高效、快速液相色谱系统的构建及评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文总结了Flash色谱法、整体柱色谱法、超高压色谱法和高温色谱法的特征,系统探讨了与高压和高温相关的问题及解决方法。研究了流量和温度对色谱保留参数的影响规律。提高压力(流量)可以极大加快分离速度。而升高柱温,在改善最佳流速范围的同时,不仅使色谱柱背压降低,也可能对分离选择性起到一定的调节作用。
     采用亚2μm色谱柱构建了一套超高压液相色谱系统。所建立的系统最高耐压60MPa,系统稳定性良好,可以满足液相色谱定量和定性分析的需要。使用1.9μm填料色谱柱与常规5μm填料色谱柱比较,相同流速下的分析速度提高了8倍,而流动相消耗仅为1/14,节约了时间和溶剂。
     通过对常规仪器的改进,构建了一套高温液相色谱系统,在不同分离模式下通过对六味地黄丸的分析评价系统。系统具有分离速度快、柱效高的特点。四支串联色谱柱的绝对柱效达到7.6万,分离六味地黄丸时色谱峰数可增加一倍以上。以正相色谱柱和反相色谱柱串联构建的连续二维色谱系统,结合了正相色谱与反相色谱的特点;将紫外检测器和ELSD串联使用,可以得到更加详尽的检测信息。
This paper summarized the Flash LC, MLC, UHPLC and HTLC, and focused on thehigh-pressure and high-temperature-related problems and solutions. The effect of flow rateand temperature on retention was studied. The increase in pressure (flow rate) couldgreatly accelerate separation speed. Elevation of temperature could raised the optimumvelocity, decreased column back pressure, enhanced resolution, adjusted selective andreduced the asymmetry to improve the peaks.
     Based on sub-2μm column, an UHPLC system was constructed. This system couldgenerate maximum pressure at 60MPa; system stability was good enough to meet thequantitative and qualitative analysis. In the analysis of the standard sample, compared with5μm, columns packed with 1.9μm particles was more faster, and it's 8 times faster whenseparated at the same velocity and only 1/14 of solvent consumption.
     The conventional HPLC was modified to HTLC system. Separations of LiuweiDihuang Pill under different mode were used to evaluate the HTLC system. Separation ofLiuwei Dihuang Pill used HTLC achieved faster and high through-put analysis, and easy tocreate sophisticated fingerprint. If 4 columns used in series, the absolute plate numberreached 7.6M, peaks of Liuwei Dihuang Pill timed, especially the antecedent peak of theless retained components got enough separation and the fingerprint of sample was morecomprehensive. Continues two-dimensional chromatography system constituted of normaland reverse columns speeded up the separation speed. The mode of UV and ELSD in serialhad feature of high sensitivity and universal which gave more detailed information.
引文
1.Swartz, M. E. Ultra performance liquid chromatography (UPLC): an introduction[J]. LCGC North America, 2005, Separation Science Redefine: 8-14.
    2.Zweigenbaum, J., Heinig, K., Steinborner, S., Wachs, T., Henion, J. High-throuμmghput bioanalytical LC/MS/MS determination of benzodiazepines in. human urine: 1000 samples per 12 hours[J]. Anal. Chem., 1999, 71(13): 2294-2300.
    3.Kate Yu, M. B. A protocol for high-throughput drug mixture quantitation: fast LC-MS or flow injection analysis-MS?[J]. LCGC N.A., 2001, 19(1): 60-72.
    4.Westerbuhr, S. G., Rowlen, K. L. On-column refractive index detector for flash chromatography[J]. Jounral of Chromatography A, 2000, 886(1-2): 9-18.
    5.Salar, A. H., Porgam, A., Bashiri, S. Z., Mohanazadeh, F. Analysis of metal ions in crude oil by reversed-phase high performance liquid chromatography using short column[J]. Journal of Chromatography A, 2006, 1118(1): 82-84.
    6.Minnaard, W A, Slobodnik, J, Vreuls, J. J., Hupe, K. P., Brinkman, U. A.. Rapid liquid chromatographic screening of organic micropollutants in aqueous samples using a single short column for trace enrichment and separation[J]. Journal of Chromatography A, 1995, 696(2): 333-340.
    7.Mutton I.M. Use of short columns and high flow rates for rapid gradient reversed-phase chromatography[J]. Chromatographia, 1998, 47(5/6): 291-298.
    8.Shuichi Yamamoto, Ayako Kit. Theoretical background of short chromatographic layers: optimization of gradient elution in short columns[J]. Journal of Chromatography A, 2005, 1065 (1): 45-50.
    9.Meritxell Ventur, Antonio G'omez, Ivan Anaya, Jordi Diaz, Francesc Broto, Montserrat Agut, Llu'ls Comellas. Determination of aflatoxins B_1, G_1, B_2 and G_2 in medicinal herbs by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A 2004, 1048 (1): 25-29.
