西藏小型猪遗传背景分析以及分子遗传标记的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     藏猪(Tibet hog,Sus scrofa)是世界上体型较小的小型猪之一,原产于青藏高原、海拔2500~4300m的农区和半农半牧区,分布于中国的西藏自治区、云南省、四川省和甘肃省等地。藏猪保存了较为纯正的品种资源,是唯一能够适应高海拔气候和以放牧为主的猪种。由于长期的地理隔离和环境的差异,不同地区的藏猪出现了一定程度的分化,如四川藏猪与云南藏猪相比,四川藏猪偏离Hardy-Weiberg定律的基因座数多于云南藏猪;四川藏猪体型较小,而云南减猪体型较大。目前虽然对四川藏猪或云南藏猪开展了一些研究,但对于来自西藏自治区的藏猪研究报导较少。2004年南方医科大学从西藏自治区工布江达县将50头藏猪(雌、雄各半)引种到广州,首次开展对藏猪进行实验动物化的培育,并将其命名为西藏小型猪(Tibet mini-pig)。2006底获得广东省实验用西藏小型猪生产质量合格证,目前存栏数已达600余头。
     目的
     测定西藏小型猪的mtDNA控制区序列和Cyt b基因序列,研究西藏小型猪mtDNA控制区和Cyt b基因序列的遗传分化,及其对血液生理生化指标的影响,并和其他猪的序列比对分析,研究其亲缘关系;探讨西藏小型猪氟烷基因座位的群体结构特征,检测氟烷基因型隐性纯合子个体,寻找西藏小型猪独特的分子遗传标记,从理论上指导西藏小型猪实验动物化的培育。
     方法
     1随机抽取120头西藏小型猪血液,利用试剂盒提取血液基因组DNA;设计引物扩增西藏小型猪以及7头巴马小型猪、23头贵州香猪和17头五指山猪的mtDNA控制区,测序并结合Clustalw软件和MEGA3.0软件进行所测序列多重比对,确定变异位点、单倍型,并建立西藏小型猪和国内其他猪的亲缘关系树。对其中58头8月龄的西藏小型猪分别测定血液生理生化指标。血液生理指标14项:白细胞、红细胞、血红蛋白、血小板、淋巴细胞、单核细胞、粒细胞、嗜酸性粒细胞、嗜碱性粒细胞、血细胞比容、平均红细胞体积、平均红细胞血红蛋白含量、平均红细胞血红蛋白浓度、红细胞分布宽度。血液生化指标11项:谷丙转氨酶、谷草转氨酶、谷丙转氨酶与谷草转氨酶比值、总蛋白、碱性磷酸酶、葡萄糖、尿素氮、肌酐、总胆固醇、甘油三酯、白蛋白。分类后进行指标的比较。统计学分析采用SPSS13.0版统计学软件进行两个样本的t检验,所有数据以均数±标准差((?)±SD)表示。
     2以代表mtDNA控制区5′端序列单倍型的西藏小型猪和部分巴马小型猪、贵州香猪、五指山猪的全基因组DNA为研究对象,设计引物扩增四种小型猪的Cyt b基因序列,测序后利用MEGA3.0软件进行碱基序列和氨基酸序列比对,建立亲缘关系树,分析西藏小型猪的进化地位。
     3应用PCR-RFLP技术,研究西藏小型猪的氟烷基因多态性。以杜洛克猪和长白猪基因组样本为对照,用特异性引物扩增3个猪种的氟烷基因片段,然后进行限制性内切酶(HhaⅠ)酶切以及酶切结果的鉴定,通过基因型辨读,获得群体的基因型频率特征数据,确定隐性纯合子基因型个体。对酶切电泳结果进行辨读时,HAL~NHAL~N基因型表现出493bp和166bp两条电泳条带,HAL~NHAL~n基因型表现出659bp、493bp和166bp三条电泳条带,HAL~nHAL~n基因型只出现659bp一条电泳条带。
     结果
     1前人的研究表明,猪的mtDNA控制区的串联重复区存在长度异质性(15—29个重复片段),重复片段全部是:GTACACGTGC,称之为完全重复。但是本研究显示,西藏小型猪不仅有完全重复(A型),而且有不完全的重复(B型),即一部分西藏小型猪10bp的重复片段不仅有GTACACGTGC,而且还有GTACACATGC和GTACACGTAC这两个片段及其交替排列现象。系谱分析显示,这种排列类型同样按母系遗传方式由母本传给后代,与父本没有关系。
     西藏小型猪mtDNA控制区3′端侧翼区为340bp,变异位点少,与国内其他家猪的序列一样比较保守;5′端侧翼区704bp,有20个变异位点,由此归纳出26个单倍型。西藏小型猪5′端侧翼区三个转换位点(305,500,691)的变化几乎与串联重复序列所分的A、B两组类型相对应:B型中三个变异位点的碱基分别为t,a,a(100%);A型中三个变异位点的碱基分别是c,g,g的占87%,其他13%。
     与西藏小型猪相比,巴马小型猪、贵州香猪和五指山猪mtDNA控制区5′端变异位点较少,分别只有4、4、3种单倍型,串联重复区也只有一种类型,A型。对西藏小型猪A型和B型群体与血液生理生化特性的进行相关分析,结果表明A型和B型群体血液红细胞数量有显著性差异(A型<B型,P<0.05)。
     2利用控制区5′端侧翼区序列归纳出的单倍型建立亲缘关系树的分析表明,西藏小型猪与中国地方家猪有较近的亲缘关系,特别与中国西南地区几种家猪的亲缘关系最近。
