation of drug metabolites by triple-quadrupole mass spectrometry[J]. Anal. Chem., 1982, 54(9): 1466-1471.
    [52] Kems EH, Rourick RA, Volk KJ, Lee MS. Buspirone metabolite structure profile using a standard liquid chromatographic-mass spectrometric protocol[J]. J. Chromatogr. B, l997, 698(1-2):133-145.
    [53] Lokiec F, du Sorbier BM, Sanderink GJ, Irinotecan (CPT-11) metabolites in human bile and urine[J].Clin. Cancer Res., 1996, 2:1943-1949.
    [54] Rosas MER, Patel S, Wainer IW.Determination of the enantiomers of ketamine and norketamine in huaman plasma by enantioselective liquid chromatography-mass spectrometry[J].J. Chromatogr. B, 2003, 794(1):99-108.
    [55] Beck O, Stephanson N, Morris RG, Sallustio BC, Hjemdahl P. Determination of perhexiline and hydroxyperhexiline in plasma by liquid chromatography-mass spectrometry[J]. J. Chromatogr. B, 2004, 805(1): 87-91.
    [56] Lee CR, Hubert M, Van Dau CN, Peter D, Krstulovic AM. Determination of N, N-dimethylaminoethyl chloride and the dimethylaziridinium ion at sub-ppm levels in diltiazem hydrochloride by LC-MS with electrospray ionization[J].Analyst, 2000, 125: 1255-1259.
    [57] Madani S, Howald WN, Lawrence RF, Shen DD. Analysis of hydroxylated and N-dealkylated metabolites of terfenadine in microsomal incubates by liquid chromatography-mass spectrometry[J]. J. Chromatogr. B, 2000, 74l (2): 145-153.
    [58] Aravagiri M, Marder SR, Simultaneous determination of risperidone and 9-hydroxyrisperidone in plasma by liquid chromatography/electrospray tandem mass spectrometry[J]. J. Mass Spectrom. , 2000, 35(6):7l8-724.
    [1]龙虹,丁强,王天松,等.毛细管区带电泳法分析头孢菌素类药物的纯度[J].色谱, 1999, 17(6):570-572.
    [2] Herndndez M, Borrull F, Calull M. Determination of amoxicillin in plasma samples by capillary electro2phoresis [J] . J.Chromatograph B, 1999, 731: 309-315.
    [3] Rovatti L, Garzotti M, Casazza A, et al. Investigation of potential degradation products of a newly synthesized ?-lactam antidiotic by multi stage liquid chromatography electrospray mass spectrometry[J]. J.Chromatogr, 1998, 819(122) : 133-138.
    [4]国家药典委员会编.中华人民共和国药典(2005版) [M].北京:化学工业出版社, 2005.
    [5] Mcateer JA, Hiltke MF, Michael B, et al. Liquid-chromatographic determination of five orally active cephalosporins cefixime, cefaclor, cefadroxil , cephalexin and cephradine in human serum[J ]. Clin Chem, 1987, 33(10): 1788-1790.
    [6] Kazuo Iwaki, Norio Okumura, Mitsuru Yamazaki. Precolumn derivatization technique for high performance liquid chromatographic determination of penicillins with fluorescence detection[J ]. J Chromatogr, 1990, 504: 359-367.
    [7] John E MacNair, Kenneth C Lewis, James W Jorgenson. Ultrahigh-pressure reversed-phase liquid chromatography in packed capillary columns[J]. Anal Chem, 1997, 69(6):983-989.
    [8] Jerkovich AD, Mellors JS, Jorgenson JW.The use of micrometer-sized particles in ultrahigh pressure Liquid chromatography[J]. LC/GC North America, 2003, 21(7): 600-610.
    [9] Cavazzini A, Gritti F, Kaczmarski K, et.al. Mass-transfer kinetics in a shell packing material for chromatography[J]. Anal.Chem, 2007, 79(15):5972-5979.
    [10] Kaczmarski K, Guiochon G. Modeling of mass-transfer kinetics in chromatographic columns packed with shell and pellicular particles[J]. Anal.Chem, 2007, 79(12):4648-4656.