    10.Leslie Romanyshyn, Philip R. Tiller, Raul Alvaro, Antonio Pereira, Cornelis E. C. A. Hop. Ultra-fast gradient vs fast isocratic chromatography in bioanalytical quantifcation by liquid chromatography tandem mass spectrometry[J]. Rapid Comrnun. Mass Spectrom, 2001, 15: 313-319.
    11.Euerby, Melvin R, Scannapieco, Federico, Rieger, Hans Jurgen, Molnar, Imre. Retention modelling in ternary solvent-strength gradient elution reversed-phase chromatography using 30 mm columns[J]. Journal of Chromatography A, 2006, 1121(2): 219-227.
    12. Tomomi Goto, Yuko Ito, Hisao Oka, Isao Saito, Hiroshi Matsumoto, Hideo Sugiyama, Chiyoji Ohkubo, Hiroyuki Nakazawa, H. N. The high throughput analysis of N-methyl carbamate pesticides in wine and juice by electrospray ionization liquid chromatography tandem mass spectrometry with direct sample injection into a short column[J]. Analytica Chimica Acta. 2005.531: 79-86.
    13. Tomomi Goto, Yuko Ito, Sadaji Yamada, Hiroshi Matsumoto, Hisao Oka, H. N. The high throughput analysis of N-methyl carbamate pesticides in fruits and vegetables by liquid chromatography electrospray ionization tandem mass spectrometry using a short column[J]. Analytica ChimicaActa. 2006. 555: 225-232.
    14.李彤,张庆合,张维冰.高效液相色谱仪器系统[M].北京:化学工业出版社,2005.8-18.
    15. Kanji Miyabe, GeorgesGuiochon. Characterization of monolithic columns for HPLC[J]. J. Sep. Sci., 2004, 27: 853-873.
    16. Cabral, Jean- Louis, Bandilla, Dirk, Skinner, Cameron D. Pore size characterization of monolith for electrochromatography via atomic force microscopy studies in air and liquid phase[J]. Journal of Chromatography A, 2006, 1108(1): 83-89.
    17. www.biaseparations.com
    18. Nakanishi, Kazuki, Soga, Naohiro. Phase separation in silica sol-gel system containing polyacrylic acid I. gel formaation behavior and effect of solvent composition[J]. Journal of Non-Crystalline Solids, 1992, 139:1-13.
    19. Bedair, Mohamed, El, Rassi Ziad. Affinity chromatography with monolithic capillary columns: I. polymethacrylate monoliths with immobilized mannan for the separation of mannose-binding proteins by capillary electrochromatography and nano-scale liquid chromatography[J]. Journal of Chromatography A, 2004, 1044 (1-2): 177-186.
    20. Legido-Quigley, C, Smith, N W. Study of short polystyrene monolith-fritted micro-liquid chromatography columns for analysis of neutral and basic compounds[J]. Journal of Chromatography A, 2004,1042 (1-2): 61-68.
    21. Hoegger, Daniela, Freitag, Ruth. Acrylamide-based monoliths as robust stationary phases for capillary electrochromatography[J]. Journal of Chromatography A, 2001, 914 (1-2): 211-222.
    22. James D. Loyd. Advances in HPLC: monolithic silica columns. University of Alabama, 2003.
    23. Nobuo, T. H. Monolithic silica columns for high-efficiency chromatographic separations[J]. Journal of Chromatography A, 2002, 965: 35-49.
    24. Liang, C. and S. Dai, et al. A graphitized-carbon monolithic column[J]. Anal. Chem. 2003, 75(18): 4904-4912.
    25. Jerome Randon, Samuel Huguet, Anne Piram, Guillaume Puy, Claire Demesmay, Jean-Louis Rocca. Synthesis of zirconia monoliths for chromatographic separations[J]. Journal of Chromatography A, 2006, 1109: 19-25.
    26. Cimino, S, Pirone, R, Lisi, L. Zirconia supported LaMnO3 monoliths for the catalytic combustion of methane[J]. Applied Catalysis B: Environmental, 2002, 35(4): 243-254.
    27. Steve Miller. Separations in a monolith[J]. Anal. Chem. 2004 1: 99A-101A.
    28. Minakuchi, H., Nakanishi, K., Soga, N., Ishizuka, N., Tanaka, N. Effect of domain size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography[J]. J. Chromatography A, 1998, 797: 121-131.
    29. Minakuchi, H., Ishizuka, N., Nakanishi, K., Soga, N., Tanaka, N. Performance of an octadecylsilylated continuous porous silica column in polypeptide separations[J]. J. Chromatography A, 1998, 828: 83-90.