     3西藏小型猪与国内家猪的Cyt b基因序列几乎相同;与欧洲猪相比差异较大,共有16个主要变异位点,其中有两个特殊转换位点:420位点T—C转换和883位点的G—A转换,几乎各占一半。利用Mege3.0软件将碱基序列转换为氨基酸序列后的分析表明,西藏小型猪与国内其他猪有一个氨基酸位点(295位点)、与欧洲猪有三个氨基酸位点(89,295,314位点)存在着差异。在295位点,大部分A型西藏小型猪与欧洲猪同为缬氨酸(Ⅴ),而B型和少部分A型为异亮氨酸(Ⅰ)。巴马小型猪、五指山猪和贵州香猪的氨基酸序列在295位点也为异亮氨酸(Ⅰ)。结果进一步证实,西藏小型猪群体内存在分化,mtDNA控制区的序列变异与功能基因的结构变化存在一定相关性。
     4 120头西藏小型猪个体氟烷基因型全部为HAL~NHAL~N,没有发现应激敏感基因,氟烷基因显性纯合子基因型:HAL~NHAL~N的频率为100%;HAL~NHAL~n型和HAL~nHAL~n型均为0。而在杜洛克猪样本中检测到4份杂合子样本,长白猪样本中检出1份杂合子个体,但都没有发现隐性纯合子个体。西藏小型猪群体内未发现应激敏感性的隐性基因,整个群体抗应激能力强。
     结论
     1根据西藏小型猪mtDNA控制区串联重复区的长度和重复片段存在异质性,可将西藏小型猪群体分为A型和B型。A、B类型和5′端的三个碱基转换位点:305,500,691,可以联合组建西藏小型猪的遗传标记。建议通过人工选择,A型B型分为两个群体,淘汰A型中少量变异个体(13%),强化西藏小型猪的标记,培育成两个封闭群体:B型三个转换位点分别为t,a,a;A型封闭群的三个转换位点纯化为c,g,g。
     2由于西藏小型猪串联重复区的排列类型A型或B型都可以由母本传给后代,而目前所报导的国内家猪全部为A型,没有B型的报导,因此提出A型西藏小型猪和其他中国家猪有共同起源,B型可能是基因突变或者是两种母系起源的结果。
     3西藏小型猪Cyt b基因的全序列有两个转换位点,与A型和B型西藏小型猪有一定对应关系。利用Mege3.0软件将碱基序列转换为氨基酸序列后的分析表明,西藏小型猪Cyt b第295位氨基酸大部分为缬氨酸(Ⅴ),而少部分为异亮氨酸(Ⅰ)。其他国内家猪的氨基酸序列全部为异亮氨酸(Ⅰ)。结果进一步证实,在西藏小型猪群体内存在分化。
     4西藏小型猪群体氟烷基因,未发现应激敏感性的隐性基因,说明西藏小型猪的应激敏感性比较低,适合于开展外科手术或器官移植等实验研究。
Background
     Tibet hog is one kind of smaller mini-pig in the world,which mainly live in semi-agricultural and semi-pastoral areas(average elevation:2500~4300m) in Qinghai-Tibet plateau located in southwest China.Tibet hogs are distributed mainly in Tibet autonomous region and Yunnan,Sichuan,and Gansu.It is the only pig breed that can adapt to the high altitude climate.Because of long-term geographical isolation and environmental difference,the differentiation of Tibet hog in different regions(such as Sichuan Tibet hog and Yunnan Tibet hog) appear.Sichuan Tibet hog diverses more from the law of Hardy-Weiberg than Yunnan Tibet hog do.Sichuan Tibet hog is smaller than Yunnan Tibet hog.Although some research work has been done on Tibet hog(mostly on Sichuan Tibet hog and Yunnan Tibet hog),little work has been done on Tibet hog from Tibet autonomous region.To develop a laboratory pig strain,50 indigenous Tibet pigs(25 males and 25 females) were moved from Tibet autonomous region to Guangzhou city in 2004,which were raised in the base of Tibet mini-pig breeding in Zengcheng,Guanzhou city.These pigs were bred for the purpose of laboratory animalization and were named as Tibet mini-pig.The number of Tibet mini-pigs are about 600 now.