    [11] Gritti F, Cavazzini A, Marchetti N, et.al. Comparison between the efficiencies of columns packed with fully and partially porous C_(18)–bonded silica materials[J].J.Chromatogr.A, 2007, 1157(1/2):289-303.
    [12] Kirkland JJ, Langlois JL, Destefano JJ . Fused core particles for HPLC columns[J]. Amer. Lab, 2007, 39(8);18-21.
    [13] Pehourcq F, Jarry C. Determination of third-generation cephalosporins by high-performance liquid chromatography in connection with pharmacokinetic studies[J]. J. Chromatogr. A, 1998, 812(1/2);159-178.
    [14] Samanidou VF, Ioannou AS, Papadoyannis IN . The use of a monolithic column to improve the simultaneous determination of four cephalosporin antibiotics in pharmaceuticals and body fluids by HPLC after solid phase extraction—a comparison with a conventional reversed-phase silica-based column[J]. J. Chromatogr. B, 2004, 809(1/2);175-182.
    [1]国家中医药管理局《中华本草》编委会,中华本草[M].上海:上海科技出版社, 1999, 728-735.
    [2]姜大成,张洁,邓明鲁. 16组54种动物药材的红外光谱鉴别研究[J].中草药,1999, 30 (2): 137-139.
    [3] Kasai S, Watanabe S, Kawabata J. Antimicrobial catechin derivatives of Agrimonia pilosa [J].Phytochemistry,1992, 31:787–789.
    [4] Naosuke KB. Triterpenoide from Agrimonia pilosa[J]. Phytochemistry, 1988, 27:297–299.
    [5] Pei YH, Li X, Zhu TR. Studies on the chemical constituents from the rootsprouts of Agrimonia pilosa Ledeb[J]. Acta Pharmacol Sin, 1989, 24: 431–437.
    [6] Pei YH, Li X, Zhu TR. Studies on the structure of a new isocoumarin glucoside of the rootsprouts of Agrimonia pilosa Ledeb[J]. Acta Pharmacol Sin, 1989, 24: 837–840.
    [7] Gaind KN, Singla AK, Boar RB, Copsey DB.Triterpenoids and sterols of Kalanchoe spathulata[J].Phytochemistry,1976,15(12): 1999-2000.
    [8] Miyamoto K, Koshiura R, Lkeya Y, Taguchi H. Isolation of agrimoniin,an antitumor constituent, from the roots of Agrimonia pilosa Ledeb.Chemical and Pharmaceutical Bulletin,1985,33:3977-3981.
    [9] Xu XQ, Qi XZ, Wang W, Chen GN.Separation and determination of flavonoids in Agrimonia pilosa Ledeb. by capillary electrophoresis with electrochemical detection [J]. Journal of separation science, 2005, 28 (7):647-652.
    [10] Yun W, Yoichiro Ito. Isolation of hyperoside and luteolin-glucoside from Agrimonia pilosa Ledeb using stepwise elution by high-speed countercurrent chromatography[J]. Journal of liquid chromatography $ related technologies, 2007, 30(9-10): 1465-1473.
    [11] Cheng CL, Chu TY, Wang HC, Huang PS, Chin GW. Studies on the active principles of Shianhotsao.II.Structures of agrimol A, B, D and E[J]. Acta Chimica Sinica, 1978, 36:35-41.
    [12] Miyamoto K, Kishi N, Koshiura R. Antitumor effect of agrimoniin, a tannin of Agrimonia pilosa Ledeb on transplantable rodent tumors[J]. Japanese journal ofPharmacology, 1987, 43: 187-195.
    [13] Miyamoto K, Kishi N, Murayama T, et al.Induction of cytotoxicity of peritoncal exudates cells by agrimoniin, a novel immunomodulatory tannin of Agrimonia pilosa ledeb[J].Cancer Immunology and Immunotherapy, 1988, 27: 59-62.
    [14] Masae Yamaki, Mikiko Miwa, Kyoko Ishiguro, et al.Antimicrobial activity of naturally occurring and synthetic phloroglucinols against Staphylococcus aureus[J]. Phytotherapy Research, 2006, 8(2):112-114.
    [15]Yamaki M, Kashihara M, Ishiguro K, Takagi S. Antimicrobial principles of Xianhecao (Agrimonia pilosa)[J].Planta Med.,1989,55(2):169-170.