    30. Tanaka N, Nagayama H, Kobayashi H, Ikegami T, Hosoya K, Ishizuka N,. Minakuchi H, Nakanishi K, Cabrera K, Lubda D. Monolithic silica columns for HPLC, micro-HPLC, and CEC[J]. J. High Resolut Chromatography, 2000, 23:111-116.
    31. Nobuo Tanaka, Hiroshi Kimura, Daisuke Tokuda, Ken Hosoya, Tohru Ikegami, Norio Ishizuka, Hiroyoshi Minakuchi, Kazuki Nakanishi, Yukihiro Shintani, Masahiro Furuno, Karin Cabrera. Simple and comprehensive two-dimensional reversed-phase HPLC using monolithic silica columns[J]. Anal. Chem., 2004, 76: 1273-1281.
    32. Rieux, Laurent, Lubda, Dieter, Niederlander, Harm A, Verpoorte, Elisabeth, Bischoff, Rainer. Fast, high-efficiency peptide separations on a 50-μm reversed-phase silica monolith in a nanoLC-MS set-up[J]. Journal of Chromatography A, 2006, 1120(1-2): 165-172.
    33. Kocijan, Andrej, Grahek, Rok, Bastarda, Andrej, Kralj, Lucija Zupancic. Fast analysis of pravastatin in production media[J]. Journal of Chromatography B, 2005, 822(1-2): 311-315.
    34. Tohru Ikegami, Edith Dicks, Hiroshi Kobayashi, Hironobu Morisaka, Daisuke Tokuda, Karin Cabrera, Ken Hosoya, Nobuo Tanaka. How to utilize the true performance of monolithic silica columns[J]. J. Sep. Sci., 2004, 27: 1292-1302.
    35. Wen Li, David P. Fries, Abdul Malik. Sol-gel stationary phases for capillary electrochromatography[J]. Journal of Chromatography A, 2004, 1044: 23-52.
    36. Zou, Hanfa, Huang, Xiaodong, Ye, Mingliang, Luo, Quanzhou. Monolithic stationary phases for liquid chromatography and capillary electrochromatography. Journal of Chromatography A, 2002, 954(1-2): 5-32.
    37. Nobuo Tanaka, Hiroshi Kobayashi, Kazuki Nakanishi, Horoyshi Minakuchi, Norio Ishizuka. Feature-monolithic LC columns[J]. Anal. Chem., 2001: 420-429.
    38. Balakotaiah, Vemuri, Gupta, Nikunj, West, David H. A simplified model for analyzing catalytic reactions in short monoliths[J]. Chemical Engineering Science, 2000, 55(22): 5367-5383.
    39.张玉奎,王杰,张维冰.实用高效液相色谱法的建立(第二版)[M].华文出版社, 2001.
    40. Endele, Richard, Hal, Istva, Unger, Klaus. Influence of the particle size (5-35μm) of spherical silica on column efficiencies in high-pressure liquid chromatography[J]. Journal of Chromatography A, 1974, 99:377-393
    41. Vivilecchia, Richard V, Cotter, Richard L, Limpert, Robert J, Thimot, Norma Z, Little, James N. Considerations of small particles in different modes of liquid chromatography[J]. Journal of Chromatography A, 1974, 99: 407-424.
    42. McGuffin, V. L., Chen, S. H. theoretical and experimental studies of the effect of pressure on solute retention in liquid chromatography[J]. Anal. Chem., 1997, 69(5): 930-943.
    43. Naijun Wu, J.Andreas Lippert, Milton L. Lee. Practical aspects of ultrahigh pressure capillary liquid chromatography[J]. Journal of Chromatography A, 2001, 911: 1-12.
    44. Martin, M., Eon, C., Guiochon, G. Study of the pertinency of pressure in liquid chromatography: I. theoretical analysis[J]. Journal of Chromatography A, 1974, 99: 357-376.
    45. Naijun Wu, David C. Collins, J. Andreas Lippert, Yanqiao Xiang, Milton L. Lee. Ultrahigh pressure liquid chromatography time-of-flight mass spectrometry for fast separations[J]. J. Microcolumn Separations, 2000, 12(10): 462-469.
    46. Naijun Wu, Yansheng Liu, Milton L. Lee. Sub-2μm porous and nonporous particles for fast separation in reversed-phase high performance liquid chromatography[J]. Journal of Chromatography A, 2006, 1131(1-2): 142-150.
    47. Mayr, G., Welsch, T. Influence of viscous heat dissipation on efficiency in high-speed high-performance liquid chromatography[J]. Journal of Chromatography A, 1999, 845(1-2): 155-163.
    48. John E. MacNair, Kenneth C. Lewis, James W. Jorgenson. Ultrahigh-pressure reversed-phase liquid chromatography in packed capillary columns[J]. Anal. Chem., 1997, 69:983-989
    49. Bidlingmeyer, B. A., Hooker, R.R, Lochmuller, C.H., Rogers, L.B. Improved chromatographic resolution from pressure-induced changes in liquid-solid distribution ratios[J]. Sep. Sci. 1969,4(6): 439-446.
    