     Objectives
     1.To analyze the sequence of mitochondrial DNA D-loop region and Cyt b gene of Tibet mini-pigs,to investigate genetic differentiation and the impact on partial blood parameters and to explore their cytoplasmic DNA markers used to identify them.To find the phylogenetic relationship between Tibet mini-pigs and several other breeds of Chinese domesticated pigs.
     2.To investigate the population structure feature of HAL locus,and to detect allozygote individuals of HAL genotype in different Tibet mini-pig,and to guide the breeding of laboratory animal Tibet mini-pigs in abstracto.
     Methods
     1.Collecting blood from 120 Tibet mini-pigs randomly and genome DNA was extracted from the blood with Genome DNA Extraction Kit.Primer were designed. The fragment of Mitochondrial DNA D-loop region in 120 Tibet mini-pigs,7 Bama miniature pigs and 23 Guizhou xiang pigs and 17 WZS pigs were amplified and sequenced,followed by being multiple alignment compared with each other using ClustalW software and MEGA3.0 software,then variation sites and haplotype were made.Established genetic relationship tree between Tibet mini-pig and other China domestic pigs with CLUSTALW software.Additionally,blood physiological and biochemical parameters of 58 Tibet mini-pigs(8 months old) were measured which included WBC,RBC,HGB,PLT,LYM,MONO,NEU,EOS,BASO,HCT, MCV,MCH,MCHC,RDW,ALT,AST,AST/ALT,TP,AKP,GLU,BUN, CREA,CHOL,TG and ALB.After classified,these index were compared.The software SPSS13.0 and Independent samples t-test were used to make statistics analysis,and all the data was denoted as mean±standard deviation((?)±SD).
     2.Making research on genome DNA from Tibet mini-pig(representing haplotype of D-loop sequence),some Bama miniature pigs,Guizhou xiang pigs and WZS pigs.Then designing Primer and amplifing the sequence of Cyt b gene from Tibet mini-pig,Bama miniature pigs,Guizhou xiang pigs and WZS pigs.After sequencing, the base sequence and amino acid sequence were compared and analysed using MEGA3.0 software,then phylogenetic tree and evolution position of Tibet mini-pig were established.
     3.PCR-RFLP methods were used in the research of HAL polymorphism. Genome samples from 36 Duroc and 20 Changbai as control group,HAL fragment were amplified using specific primer,then the fragment was digested with Hha I and the result was verified.Through reading genotype,genotypic frequency data of the group were obtained.The genotype can be classified to 3 kinds by electrophoresis analysis,of which HAL~NHAL~N represented two electrophoretic bands of 493bp and 166bp,HAL~NHAL~n represented three electrophoretic bands of 659bp,493bp and 166bp respectively,HAL~nHAL~n represented one electrophoretic band of 659bp.
     Results
     1.Previous research showed the length heterogeneity(15~29 10 bp repeat motif) in the tandem repeat sequence of mtDNA D-loop in pigs and all of the motifs is GTACACGTGC,a perfect repeat,but the data from this study demonstrated that there are not only perfect repeats(i.e,type A) but also some imperfect repeats(type B),that is to say,moiety Chinese Tibet mini-pigs contain an alternate array in three motifs:GTACACGTGC,GTACACATGC and GTACACGTAC.By performing pedigree analysis,array types were inherited from mother to offspring and had no relation with father's types.
     340 bp sequence at 3' end of the Tibet mini-pigs D-loop which is very conservative particularly exhibited high homology as in the same region in domestic pigs.704 bp sequence at 5' end of the Tibet mini-pigs D-loop had 20 polymorphic sites which deduced 26 haplotypes.The three transform sites(305,500 and 691) nearly corresponded to type A and B of tandem repeat sequence.All type B are t,a,a(100%);the bases in three mutation site of type A are all c,g,g(87%);the rest mutation account 13%.The mutation sites in two haplotype of type A is similar to type B.
     Compared with Tibet mini-pigs,Bama miniature pigs,Guizhou xiang pigs and WZS pigs had 4,4 and 3 haplotypes,respectively,with only one type of tandem repeat sequence,that is type A.Although many studies were performed to investigate the repeat arrays of D-loop previously,little is known about the function of the repeat sequence.In this study,among these blood physiological and biochemical parameters described above,only RBC of Tibet mini-pigs(8 months old) was found to have significant differences between type A and B(P<0.01),which demostrated tandem repeat sequence has influence on the fuction of blood cells.
     2.Tibet mini-pigs have close relation with domestic pigs in southwest China,by using phylogenetic tree building by haplotypes deduced from polymorphic sites of 5' terminal flanking region.
     3.There are 16 mutation between domestic pig in China and pig from Europe. Besides there was a significant difference in two nucleotide site:a T-C switch in in site 420 and a G-A switch in in site 883,with a proportion about 50%respectively. Compare with pigs from Europe,Tibet mini-pig is different in three amino acids site. In site 295,most of type A Tibet mini-pig and pig from Europe are all Valine,while type B Tibet mini-pig is Isoleucine in this site.Bama miniature pigs,Guizhou xiang pigs and WZS pigs is coincide with type B and a small fraction of type A Tibet mini-pig in site 295 which is isoleucine.Our research showed that Bama miniature pigs,Guizhou xiang pigs and WZS pigs had very close blood relationship with some of Tibet mini-pigs.The research further proved there is differentiation among Tibet mini-pig group.
