特高压串补装置开关操作引起的电磁瞬态过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1000kV晋东南(长治)-南阳-荆门特高压交流试验示范工程是我国目前自主设计的世界上运行电压最高、技术水平最先进、拥有自主知识产权的交流输电工程。为了提高该试验示范工程的输电能力、改善交流电网动态性能、增加系统稳定极限,国家电网公司所属科研单位成功研制了我国第一套、也是世界上第一套1000kV特高压固定串联补偿装置(简称为特高压串补装置),并已经正式投入商业运行。
     然而,1000kV特高压串补装置进行开关操作时,不仅会在高电位平台上产生一次系统过电压和二次系统电磁骚扰,还会在邻近的1000kV特高压电容式分压器上产生瞬态电压和入地电流。在我国大力发展特高压事业、建设坚强电网架构的背景之下,面对世界首套1000kV特高压串补装置设计、研发和首批串补装置的试验、运行中出现的开关操作过电压和电磁兼容等技术难题,本文重点开展了以下研究工作:
     第一,克服了高电位、强电磁环境下瞬态电压和电磁骚扰测量的一系列技术困难,提出了特高压串补装置高电位平台上瞬态电压和电磁骚扰的测量方法,并研发了瞬态电磁测量系统,开展了包括屏蔽效能、耐压、精度、电磁兼容抗扰度等一系列性能测试,验证了该测量系统可以适应于特高压串补装置高电位平台上的强电磁环境,具有光纤通信、独立电源供电、浮地测量、远程监控、负载效应小等特点。
     第二,利用研发的瞬态电磁测量系统,在1000kV特高压串补装置真型试验平台上,开展了隔离开关操作试验研究,通过对大量的测量数据进行统计分析,揭示了隔离开关操作在1000kV特高压串补装置真型试验平台上产生的一次系统瞬态电压和二次系统电磁骚扰瞬态特性;还开展了真型试验平台上二次系统的接地方式试验研究,并提出了二次系统屏蔽电缆屏蔽层、穿心式电流互感器外壳和控制箱体的接地方式。部分研究成果已经应用于我国首个1000kV特高压串补装置的过电压抑制和电磁兼容设计。
     第三,利用研发的瞬态电磁测量系统,开展了1000kV特高压串补装置真型试验平台隔离开关操作对邻近1000kV特高压电容式分压器影响的试验研究,通过对大量的测量数据进行统计分析,揭示了电容式分压器中压电压和入地电流的瞬态特性,提出了1000kV特高压电容式分压器能够安全运行的过电压和入地电流的限值要求;同时,开展了电容式分压器过电压和入地电流的抑制措施试验研究,研究结果表明,在电容式分压器高压端串联保护电感或保护电阻可以有效抑制其过电压和入地电流,为解决1000kV特高压变电站中串补装置与邻近电容式分压器的兼容运行问题提供了技术依据。
     第四,提出了含部分电感的弱耦合T型部分元等效电路,编写了基于部分元等效电路法的MSCM(矩阵稀疏及电路建模)程序,通过对电路参数矩阵进行稀疏化处理,并生成与SPICE兼容的等效电路模型,实现了适合大规模多导体系统的电路参数提取和等效电路建模。算例说明,稀疏化的部分磁阻和部分电感矩阵的稀疏度都要绝对高于完整的部分磁阻和部分电感矩阵的稀疏度,且该方法在几乎不散失仿真准确度的情况下,提高了大规模多导体系统等效电路建模与仿真的效率。基于该方法和MSCM程序,建立了1000kV特高压串补装置本体的宽频等效电路模型,通过实验室模型和1000kV特高压串补真型试验平台的试验,验证了本文方法和程序的正确性和有效性,进而对1000kV特高压串补装置的旁路间隙击穿和隔离开关操作产生的电磁瞬态过程进行了仿真计算,并对采用非线性电阻并联脉冲电容器抑制平台过电压方案的有效性进行了评估。
     第五,通过频域测量手段,采用两种不同的阻抗测量方法获得了1000kV特高压电容式分压器的宽频阻抗特性,并通过测量结果和仿真结果比较验证了宽频阻抗特性的有效性。基于特高压电容式分压器的宽频阻抗特性测量数据,利用编写的CMFI(频变阻抗电路建模)程序,建立了具有物理意义的1000kV特高压电容式分压器的宽频等效电路模型,通过定义电容式分压器的网络函数及对其进行灵敏度分析,提出了改进1000kV特高压电容式分压器工艺的若干建议,为优化设计提供了参考依据。结合1000kV特高压串补装置本体的宽频等效电路模型和1000kV特高压变电站一次系统的等效电路模型,研究了1000kV特高压串补装置隔离开关操作时在邻近1000kV特高压电容式分压器上产生的过电压和入地电流,分析评价了采取保护电阻或保护电感的抑制效果,为最终实现1000kV特高压变电站中串补装置与邻近1000kV电容式分压器的兼容运行提供了理论依据。
The self-designed1000-kV Ultra-high Voltage (UHV) AC electric power transmission pilot project from Changzhi in Shanxi Province to Jingmen in Hubei Province has the highest AC voltage level with the advanced technological content at present. To increase its power transmission capability, improve the dynamic performance and power system stability, research staff in State Grid Corporation of China (SGCC) developed the first set of1000-kV UHV series capacitor banks in the world, and now it has been put into operation.