    50. Halasz, Istvan, Endele, Richard, Asshauer, Jurgen. Ultimate limits in high-pressure liquid chromatography[J]. Journal of Chromatography A, 1975,112: 37-60.
    
    51. Anton D. Jerkovich, J. Scott Mellors, James W. Jorgenson. The use of micron-sized particles in ultrahigh-pressure liquid chromatography. LCGC Europe, 2003 : 2-5.
    
    52. Michel Martin, Georges Guiochon. Effects of high pressure in liquid chromatography [J]. Journal of Chromatography A, 2005, 1090: 16-38.
    
    53. Fabrice Gritti, Georges Guiochon. Influence of the pressure on the properties of chromatographic columns I. measurement of the compressibility of methanol-water mixtures on a mesoporous silica adsorbent[J]. Journal of Chromatography A, 2005, 1070:1-12.
    
    54. Fabrice Gritti, Georges Guiochon. Effect of the flow rate on the measurement of adsorption data by dynamic frontal analysis [J]. Journal of Chromatography A, 2005, 1069:31-42.
    
    55. Foley, Joe P., Crow, Jeffrey A., Thomas, Beth Ann, Zamora, Marlon. Unavoidable flow-rate errors in high-performance liquid chromatography [J]. Journal of Chromatography, 1989, 478: 287-309
    
    56. Michel Martin, Georges Guiochon. Pressure dependence of diffusion coefficient and effect on plate height in liquid chromatography [J]. Anal. Chem. 1983, 55: 2302-2309.
    
    57. J. Scott Mellors, James W. Jorgenson. Use of 1.5μm porous ethyl-bridged hybrid particles as a stationary-phase support for reversed-phase ultrahigh-pressure liquid chromatography [J]. Anal. Chem., 2004, 76: 5441-5450.
    
    58. Anton D. Jerkovich, J. Scott Mellors, J. Will Thompson, James W. Jorgenson. Linear velocity surge caused by mobile-phase compression as a source of band broadening in isocratic ultrahigh-pressure liquid chromatography [J]. Anal. Chem., 2005, 77: 6292-6299.
    
    59. Luis A. Colon, Jose M. Cintron, Jason A. Anspach, Adam M. Fermier, Kelly A. Swinney. Very high pressure HPLC with 1.0 mm i.d. columns[J]. Analyst, 2004,129: 503-504.
    
    60. John E. MacNair, Kamlesh D. Patel, James W. Jorgenson. Ultrahigh-pressure reversed-phase capillary liquid chromatography isocratic and gradient elution using columns packed with 1.0μm particles[J]. Anal. Chem., 1999, 71: 700-708.
    