     4.The HAL gene type of Tibet mini-pig are all HAL~NHAL~N,no stress sensitive gene is discovered.The HAL genotype frequency of Tibet mini-pig colony is HAL~NHAL~N 100%,HAL~NHAL~n and HAL~nHAL~n 0.4 heterozygote in samples from Duroc pig and 1 heterozygote in samples from Long-white pigs were detected.There is no allozygote in all these samples.As a result,a conclusion is drawed that there is no stress sensitive recessive gene and Tibet mini-pig population have higher ability to defense the press in Tibet mini-pig groups.
     Conclusions
     1.Based on the variety of tandem repeat motif and the variety sites of the entire sequence of the hypervariable mtDNA D-loop region,Tibetan mini-pig can be divided into two types:A and B.Types A and B Tibet mini-pig had significant differences in RBC count(type A<type B).There is a closely genetic relationships between a piece of Tibet mini-pig(type) A and Chinese domestic pigs.Type A,type B and the three base pair transition site(site 305,site 500 and site 691) can be uesd as the united genetic marker of Tibet mini-pigs together.Through artificial selection, classifying type A and type B as two groups,eliminating some of the mutative individuals in type A(13%),reinforcing the genetic marker,we can breed two closed colony of Tibet mini-pigs.All type A is c,g,g and all type B is t,a,a.
     2.By performing pedigree analysis,array types(A and B) were inherited from mother to offspring and had no relationships with father's types.Because all of the reported domestic pigs in China are type A,we infer that some of Tibet mini-pigs(A) may be the common origin of Chinese domestic pigs.
     3.Two variable sites in Cyt b gene of Tibet mini-pigs were discovered,including a T-C transform in site 420 and a G-A transform in site 883,which corresponded with type A and type B Tibet mini-pig.Compare with pigs from Europe,Tibet mini-pig is different in three amino acids site.In site 295,type A Tibet mini-pig and pig from Europe are all Valine,while type B Tibet mini-pig is Isoleucine in this site.Bama miniature pigs,Guizhou xiang pigs and WZS pigs is coincide with type B Tibet mini-pig in site 295.It was confirmed again that there is differentiation in the Tibet mini-pig.
     4.The HAL genotype frequency of Tibet mini-pig is very low,which demostrate the Tibet mini-pig have a low stress sensibility.So Tibet mini-pig is fit to breed as medical laboratory animal.
引文
[1]施新猷,王四旺,顾为望.比较医学.西安:陕西科学技术出版社.2003
    [2]施新猷.现代医学实验动物学[M].北京:人民军医出版社.2000,p:138-141
    [3]Kato T,Yasue T,Shoji Y,et al.Angiographic difference in coronary artery of man,dog,pig and monkey.Acta Pathol Jph,1987,37(3):361-373
    [4]Sachs DH.the pig as a potential xenograft donor[J].Vet Immunol Immunopathol,1994,43(1-3):185-191
    [5]Hsu QK.Pig model for biomedical research.Taiwan[J].Pig Research Institute,1982.3-10
    [6]Panepinto LM,Phillips RW.The Yucatan miniature pig:character ization and utilization in biomedical research[J].Lab Anim Sci,1986,36(4):344-347
    [7]曾昭智,刘运忠,任丽华,等.西藏小型猪在广州地区生长繁殖性能的研究[J].猪业科学,2006,08:76-77
    [8]魏泓.我国小型猪研究现状[J],中国实验动物学杂志,1997,7(4):252-255
    [9]Panepinto LM.Swine in Biomedical Research[J].Lab Anim Sci,1986,36(4):339-433
    [10]Bollen P,Ellegaard L.The Gottingen minipig in pharmacology and toxicology [J].Pharmacol Toxicol.1997,80(2):3-4