     However, in switching operation of UHV series capacitor banks, not only be transient primary-system overvoltage and secondary-system disturbance introduced, but transient overvoltage and current be caused on nearby capacitor voltage divider as well. Under the background of establishing robust physical power network and promoting UHV-related power industry, a series of technical problems such as switching overvoltage and electromagnetic compatibility arise in designing and developing the first set of1000-kV UHV series capacitor banks. Aiming at solving these problems, the principal content and achievements of this dissertation is listed as following:
     First, a transient electromagnetic measurement system was developed and measurement method on high-potential platform of UHV series capacitor banks was proposed. A series of performance test including shielding effectiveness, voltage withstanding ability, electromagnetic immunity, etc. were carried out to verify the reliability and adaptability of the measurement system mounted on the high-potential platform of UHV series capacitor banks where the electromagnetic environment is very intense. Other functional characteristics of the transient electromagnetic measurement system featuring optical fibre communication, independent uninterrupted power supply, ungrounded measurement, remote monitor and control, low load impact, and so on.
     Second, by applying the transient electromagnetic measurement system and using the1000-kV life-size experimental platform of UHV series capacitor banks, disconnecting switch experiment was carried out. Thereby, transient characterization of on-platform primary-system overvoltage and secondary-system disturbance was achieved after statistical analysis of experimental data. Furthermore, on-platform grounding schemes of the secondary system were investigated, and better grounding schemes of the shielded cable and secondary sytem were determined. Some of the experimental results had been applied in overvoltage suppression and EMC design of the first set of1000-kV UHV series capacitor banks.
     Third, by utilizing the above-mentioned measurement system again, experiment was conducted in examining the impact of switching operation of1000-kV UHV series capacitor banks on nearby capacitor voltage divider. So transient characterization of voltage and current of1000-kV capacitor voltage divider was achieved, and corresponding endurable transient overvoltage and overcurrent level were given. At the same time, transients suppression schemes including inserting protective resistor and inductor in series with capacitor voltage divider were evaluated and verified in allievating transient overvotlage and current. The experimental results shed lights on compatible operation of series capacitor banks with its nearby capacitor voltage divider.
     Fourth, a circuit modeling method with partial inductance featuring weakly coupled T-type element equivalent circuit was proposed. On this basis, a computer code MSCM (Matrix Sparsification and Circuit Modeling) was formed, which is used for sparsifying circuit parameter matrix and generating SPICE-compatible circuit model. It realizes that to extract circuit paramter matrix for a large-scale multiconductor system and to develop corresponding circuit model are possible. The numeric experiment reveals that the method increases the circuit simulation efficiency of large-scale multiconductor system significantly when maintains the same simualtion accuracy with full circuit parameter matrix. Applying this circuit modeling method and MSCM, the wideband circuit model of UHV series capacitor banks was established and verified both on laboratory model and1000-kV life-size UHV series capacitor banks. Thereby, the transient electromagnetic process due to bypass gap sparkover and disconnecting switch operation was simulated, and the on-platform overvoltage suppression effectiveness by using a nonlinear resistor in parallel with a pulse capacitor of was evaluated.