    61. Rimmer, Catherine A, Piraino, Stephanie M, Dorsey, John G. Gradient elution techniques for capillary electrochromatography[J]. Journal of Chromatography A, 2000, 887(1-2): 115-124.
    62. Adam, P Schellinger. Isocratic and gradient elution chromatography a comparison in terms of speed, retention reproducibility and quantitation[J]. Journal of Chromatography A, 2006,1109: 253-266
    
    63. Kisaburo, Deguchi Shinya. Nanoflow gradient generator for capillary high-performance liquid chromatography[J]. Anal. Chem., 2004, 76:1524-1528.
    
    64. Kaoru, Murata Nariyasu. Simplified gradient generator for micro- and nano-liquid chromatography [J]. Journal of Chromatography A, 2006,1123: 47-52.
    
    65. Jandera, Pavel. Can the theory of gradient liquid chromatography be useful in solving practical problems[J]. Journal of Chromatography A, 2006.
    
    66. Stoll, Dwight R, Paek, Changyub, Carr, Peter W. Fast gradient elution reversed-phase high-performance liquid chromatography with diode-array detection as a high-throughput screening method for drugs of abuse: I. chromatographic conditions [J]. Journal of Chromatography A, 2006,1137(2): 153-162.
    
    67. Luke Tolley, James W. Jorgenson, M. Arthur Moseley. Very high pressure gradient LC\MS\MS[J]. Anal. Chem., 2001, 73: 2985-2991.
    
    68. Wu, Naijun, Lippert, J Andreas, Lee, Milton L, Practical aspects of ultrahigh pressure capillary liquid chromatography[J]. Journal of Chromatography A, 2001, 911(1): 1-12.
    
    69. Enlund, Anna Maria, Andersson, Margareta E, Hagman, Gunnar. Peak compression effects in capillary electrochromatography[J]. Journal of Chromatography A, 2004,1044(1-2): 153-158.
    
    70. John E. MacNair, Kenneth C. Lewis, James W. Jorgenson. Ultrahigh-pressure reversed-phase liquid chromatography in packed capillary columns[J]. Anal. Chem., 1997, 69: 983-989.
    
    71. http://www.vici.com/cval/cval.php.
    
    72. Yanqiao Xiang,Yansheng Liu, Stanley D. Stearns, Alex Plistil, Martin P. Brisbin, Milton L. Lee. Pseudolinear gradient ultrahigh-pressure liquid chromatography using an injection valve assembly[J]. Anal. Chem., 2006,78: 858-864.
    
    73. Andre de, Villiers Andre, Lauer, Henk, Szucs, Roman, Goodall, Stuart, Sandra, Pa. Influence of frictional heating on temperature gradients in ultra-high-pressure liquid chromatography on 2.1 mm i.d. columns[J]. Journal of Chromatography A, 2006, 1113(1-2): 84-91.
    
    74. Herrmann, Jean, Marie, Vergnon, Pierre, Teichner, Stanislas Jean. Influence of the morphology and the size of titanium dioxide (anatase) particles on the catalytic oxidation of carbon monoxide[J], Journal of Catalysis, 1975, 37(1): 57-67.
    