    [11]Qvist MH,Hoeck U,Kreilgaard B,et,al.Evaluation of Gottingen minipig skin for transdermal in vitro permeation studies[J].Eur J Pharm Sci.2000,11(1):59-68
    [12]孙靖.实验动物学基础.北京:北京科学技术出版社[M].2005,pp:80-81
    [13]藏猪[J].中国农业信息,2005,9:23
    [14]强巴央宗,谢庄,田发益.高原西藏小型猪现状与保种策略[J].中国畜牧杂志.2001,37(6):46-47
    [15]李瑜金,刘锁柱,王宏辉.高原不同饲养管理条件下西藏猪生产性能及效益分析[J].当代畜牧,2002,1
    [16]王宏辉,王昆山,李瑜鑫,等.藏猪在舍饲条件下的行为观察[J].家畜生态,2002,23(2):32-34
    [17]王昆山,王建洲,屯旺等.不同程度近交对藏猪繁殖性能的影响[J].畜牧兽医杂志,2002,21(4):8-10
    [18]饶家荣,王旭东,钱光云等.迪庆藏猪红细胞免疫功能研究[J].甘肃畜牧兽医1999,3(146):5-6
    [19]高荣,李惠,武梅.藏猪白细胞介素-2基因的克隆及序列分析[J].中国兽医杂志.2003,40(6):3-5
    [20]朱砺.猪骨骼肌形成过程中的几种决定因子(MDF)的遗传效应及其遗传多态性和分子进化研究.(博士学位论文)四川雅安,四川农业大学,2004
    [21]赵中权,帅素容,蒋忠荣.藏猪生长激素基因核苷酸多态性分析[J].中国畜牧杂志.2006,42(3):12-13
    [22]帅素容.猪生长激素(pGH)基因核昔酸多样性、分子进化和PCR-RFLP及其遗传效应研究.(博士学位论文)四川雅安,四川农业大学,2004
    [23]赵中权.藏猪氟烷基因、雌激素受体基因和生长激素基因PCR-RFLP分析.(硕士学位论文)四川雅安,四川农业大学,2005
    [24]嘎路.依托资源优势大力保护开发藏猪资源.西藏畜牧兽医,2003,(1):52-55
    [25]熊统安,朱猛进,郭宏.中国藏猪ESR基因Pvu位点多态性分析[J].华中农业大学学报.2005,24(5):485-488
    [26]李华,张亚平,邱祥聘.中国部分猪种SLA-DQB外显子遗传多样性[J].遗传,2005,27(2)173-180
    [27]李华,蒋岸岸,于辉.甘孜藏猪与合作猪SLA-DQA基因的群体遗传研究[J].高技术通讯[J].2006.16(12):1294-1299
    [28]鞠慧萍,吴圣龙,孙鹏翔等.藏猪SLA-DRB基因第2外显子PCR-RFLP多态性分析.中国畜牧兽医[J].2007,34(5):67-68
    [29]谈永松,周波,王林云,等.五指山、二花脸和皮特兰猪的SLA-DRB基因外显子2 PCR-RFLP及PCR-SSCP多态性分析.遗传学报[J].2005,32(2):163-169
    [30]田志华,张成忠,钟金城.藏猪血液蛋白多态性的研究[J].西南民族学院学报,自然科学版,1999,25(3):278-283
    [31]李相运,任战军,常洪,等.合作猪血液蛋白多型性研究[J].西北农业大学学报,2000,28(4):62-64
    [32]张亚妮,张恩平,吴迪,等.两个藏猪类群微卫星DNA遗传多样性的研究[J].西北农林科技大学学报(自然科学版),2004,32(6):23-26
    [33]《中国家畜家禽品种志》编委会,《中国猪品种志》编写组.中国猪品种志[M],上海:上海科学技术出版社,1986,7
    [34]李相运,常洪.林芝猪血液蛋白多型性研究[J].西北农业学报.2000,9(1):24-28
    [35]聂龙,施立明.西南地区地方品种猪血液蛋白遗传多样性研究[J].生物多样性,1995,3(1):1-7
    [36]常洪,米玛次仁,李相运,等.新遗传资源林芝猪调查[J].中国农业科学,2002,35(9):1114-1118
    [37]Tanaka K,Oishi T,Kurosawa Y,Suzuki S,1983.Genetic relationship among several pig populations in East Asia analysed by blood groups and serum protein polymorphism[J].Animal Blood Groups and Biochemical Genetics,14(3):191-200
    [38]陶钧,邹峄.湖南地方猪种群亲缘关系的生化遗传学研究[J].畜牧兽医学报,1992,23(1):13-21
    [39]黄海根,邹峄.华东南地区部分家猪地方种群的亲缘关系及其起源分化初探[J].江西农业大学学报,1988,10(4):31-35
    [40]任丽华,刘运忠,朱少璇.西藏小型猪在广州地区的行为学特性[J].动物医学进展,2006,27(1):91-94
    [41]龚宝勇,刘运忠,曾昭智.广州地区西藏小型猪的繁殖行为学表现[J].中国实验动物学报,2006,14(4):315-317
    [42]余琛琳,刘运忠,陈召威.西藏小型猪心电图分析[J].动物医学进展.2005,26(12):54-58
    [43]任丽华.超声断层扫描观察西藏小型猪胚胎发育[J].中华医学实践杂志2006,5(4):293-394
    [44]Fang M,Hu X,Jiang T.2005The phylogeny of Chinese indigenous pig breeds inferred from microsatellite markers[J].Animal Genetics 36,7-13
    [45]Xiong Y Z,Andersson L,Giuffra E.6个中国猪地方品种和3个瑞典猪DNA 分子系统发育相关关系[J]Molecular Phylogenetics Relationship Between Six Chinese Native PigBreeds and three Swedish Pig Breeds from Mitochondrial DNA.遗传学报.2001,12
    [46]Gongora J,Peter Fleming P,Peter B.S.Phylogenetic relationships of Australian and New Zealand feral pigs assessed by mitochondrial control region sequence and nuclear GPIP genotype[J].Molecular Phylogenetics and Evolution.2004,33(2):339-348
    [47]曾昭智.实验用西藏小型猪生长繁殖性能及ESR、PRLR基因多态性相关分析研究.(硕士学位论文)广东广州,南方医科大学,2007
    [1]Crespillo,M.,J.A.Luque and M.Paredes 2000 Mitochondrial DNA sequences for 118 individuals from northeastern Spain[J].Int.J.Legal.Med.114(1-2):130-132
    [2]Ursing,B.M.and U.Arnason 1998The complete mitochondrial DNA sequence of the pig[J].J.Mol.Evol.47(3):302-306
    [3]Mindell,D.P(Ed.) 1997.Avian molecular evolution and systematics.Academic Press,New York.