     Fifth, the wideband impedance data of UHV capacitor voltage divider was measured in frequency domain using two different methods, and impedance simulation result was compared with measurement data to validate the impedance measurement data. In addition, a written computer code CMFI (Circuit Modeling for Frequency-dependent Impedance) was deployed to generate a wideband circuit model with physical denotation for the capacitor voltage divider. Furthmore, circuit network functions were defined to evaluate the performance of capcitor voltage divider and analyze its sensitivity around the designed value. Some proposals on improving the functionality of capacitor voltage divider were also derived, which helps improve the optimized design. Incorporated with the wideband circuit model of1000-kV UHV series capacitor banks, the transient process in capacitor voltage divider due to disconnecting switch operation was simulated, and the suppression method of transient grounding current of capacitor voltage divider was analyzed as well, which enlighten the compatible operation of series capacitor banks with nearby capacitor voltage divider in UHV substations.
引文
[1]P.M. Anderson, R.G. Farmer. Series Compensation of Power Systems [M]. USA: PBLSH Inc. California,1996:1-18
    [2]Kirschner L., Lima M.C, Fernandes J.E.C., et al. Benefits and design aspects of Sao Joao do Piaui 500 kV series capacitors [A]. Proceedings of Transmission and Distribution Conference and Exposition [C]. Latin America:IEEE/PES,2004: 17-21
    [3]Grunbaum R., Samuelsson J. Series capacitors facilitate long distance AC power transmission [A]. International Conference on Power System Technology [C]. Russia:IEEE PRESS,2005:1-6
    [4]祁胜利,刁彦平.500串联电容补偿装置故障引起的保护动作及措施[J].电力系统自动化,2010,34(6):111-115
    [5]曾玉,汪建,郭丰胜.500kV河池串补站控制保护系统的设计与实现[J].电力系统控制与保护, 2005,33 (10):75-81
    [6]潘勇斌,杨绍远.500kV河池固定串补运行情况分析[J].电网技术,2008,32(2):82-85
    [7]张巧玲.平果可控串补工程电气二次系统及相关问题介绍[J].继电器,2006,34(24):70-75
    [8]程肖峰,冯辰虎.神保串补不平衡保护误动分析[J].华北电力技术,2010:44-46
    [9]IEEE Std C37.116-2007, IEEE Guide for Protective Relay Application to Transmission-Line Series Capacitor Banks [S]. New York:IEEE Power Engineering Society,2007
    [10]Qiyan Ma, Xiang Cui, Rong Hu, et al. Experimental Study on Secondary System Grounding of UHV Fixed Series Capacitors via EMI Measurement on an Experimental Platform [J]. IEEE Transactions on Power Delivery,2012,27 (4): 2374-2381
    [11]IEEE Std 82-2004, IEEE Standard for Series Capacitor Banks in Power Systems [S]. New York:IEEE Power Engineering Society,2004
    [12]游广增,司大军,陈姝.500kV串补电磁暂态过电压研究[J].云南电力技术,2011,39(6):9-11
    [13]刘晓冬,朱子述,陈陈.500kV线路串补电容器上过电压研究[J].上海交通大学学报,1997,31(12):142-147
    [14]刘晓冬,朱子述.500k串联补偿输电线路操作过电压的研究[J].高电压技术,1997,23(3):51-55
    [15]陈葛松,林集明,郭剑波.500kV串补站过电压保护研究[J].电网技术,2001,25(2):21-29
    [16]高飞,陈维江,刘之方,颜湘莲.1000kV交流输电系统串补站的雷电侵入波保护[J].高电压技术,2010,36(9):2199-2205
    [17]Gao Fei, Chen Wei-jiang, Li Guofu, et al. Protection of Series Compensation Station Against Lightning Intruded Wave in 1000kV AC Transmission System [A]. International Conference on Power System Technology [C]. China:IEEE PRESS, 2010:1-7
    [18]周元清,彭建春,王官宏.特高压交流输电线路串联补偿合闸操作过电压研究[J].电力自动化设备,2008,28(1):23-26