    75. Poppe, H., Kraak, JC, Huber, JFK. Temperature gradients in HPLC columns due to viscous heat dissipation[J]. Chromatographia 1981, 14 (9): 515-523.
    76.张维冰,毛细管电色谱理论基础,北京:科学出版社,2006.
    77. Abbott, S, Achener, P., Simpson, R., Klink, F. Effect of radial thermal gradients in elevated temperature high,performance liquid chromatography[J]. Journal of Chromatography A, 1981, 218: 123-1350.
    78. Porter, Sarah E, Stoll, Dwight R, Paek, Changyub, Rutan, Sarah C, Carr, Peter W. Fast gradient elution reversed-phase liquid chromatography with diode-array detection as a high-throughput screening method for drugs of abuse: Ⅱ. Data analysis[J]. Journal of Chromatography A, 2006, 1137(2): 163-172.
    79. Alan D. Broske, Robert D. Ricker, Bernard J. Permar, Wu Chen, Maureen Joseph. The influence of sub-two micron particcles on HPLC performance[J]. Agilent Technologies.
    80. Xiang, Yanqiao, Maynes, Daniel R, Lee, Milton L. Safety concerns in ultrahigh pressure capillary liquid chromatography using air-driven pumps[J]. Journal of Chromatography A, 2003, 991 (2): 189-196.
    81. Majors, R. E. Fast and Ultrafast HPLC on Sub-2-m porous particles—where do we go from here[J]? LCGC North America, 2006, 23 (12): 1248-1255.
    82. Dao T.-T. Nguyen, Davy Guillarme, Serge Rudaz, Jean-Luc Veuthey. Fast analysis in liquid chromatography using small particle size and high pressure[J]. J. Sep. Sci., 2006, 29: 1836-1848.
    83. Naijun Wu, Yan sheng. Sub-2 μm porous and nonporous particles for fast separation in reversed-phase high performance liquid chromatography[J]. Journal of Chromatography A, 2006.
    84. Vincent Warren. F. Influence of temperature on column efficiency in reversed-phase liquid chromatography[J]. Anal Chem, 1988, 60:2821-2827.
    85. Bingwen Yan, Jianhong Zhao, James S. Brown, John Blackwell, Peter W. Carr. High-temperature ultrafast liquid chromatography[J]. Anal. Chem., 2000, 72: 1253-1262.
    86. D. Guillarme, S. Heinisch., J.L. Rocca. Effect of temperature in reversed phase liquid chromatography[J]. Journal of Chromatography A, 2004, 1052:39-51.
    87. Tyge Greibrokk, Thomas Andersen. High-temperature liquid chromatography[J]. Journal of Chromatography A, 2003, 1000: 743-755.
    88. T. Welsch, M. Schmid, J. Kutter, A. Kalman. Temperature of the eluent a neglected tool in highperformance liquid chromatography[J]. Journal of Chromatography A, 1996, 728: 299-306.
    89. John W. Dolan, The importance of temperature[J]. LCGC North Am., 2002, 20(6): 524-527.
    90. Johnny V. Tran, Paal Molander, Tyge Greibrokk, Elsa Lundanes. Temperature effects on retention in reversed phase liquid chromatography[J]. J. Sep. Sci., 2001, 24: 930-940.
    91. John W. Dolan. Temperature selectivity in reversed-phase high performance liquid chromatography[J]. Journal of Chromatography A, 2002, 965:195-205.
    92. Kondo T., Yang Y. Comparison of elution strength, column efficiency, and peak symmetry in subcritical water chromatography and traditional reversed-phase liquid chromatography[J]. Anal. Chim. Acta, 2003, 494:157-166.
    93. Tyge Greibrokk, Thomas Andersen. Temperature programming in liquid chromatography[J]. J. Sep. Sci., 2001, 24: 899-909.
    94.成洪达,李彤,张维冰.温度对高效液相色谱分离性能的影响[J].现代科学仪器,2006,109:74-78.
    95. Roger M, Robert J. Superheated water as an eluent for reversed-phase high-performance liquid chromatography[J]. Journal of Chromatography A, 1997, 785(1-2): 49-55.
    96.张维冰,郑政峰.以亚临界水为流动相的高效液相色谱方法的进展[J].色谱,2005, 23(3):238-242.
    97. Yanqiao Xiang, Bingwen Yan, Bingfang Yue, Clayton V. McNeff, Peter W. Carr. Elevated-temperature ultrahigh-pressure liquid chromatography using very small polybutadiene-coated nonporous zirconia particles[J]. Journal of Chromatography A, 2003, 983: 83-89.