    [16] Anonymous. Active components of Shian-Ho Taso. Structure and synthesis of Agrimol C[J].Kexue Tongbao,1974,19: 479-480.
    [17] Qi LW,Chen CY,Li P.Structural characterization and identification of iridoid glycosides,saponins,phenolic acids and flavonoids in Flos Lonicerae Japonicae by a fast liquid chromatography method with diode-array detection and time-of-flight mass spectrometry[J].Rapid Commun Mass Spectrom,2009,23(19):3227-3247.
    [18] Zheng C.Diagnostic fragment-ion-based extension strategy for rapid screening and identification of serial components of homologous families contained in traditional Chinese medicine prescription using high-resolution LC-ESI-IT-TOF/MS: Shengmai injection as an example[J]. J.MassSpectrom. , 2009, 44:230-244.
    [19] Zhang J.Systematic screening and characterization of tertiary and quaternary alkaloids from corydalis yanhusuo W.T. Wang using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry[J]. Tatanta, 2009, 78(2): 513-522.
    [20] Zhang HY, Hu P, Luo GA, et al.Screening and identification of multi-component in Qingkailing injection using combination of liquid chromatography/time-of-flight mass spectrometry and liquid chromatography/ion trap mass spectrometry[J]. Anal.Chim.Acta.,2006, 577(2):190-200.
    [21] Yamato M, Hashigaki K. Synthesis of dl-agrimonolide (constituent of the rhizome of Agrimonia pilosa ledeb)[J].Chemical and Pharmaceurical Bulletin,1976, 24:200-203.
    [22] Okuda T, Yoshida T, Kuwahara M,et al. Agrimoniin and potentillin,an ellagitannin dimmer and monimer having anα-glucose core[J]. Journal of the Chemical Society Chemical Communication , 1982, 163:351-353.
    [23] PeiYH, Li X, Zhu TR. Studies of the chemical constituents from the root-sproutsof Agrimonia pilosa Ledeb[J].Yao Xue Xue Bao,1989,24(6): 431-437.
    [24] Anonymous. Elucidation of the structure of agrimophol[J]. Acta Chimica Sinica,1977, 35:87-96.
    [25] Su GS, Su SW, Zhu TR. Studies on bacteriostatic components from the Agrimonia pilosa Ledeb[J]. Journal of Shenyang College of Pharmacy, 1984, 1:44-50.
    [1]顾立刚,柳彩环,龚树生.白首乌C21甾体苷对免疫受抑小鼠的调整作用[J].中药通报, 1986, 11(11): 50-52.
    [2]梁爱华,薛宝云.芫花叶白前的镇咳、祛痰及平喘作用[J].中国中药杂志,1995, 20(3):176-178.
    [3] Day SH, Wang JP, Won SJ, Lin CN.Bioactive constituents of the roots of Cynanchum atratum[J].J. Nat. Prod, 2001, 64:608-611.
    [4] Hayashi K, Wada K, Mitsuhashi H, Bando H, Takase M, Terada S, Koide Y, Aiba T, Narita T, Mizuno D. Antitumor active glycosides from condurango cortex[J].Chem Pharm Bull. 1980 , 28: 1954-1958.
    [5] Kim MS, Baek JH, Park JA, Huang BY, Kim SE, Lee JJ, Kim KW. Wilfoside KIN isolated from Cynanchum wilfordii inhibits angiogenesis and tumor cell invasion[J]. Int J Oncol.2005, 26:1533-1539.
    [6] Ye YP, Li XY, Sun HX, Chen FY, Pan YJ.Immunomodulating steroidal glycosides from the roots of Stephanotis mucronata[J].Helvetica Chimica Acta.2004, 87(9): 2378-2384 .
    [7] Ye YP, Sun HX, Li XY, Chen FY, Qin F, PanYJ. Four new C-21 steroidal glycosides from the roots of Stephanotis mucronata and their immunological activities [J].Steroids, 2005, 70(12): 791-797.
    [8] Li XY, Sun HX, Ye YP, Chen FY, Tu J, Pan YJ. Three New Immunomodulating C-21 Steroidal Glycosides from the Stems of Stephanotis mucronata[J]. Chemistry&Biodiversity, 2005, 2(12): 1701-1711.