    [4]Wolstenholme D R.Animal mitochondrial DNA:struature and evolution[J].Int.Rev.Cytol.,1992,141:173-216
    [5]Wallace D C.Mitochondrial disease:genotype versusphenotype[J].TIG,1993,94:128-133
    [6]Wu Mingche.Ear characteristicsof pigs affected by mitochondrial DNA polymo- phism in maternal mode[J].Proc 5th World Congress on Genetic App to Live- stock Prod,1994,21:298-301
    [7]Hoelzel,A.R.,J.V.Lopez,G.A.Dover,et al.1994.Rapid evolution of a heteroplastoic repetitive sequence in the mitochondrial DNA control region of carnivores [J].J.Mol.Evol.39:191-199
    [8]Savolainen P,Arvestad L,Lundeberg J.mtDNA Tandem Repeats in Domestic Dogs and Wolves:Mutation Mechanism Studied by Analysis of the Sequence of Imperfect Repeats[J].Mol.Biol.Evol.2000,17(4):474-488
    [9]Mackay,S.L.D.,P.D.Oliver and P.J.Laipis.1986 Template-directed arrest of mammalian mitochondrial DNA synthesis[J].Mol.Cell Biol.6(4):1261-1267
    [10]Ghivizzani,S.C.,S.L.Mackay and C.S Madsen,1993,Transcribed heteroplasmic repeated sequences in the porcine mitochondrial DNA D-loop region[J].J.Mol.Evol.37(1):36-47
    [11]Takeda,K.,A.Onishi and N.Ishida 1995 SSCP analysis of pig mitochondrial DNA D-loop regionpolymorphism[J].Animal Genetics 26(5):321-326
    [12]亏开兴,连林生,聂龙.云南保山猪线粒体DNA D-loop区序列初步分析[J].遗传.2003,25(5):526-528
    [13]Kim K.L,郭军,马月辉.通过线粒体DNA D-环序列多态性决定亚洲和欧洲猪品种间的系统发育关系[J].中国畜牧兽医.2003.01
    [14]XIONG Y-Z,Andersson L,Giuffra E.6个中国猪地方品种和3个瑞典猪DNA分子系统发育相关关系[J]Molecular Phylogenetics Relationship Between Six Chinese Native PigBreeds and three Swedish Pig Breeds from Mitochondrial DNA.遗传学报.2001,12
    [15]Fang M,Hu X,Jiang T.2005 The phylogeny of Chinese indigenous pig breeds inferred from microsatellite markers.Animal Genetics 36,7-13
    [16]TIAN Z.H.,ZHANG C.Z.,ZHONG J.J.1999 Research on Blood Protein Polymorphism of Tibet Pig[J].Journal of Southwest Nationalities College·Natural Science Edition.25(3):278-283
    [17]付艳艳,顾为望,刘运忠等.西藏小型猪线粒体Dloop区及微卫星多态性的遗传分析[J].中国实验动物学报,2006,14(4):318-321
    [18]刘中禄,魏泓,曾养志.中国三种实验用小型猪mtDNA D-loop多态性分析[J].动物学报,2001,47(4):425-430
    [19]Reyes A,Nevo E,Saccone C.2003 DNA Sequence Variation in the Mitochondrial Control Region of Subterranean Mole Rats,Spalax ehrenbergi Super- species,in Israel[J].Mol.Biol.Evol.20(4):622-632
    [20]Ghivizzani S.C.,Mackay S.L.D.,Madsen C.S.,Laipis P.J.& Hauswirth W.W.1993 Transcribed heteroplasmic repeated sequences in the porcine mitochondrial DNA D-loop region[J].Journal of Molecular Evolution 37,36-47
    [21]MacKay,S.L.D,Ghivizzani,S.C,Madsen,C.S,et al.Transcribed heteroplasmic repeated sequences in the porcine mitochondrial DNA D-loop region[J].J.Mol.Evol,1993,37:36-47
    [22]Dufresne,C.Mignotte,F.and Gueride,M,et al.The presence of tandem repeats and the initiation of replication in rabbit mitochondrial DNA[J].Eur.J.Biochem.,1996.235:593-600
    [23]ToelleVD.Cytoplasmic effects in swine[J].J Anim Sci,1986,63(Suppli):203
    [24]Gongora J,Peter Fleming P,Peter B.S.Phylogenetic relationships of Australian and New Zealand feral pigs assessed by mitochondrial control region sequence and nuclear GPIP genotype[J].Molecular Phylogenetics and Evolution.2004,33(2):339-348
    [25]李崇奇.基于线粒体序列变异探讨野猪系统地理学及家猪起源.南京师范大学[硕士论文],2005
    [26]Greger Larson,Keith Dobney,Umberto Albarella,et al.Worldwide Phylogeography of Wild Boar RevealsMultiple Centers of Pig Domestication Science 307,1618(2005)
    [1]白丽萍,姜先华,赵贺群.人与动物mtDNA细胞色素b基因的序列差异[J].中国法医学杂志,2004,19(3):154-156.
