基于DSP的大功率超音频感应加热电源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着制造业技术的发展,超音频感应加热电源因其具有诸多优点而在现代化生产中发挥着越来越大的作用。目前,国内超音频感应加热电源发展非常迅速,但是在电源的数字化、容量、电路结构等方面还有待改进。因此本文主要对超音频感应加热电源电路理论知识和以TMS320F2812型号DSP为主控芯片的数字化控制系统进行了研究。
     本文首先研究了感应加热电源的主电路结构,详细分析了逆变器与谐振负载不同组合的电路特点并结合本项目的实际需要,确定选取电压型串联谐振电路。然后通过分析比较确定采用直流侧斩波的方式进行功率调节,接下来进一步确定了主电路中所用到的元器件的参数,为样机的制作提供依据。
     感应加热电源的控制部分主要包括整流侧的斩波控制和逆变侧的频率跟踪控制。整流侧的斩波控制指通过调节斩波器的驱动脉冲占空比来达到功率调节的目的。在逆变侧控制系统中主要实现频率的自动跟踪、IGBT的驱动等功能。本文通过分析确定了基于TMS320F2812型号DSP为主控芯片的数字化控制系统,设计了相应的外围电路并进行了软件编程。
     主电路的设计和控制的实现通过了仿真和试验。在MATLAB/SIMULINK和Pspice环境中分别对基于FUZZY-DPLL控制策略的感应加热电源和本文所采用的主电路进行建模分析,系统的仿真结果和试验都验证了本文理论研究与设计方案的可行性与正确性。
With the development of manufacture technology, super audio frequency induction heating power’s application in modern production is playing an increasingly important role by its virtues. While induction heating power is quickly developing, it has defects in the aspects of digital controller and capacity and so on. This paper mainly researches on the super-audio induction heating power theoretical knowledge and the digital control system of based-on TMS320F2812 DSP.
     Firstly, the paper researches on the induction heating power main circuit, analyses the difference about the resonant load and different combinations, combines with the actual need, determined voltage series resonance circuit. By analyzing and comparing, BUCK converter scheme regulation is adopted as power modulation method, then the parameter of component is calculated to supply basis for making model machine.
     Induction heating power’s control system contains of BUCK converter control in rectifier and frequency tracking control in inverter. The power’s control is used by DSP’S module to output pulse for BUCK converter, control of inverter mainly contains frequency tracking, driving and protecting of IGBT. The paper finally determined the digital control system of based on TMS320f2812 DSP, and designed the corresponding peripheral circuits and programmed software.
     The design and control implement of main circuit are through the simulation and experiments. The modeling analysis in MATLAB and pspice environment is for based on the FUZZY-DPLL control policy's and the main circuit of induction heating power source, The simulation results and some tests have proved that the design in this paper is reasonable, and the analysis of the circuits are correct.
引文
[1]赵钱哲,曲大其.感应加热电源发展及应用[J].电源技术,2007,4:18-21.
    [2] MollovS M, TheoooridiS M. High frequency voltage-fed inverter with phase-shift control for induction heating [J]. IEEE. Proc.Electr.Power, 2005,12,101-107.
    [3]潘天明.现代感应加热装置[M].北京:冶金工业出版社,1996,1-135.
    [4] Dede E J, Jordan J, Esteve V. State-of-the art and future trends in transistorized inverters for induction heating applications [C].Proceedings of the 5th IEEE International Caracas Conference Devices, Circuits and Systems, Caracas,2004:56-57.
    [5]石新春,杨京燕,王毅.电力电子技术[M].北京:中国电力出版社,2006.101-114
    [6]林渭勋.现代电力电子技术[M].北京:机械工业出版社,2006,371-400.
    [7] Enrique J, Dede, Jose V, Gonzalez. Transistorized inverters for induction heating applications: Stale-of-the-art and fulure trends[C]. Proceedings of IPEMC 1997, 746-751.
    [8]吴兆麟,林刚,兰奎.串联逆变式感应加热电源[J].电力电子技术,1994,28:18-21.
    [9]沈锦飞,等.串联谐振式高频感应焊接逆变电源[J].焊接学报,2003,(5):77-80.
    [10] Cmde O Stein and H L Hey. A true ZCZVT commutation cell for PWM converter [J].IEEE Trans. Power Electron, Jan.2000, 15:185-193.
    [11] Gao Hua, Xia Yang, Yu Jiang and F C Lee. Novel zero-voltage-transition PWM converter[J].IEEE Trans. Power Electron.nov.1994, 9:601-606.
    [12] Kamil M, Yamamoto S and Abe M. A 50-150 kHz half bridge inverter for induction healing applications[J]. IEEE Trans. of Industrial Electronics, 1996, 163-172.
    [13]张学勤,金天均,陈辉明.基于IGBT的100kHz高频感应加热电源研制[J] .电力电子技术,2006,2:80-81
    [14]戚宗刚.串联感应加热电源技术的研究[D].杭州:浙江大学,2004,35-40.