    [9] Li XY, Sun HX, Ye YP, Chen FY, Tu J, Pan YJ.Four new immunomodulating steroidal glycosides from the stems of Stephanotis mucronata[J].Steroids, 2006, 71(8): 683-690.
    [10] Li XY, Sun HX, Ye YP, Chen FY, Tu J, Pan YJ.C-21 steroidal glycosides from the roots of Cynanchum chekiangense and their immunosuppressive activities[J].Steroids, 2006, 71(1):61-65.
    [11]阮金兰,丁惟培,吕植祯,石建平,陈桂先,周炳南.大叶牛奶菜抗生育成分的研究[J].同济医科大学学报,1991(2), 11: 165-169.
    [12]张玉娥,阮金兰,丁惟培.(13)CNMR在甾体苷结构研究中的应用[J].药学学报.1994, 29: 281-284.
    [13]木全章,陆健荣,周茜兰.青洋参中抗癫痫成分-青洋参苷甲和乙的结构[J].中国科学(B辑), 1985,8:724-724.
    [14] Lee KY, Yoon JS, Kim ES, Kang SY, Kim YC.Anti-acetycholinesterase and anti-amnesic activities of a pregnane glycoside, cynatroside B, from Cynanchum atratum[J]. Planta Med.2005, 71(1): 7-11.
    [15] Lee DU, Shin US, Huh K. Structure-activity relationships of gagaminine and its de rivatives on the inhibition of hepatic aldehyde oxidase activity and lipid peroxidation[J]. Arch Pharm Res.1998, 21 (3):273-27
    [16] Huan VD, Ohtani K, Kasai R, Yamasaki K, Tuu NV. Sweet pregnane glycosides from Telosma procumbens[J]. Chem Phann Bull. 2001, 49(4):453-460.
    [17] Hwang BY, Kim SE, Kim YH, Kim HS, Hong YS, Ro JS, Lee KS, Lee JJ. Pregnane glycoside multidrug-resistance modulators from Cynanchum wilfordii.J Nat Prod.1999, 62:640-643.
    [18] Aquino R, Peluso G, Tommasi ND, Simone FD, Pizza C. New polyoxypregnane ester derivatives from Leptadenla hastate[J]. J Nat Prod.1996,59 (6):555-564.
    [19] Zhang J, Brodbelt JS, Wang JM.Silver Complexation and tandem mass spectrometry for differentiation of isomeric flavonoid diglycoside[J]. J.Am.Soc.Mass Spectrom. 2005,16:139-151.
    [20] Davis BD,Needs PW, Kroon PA, et al. Identification of isomeric flavonoid glucuronides in urine and plasma by metal complexation and LC-ESI-MS/MS[J]. J.Am.Soc.Mass Spectrom. 2006,14(7):911-920.
    [21] Satterfield M, Brodbelt JS. Enhanced detection of flavonoids by metal complexation and electrospray ionization mass spectrometry[J]. Anal. Chem., 2000, 72: 5898-5906.
    [22] Scatterfied M, Brodbelt JS.Structural characterization of flavonoid glycosides by collisionally activated dissociation of metal complexes[J]. J.Am.Soc.Mass Spectrom., 2001,12:537-549.
    [23] Pikulski M, Brodbelt JS.Differentiation of flavonoid glycoside isomers by using metal complexation and electrospray ionization mass spectrometry[J]. J.Am.Soc.Mass Spectrom., 2003,14:1437-1453
    [24] Zhang J. Brodbelt JS. Screening flavonoid metabolites of naringin and narirutin inurine after human consumption of grapefruit juice by LC-MS and LC-MS/MS[J]. Analyst, 2004, 129: 1227-1233.
    [25] Zhang J, Wang J, Brodbelt J S. Characterization of flavonoids by aluminum complexation and collisionally activated dissociation[J]. J. Mass Spectrom, 2005, 40, 350-360.
    [26]Domon B, Costello CE.A systematic nomenclature for carbohydrate fragmentation in FAB MS/MS spectra of glycoconjugates[J]. Glycoconjugate J.1988,5:397-409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700