    [2]冯强,陈浩,周斌.PCR-RFLP分析线粒体DNA细胞色素b基因用于法医学种属鉴定[J].刑事技术2006,5:16-18.
    [3]周斌,张林,吴梅筠,等.DNA分析与种属鉴定[J]法医学杂志,2003,19(4):245-248
    [4]Zardoya R,Meyer A.Phylogenetic performance mitochondrial protein codinggenesin resolving relationship among vertrbrates.Mol Biol Evol,1996,13:933-942.
    [5]Zehner R.S,Mebs Z.D.RFLP and sequense analysis of the cytochrome b gene of selected animals and man:methodology and forensic application[J].Int Legal Med.1998.111:323-327.
    [6]蔡欣,陈宏,雷初朝.从Cyt b基因全序列分析中国10个黄牛品种的系统进化关系[J].中国生物化学与分子生物学报.2006,22(2):168-171.
    [7]WANG X,MA Y-H,CHEN H.Analysis of the Genetic Diversity and the Phylogenetic Evolution of Chinese Sheep Based on Cyt b Gene Sequences[J].Acta Genetica Sinica,2006,33(12):1081-1086.
    [8]耿荣庆,王兰萍,常洪.江苏山羊品种细胞色素b基因(Cyt b)变异特点及其系统地位分析[J].江苏农业学报,2007,(01).26-30.
    [9]Alves E,Ovilo C,Rodriguez MC,2003.Mitochondrial DNA sequence variation and phylogenetic relationships among Iberian pigs and other domestic and wild pig populations[J].Anim Genet.34(5):319-24.
    [10]Larson G,Dobney K,Albarella U.Worldwide phylogeography of wild boar reveals multiple centers of pig domestication[J].Science 2005,307(11):1618.
    [11]Molecular phylogenetics relationship between six Chinese native pig breeds and Three Swedish pig breeds from mitochondrial DNA.遗传学报2001,28(12):1120-8.
    [12]Watanabe T,Hayashi Y,Kimura J.1986.Pig mitochondrial DNA:polymorphism restriction map orientation,and sequence data[J].Biochem Genet.(5-6):385-96.
    [13]Watanabe T,Hayashi Y,Ogasawara N.1985.Polymorphism of mitochondrial DNA in pigs based on restriction endonuclease cleavage patterns[J].Biochem Genet.23(1-2):105-13.
    [14]Giuffra E,Kijas JM,Amarger V.2000.The origin of the domestic pig:independent domestication and subsequent introgression[J].Genetics 154,1785-91.
    [15]Okumura N,Kurosawa Y,Kobayashi E.2001.Genetic relationship amongst the major non-coding regions of mitochondrial DNAs in wild boars and several breeds of domesticated pigs[J].Anim Genet 32:139-147.
    [16]Kijas J M H,Andersson L.2001.A phylogenetic study of the origin of the domestic pig estimated from the near-complete mtDNA genome[J].J Mol Evol 52:302-308.
    [17]Kim K S,Yeo J S,Kin J W,2002.Assessment of genetic diversity of Korean native pig(sus scrofa) using AFLP markers[J].genes genet syst 77:361-368.
    [18]Yang J,Wang J,Kijas J,2003.Genetic diversity present within the near-complete mtDNA genome of 17 breeds of indigenous Chinese pigs[J].J Hered.94(5):81-5.
    [19]Fang M,Hu X,Jiang T.2005The phylogeny of Chinese indigenous pig breeds inferred from microsatellite markers[J].Animal Genetics 36,7-13.
    [20]张仲葛,李炳坦,陈效华.1986.中国猪品种志[M]..上海科学技术出版社.
    [21]蒋思文,Giuffra E,Andersson L.2001.6个中国猪地方品种和3个瑞典猪DNA 分子系统发育相关分析[J].遗传学报28:1120-1128.
    [22]常青,周开亚,王义权.太湖猪遗传多样性和系统发生关系的RAPD分析[J].遗传学报,1999a,26(5):480-488
    [23]常青,周开亚,掌子凯.野猪和几种家猪亲缘关系的RAPD分析[J].应用与环境生物学报,1999b,5(4):382-38
    [24]秦树臻,1994.太湖猪核DNA和线粒体DNA遗传变异的研究.南京师范大学[博士论文].