    [15] Dede E J, Tordan J, Esteve V. Design considerations for induction inverters with IGBTs working at 100 kHz[C]. Proceedings of APEC 1993, 679-684.
    [16] Jung,S.M. Cho,S.K. Lee,S.H. Thermal analysis of induction heating roll with heat pipes[J]. Digests of the Internal Conference. 2003,Per06:P254-259.
    [17]时矗.移相调功式IGBT超音频感应加热电源的研究[D].成都:西南交通大学,2004,40-51.
    [18]宋书中.基于MCS-98单片机控制的交流调压调速系统[J].机电工程,2001, (6):12-15.
    [19] Silken, E.M. Transistor frequency converters for inductive heating [J]. Russian Electrical Engineering. 2003,75:P101-110.
    [20]朱凌,刘涛,鲁志平,王毅.基于DSP的载波移相多电平PWM实现方法[J].华北电力大学学报,2004,5:21-25.
    [21]周跃庆,张娟娟.一种新型ADPLL在感应加热系统中的应用研究[J].电力电子技术, 2006,40(2):86-87.
    [22] Cao,Andrew, Lin,Liwei. Selective induction heating for MEMS packaging and fabrication [J]. ASME International Mechanical Engineering Congressman Exposition Proceedings. 2003,7:P120-125.
    [23]杨思俊,朱伯年.晶闸管中频电源基本知识[M].杭州:浙江科学出版社,1989,11,157-160
    [24]卡兰塔罗夫.电感计算手册[M].北京:机械工业出版社,1990,110-113.
    [25]谢小高,张军明,蔡拥军,钱照明.半桥变流器的软开关控制策略研究[J].中国电机工程学报,2006,3:48-52.
    [26]全亚杰.感应加热电源的发展历程与动向[J].电焊机.2001,131(11):36.
    [27]杨达.高频感应熔样机控制系统的研究与设计[D].沈阳:吉林大学,2006,1-10.
    [28]基于DSP控制的PWM型开关电源的研究与开发[D].大连:大连理工大学,2005, 51-54.
    [29]吕宏.PWM&PFM控制感应加热技术研究[D].杭州:浙江大学, 2003, 74-80.
    [30]马建伟,郭治.极点和方差约束在变结构控制中的应用策略[D].控制与决策,200520(11),1283-1286.
    [31]郝振宇,王宏庆.基于DSP的移相全桥变换器的研究[J].电气传动.2007,1:26-29.
    [32]田健,王华民,郭会军等.串联谐振感应加热电源频率跟踪控制的研究[J].工业加热.2000,31(2),4-7.
    [33]毛鸿,吴兆麟等.感应加热电源无相差频率跟踪控制电路[J].电力电子技术,1998,38(2):69-72.
    [34]虞龙.串并联谐振逆变式高频感应加热电源的研究[D].广东:华南理工大学,2005,28-35.
    [35] Texas Instruments Incorporated著.TMS320C28x系列DSP的CPU与外设[M].张卫宁译.北京:清华大学出版社,2005.24-35.
    [36]扈宏杰.DSP控制系统的设计与实现[M].北京:机械工业出版社,2004,32-68.
    [37]江思敏等著. TMS320LF2407xDSP硬件开发教程[M].北京:机械工业出版社,2003,186-217.
    [38]苏奎峰等著.TMS320X281xDSP原理及C程序开发[M].北京:北京航空航天大学出版社,2008,73-192.
    [39]赵世廉著. TMS320X240xDSP原理及应用开发指南[M].北京:北京航空航天大学出版社,2007,302-339.
    [40]宋莜.高压高速功率MOSFET驱动器IR2110[J].国外电子元器件,1997, (1):30-31.
    [41]万山明著.TMS320F281xDSP原理及应用实例[M].北京:北京航空航天大学出版社,2007,259-283.
    [42]谢自美等著.电子线路综合设计[M].武汉:华中科技大学出版社,2006,94-111.
    [43]李国勇著.智能控制及其MATLAB实现[M].北京:电子工业出版社,2005,194-256.
    [44]朱锦洪,陈庆伶等.基于DSP和CPLD的感应钎焊电源移相PWM控制[J].焊接技术,2008, 26(6):36-38.
    [45]吴爱萍,王宏华.基于模糊控制的开关电源仿真研究[J].低压电器,2007,37(4):15-25.
    [46]刘金琨著.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2004, 94-146.
    [47]顾和荣,王德玉,邬伟扬.正弦波逆变电源的自适应模糊控制策略及实现[J].电工电能新技术,2006,25(1):30-33.
    [48]张俊涛,陈晓丽.Pspice在电路设计中的应用实例[J].现代电子技术,2001,(9):31-33.
    [49]赵涛,姜卫东.利用Pspice仿真分析PWM控制电路[J].安徽大学学报,2005,(5):51-53.
    [50]石宏伟.3KW高功率因数高频开关电源的设计[J].低压电气,2008,(17):40-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700