    98. Xiang, Yanqiao, Liu, Yansheng, Lee, Milton L. Ultrahigh pressure liquid chromatography using elevated temperature[J]. Journal of Chromatography A, 2006, 1104(1-2): 198-202.
    99. Thompson D., Peter W. C. A study of the critical criteria for analyte stability in high-temperature liquid chromatography[J]. Anal. Chem., 2002, 74:1017-1023.
    100.Liu G. H., Svenson L. Extra-column band broadening in high-temperature open-tubular liquid chromatography[J]. Chromatography, 1993,633: 25-30.
    101.成洪达.高温液相色谱系统的构建与应用[D].齐齐哈尔:齐齐哈尔大学,2007.
    102.胡玉玲,达世禄.Lewis碱性氧化锆基质色谱固定相的研究进展[J].色谱,2005, 23(3):234-237.
    103. Edivan T., Collins K. E., Collins C. H. High-performance liquid chromatographic stationary phases based on poly (methyloctylsiloxane) immobilized on silica Ⅲ. Stability evaluations[J]. J. Chromatragr. A, 2003, 987: 93-101.
    104.Carla B. G., Chaudhry Z. F., Fonseca D.A., Collins K.E., Collins C.H. Poly(alkylmethylsiloxanes) thermally immobilized on silica as stationary phases for high-performance liquid chromatography[J]. J. Chromatography A, 2002, 948: 121-128.
    105.Yang Y., Donald R. L. Stationary phases for high-temperature LC separation[J]. LC-GC, 2004, 34-39.
    106. Thomas A., Molander R, Roger T.,Hegna D. R., Greibrokk T. Separation of polyethylene glycol oligomers using inverse temperature programming in packed capillary liquid chromatography[J]. J. Chromatography A, 2001, 918: 221-226.
    107. Kashiwase Y. K., Kanazawa H., Yamamoto K. Temperature-responsive liquid chromatography effects ofhydrophobic groups in N-isopropylacrylamide copolymer modified silica[J]. Anal. Chem., 1997,69: 823-830.
    108. Thomas A., Quynh-Nhu T., Nguyen, Roger T., Greibrokk T.. Mesoporous polybutadiene-modified zirconia for high-temperature packed capillary liquid chromatography: column preparation and temperature programming stability[J]. J. Chromatography A, 2003, 1018: 7-18.
    109. Thomas P. W., Paul T. J., Peter W. C. Chromatographic evaluation of porous carbon-clad zirconia microparticles[J]. Anal. Chem., 1995, 67: 3042~3050.
    110. Scott T., Kephart, Purnendu K., Dasgupta. Hot eluent capillary liquid chromatography using zirconia and titania based stationary phases[J]. Anal. Chim. Acta, 2000, 414: 71-78.
    111. Stephanie J. M., Brian A. Affect of high-temperature on high-performance liquid chromatography column stability and performance under temperature-programmed conditions[J]. J. Chromatography A, 2004, 1030: 255-262.
    112. He P., Yang Y. Studies on the long-term thermal stability of stationary phases in subcritical water chromatography Chromatogr.. J. Chromatography A, 2003, 989: 55-63.
    113. Satoshi Y., Toshiaki I., Tsuneo O., Tomotaka S. Reversed-phase liquid chromatography on a microspherical carbon column at high temperature Chromatogr.. J. Chromatography A, 1996, 728: 189-194.
    114.卢佩章,戴朝政,张祥民.色谱理论基础(第二版)[M].科学出版社,2001.
    115. Yu Yang. A model for temperature effect on column efficiency in high-temperature liquid chromatography[J]. Analytica Chimica Acta, 2006, 558(1-2): 7-10.
    116. Dao T.-T. Nguyen, Davy Guillarme, Serge Rudaz, Jean-Luc Veuthey. Chromatographic behavior and comparison of column packed with sub-2μm stationary phases in liquid chromatography[J]. Journal of Chromatography A, 2006, 1128(1-2): 105-113.
    117.赵新峰.六味地黄丸的内在质量控制方法研究[D].沈阳药科大学,2003
    118.王喜军,张宁,孙晖.六味地黄丸指纹图谱的研究[J].中国中药杂志,2004,29(10): 1004-1005.
    119.赵新峰,孙毓庆.六味地黄丸的高效液相色谱/电喷雾电离质谱分析[J].色谱,2003,2l(5):500-502.
    120.丁晴,徐德然,王峥涛.HPLC法测定六味地黄丸及六味地黄胶囊中齐墩果酸、熊果酸的含量[J].中国中药杂志,2002,27(8):587-589.
    121 焉立新,唐卫文,及元乔.高效液相色谱法蒸发光散射检测器测定山茱萸药材中熊果酸的含量[J].药物分析杂志,2003,23(5):358-359.
    122.刘小平,陈笑宇,宋青,李宁.六味地黄丸的X-衍射指纹图谱鉴定研究[J].中药材,2005,28(3):184-186.
    123.辛士刚,王莹,周志威.中成药六味地黄丸中微量元素的分析[J].沈阳师范大学学报(自然科学版),2004,22(2):125-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700