    [25]黄勇富,张亚平,邱祥聘,猪线粒体DNA多态性与中国地方猪种起源分化的关系[J].1998遗传学报25(4):322-329.
    [26]Lan H,Shi L,1993.The origin and genetic differentiation of native breeds of pigs n southwest China:an approach from mitochondrial DNA polymor-phism[J].Biochemical Genetics 31:51-60.
    [1]Britt B.A.The North American caffeine halothane contracture test.in Malignant Hyperthermia:Current Concepts[J].1989,53-69.
    [2]Christian L.L,Mabry J W.Stress susceptibility of swine[J].Genetics of swine.1990,49-69.
    [3]Fujii J,Otsu K,Zorzato F,et al.Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia[J].Sci,1991.253:448-451.
    [4]Wen G,Leeb T,Reinhart B,et al.The porcine skeletal muscle ryanodine receptor gene structure coding region 1 to 10614 harbouring 71 exons[J].Anim Genet,1996;27:297.
    [5]Takagi A.Molecular pathology of malignant hyperthermia and central core disea-se[J].N ippon Rinsho,1997,55:3 307.
    [6]Dries W.Porcine malignant hyperthermia carrier detection and chromosomal assignment using a linked probe[J].Animal Genetics,1988,19:203-212.
    [7]Harbitz I.Isolation characterization and chromosomal assignment of a partial cDNA for porcine 6-phosphogluconate dehydrogenase[J].Heredias,1990,112:83-88.
    [8]Harbitz I.DNA sequence of the skeletal muscle calcium release channel cDNA and verification of the Arg615--Cys615 mutation,associated with porcine malig- nant hyperthermia,in Norwegian landrace pigs[J].Anim Genet,1992:23(5):395-402.
    [9]Brenig B,Schmoelzl S,Leeb T,et al.Structure and expression of the porcine skeletal muscle ryanodine receptor gene[J].DTW Dtach Tierarztl Wochenschr.1996,103:394.
    [10]方美英,姜志华,刘红林,等.应用PCR-SSCPs、PCR-RFLPs技术检测氟烷基因[J].养猪,1997(1):28-29.
    [11]Simpson S P,Webb A J,Wilmut I.Performance of British Landrace pigs selected for high and low incidence of halothane sensitivity[J].1986,43:485-492.
    [12]杜立新,王爱华,姜运良,等.猪RYR1基因三种PCR-RFLPs检测方法的比较[J].中国畜牧杂志,2000(4):8-10.
    [13]陈蕴颖,步宏,李幼平,等.中国内江猪的氟烷基因型[J].华西医科大学学报,1999;30(2):117-119.
    [14]帅素容,李学伟,赵秀娟,等.中国6个地方猪种与3个外种猪氟烷基因PCR产物序列比较研究[J].中国畜牧杂志,2005,41(2):12-15.
    [15]赵中权.藏猪氟烷基因、雌激素受体基因和生长激素基因PCR-RFLP分析.[硕士学位论文].四川,四川农业大学,2005.
    [16]李来记.猪MHS基因分子遗传学基础与应用研究.[博士学位论文],北京,中国农业大学.
    [17]步宏,刘戟,李胜富,等.中国近交系猪的氟烷基因型研究[J].中国修复重建外科杂志.2000,14(5):311-314.
    [18]赵秀娟.氟烷基因在中国地方猪种中的分布及其PCR产物序列多态性分析.[硕士学位论文].四川,四川农业大学,2003.
    [19]曾昭智,刘运忠,任丽华,等.西藏小型猪在广州地区生长繁殖性能的研究[J].猪业科学,2006,08:76-77.
    [20]丁能水,周利华,黄路生,等.氟烷基因对猪繁殖性能影响的研究[J].江西农业大学学报,1999(4):552-554.
    [21]孙有平,小松正宪,中岛惠美子,等.利用几根猪毛PCR扩增以检测氟烷基因基因型[J].江苏农业学报,1995,11(1):1-5.
    [22]蒋思文,吴桢方,熊远著.用聚合酶链式反应技术鉴别猪氟烷基因型[J].华中农业大学学报,1995,14(5):473-476.
    [23]经荣斌,宋成义.陶勇等.杜洛克猪及新姜曲海基础母本氟烷基因的检测[J].养猪,2000(4):32.
    [24]王楚瑞,陈清明,李振宽,等.丹系长白猪恶性高温综合症(pMHS)基因的检测 分析[J].畜牧兽医学报,2001,32(1),28-32.
    [25]刘红林,陈杰,徐银学.猪肉品质及其影响因素[J].畜牧与兽医,2000,(6):38-40
    [26]张克英,陈代文,胡祖禹.影响猪肉品质的主要因素[J].四川农业大学学报,2002,(1):67-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700