    [19]Madzarevic V., Tseng F.K., Woo D.H., et al. Overvoltages on EHV Transmission Lines due to Faults and Subsequent Bypassing of Series Capacitors [J]. IEEE Transactions on Power Apparatus and Systems,1977,96 (6):1847-1855
    [20]Yuanyuan Zhang, Liangeng Ban, Bin Han, et al. Research on Power Frequency Overvoltage of UHV Double-circuit Transmission System with Series Compensation [A]. International Conference on Power System Technology [C]. China:IEEE PRESS,2010:1-5
    [21]Qisheng Liu, Jiawen Yu, He Chen, et al. Studies on Series Compensation of UHV Transmission Line [A]. International Conference on Power System Technology [C]. China:IEEE PRESS,2010:1-5
    [22]蒋卫平,李新年,吕鹏飞.500kV固定串补人工单相接地故障试验现场实测结果分析与仿真计算[J].电网技术,2009,33(1):17-21
    [23]李小建,钟饶,李秉睿,等.500kV串补站隔离开关操作的电磁骚扰测量与分析[J].微波学报,2010
    [24]詹雄,戴朝波,刘慧文.特高压串补平台测量箱的大电流试验研究[J].电网技术,2012,36(1):26-31
    [25]何尔文,吴蓉,李健.串联补偿装置的抗电磁干扰措施[J].继电器,2008,36(4): 72-78
    [26]C.R. Paul, Analysis of Multiconductor Transmission Lines [M]. Second edition. New Jersey:John Wiley & Sons,2008:89-108
    [27]Garrett. Advancements of the partial element equivalent circuit formulation [D]. Lexington:University of Kentucky,1997
    [28]Jonas Ekman. Electromagnetic Modeling Using the Partial Element Equivalent Circuit Method [D]. Lulea:Lulea University of Technology,2003
    [29]A.E. Ruehli. An Integral Equation Equivalent Circuit Solution to a Large Class of Interconnect Systems [D]. Burlington:The University of Vermont,1972
    [30]F.W. Grover. Inductance Calculations [M]. New York:Dover Publications,1973: 6-16
    [31]Clayton R. Paul. Inductance:Loop and Partial [M]. New Jersey:John Wiley & Sons, 2011:195-245
    [32]C. Hoer and C. Love. Exact Inductance Equations for Rectangular Conductors with Applications to More Complicated Geometries [J]. Journal of Research of the National Bureau of Standards:Engineering and Instrumentation,1965,69C (2): 127-137
    [33]A.E. Ruehli. Inductance Calculations in a Complex Integrated Circuit Environment [J]. IBM Journal of Research and Development,1972:470-481
    [34]Hu H., Yang K., Wu K.L. et al. Quasi-static Derived Physically Expressive Circuit Model for Lossy Integrated RF Passives [J]. IEEE Transactions on Microwave Theory and Techniques,2008.56 (8):1954-1961
    [35]Yin W.Y., Xie J.L., Kang K. et al. Vertical Topologies of Miniature Multispiral Stacked Inductors [J]. IEEE Transactions on Microwave Theory and Techniques, 2008,56 (2):475-486
    [36]Yang K., Yin W.Y., Shi J.L., et al. A study of On-chip Atacked Multiloop Spiral Inductors [J]. IEEE Transactions on Electron Devices,2008,55 (11):3236-3245
    [37]Ruehli A.E., Chiprout E. The Importance of Retardation in PEEC Models for Electrical Interconnect and Package (EIP) Applications [A]. In Proceedings of Electrical Performance of Electronic Packaging [C].1995:232-234
    [38]Pinello W., Ruehli A.E., Cangellaris A. Analysis of Interconnect and Package Structures Using PEEC Models with Radiated Emissions [A]. Proceedings of IEEE 1997 International Symposium on Electromagnetic Compatibility [C]. China:IEEE PRESS,1997:353-358
    [39]Pinello W., Cangellaris A.C., Ruehli A.E. Hybrid electromagnetic modeling of noise interactions in packaged electronics based on the partial-element equivalent-circuit formulation [J]. IEEE Transactions on Microwave Theory and Techniques,1997,45 (10):1889-1896
    [40]Restle P.J., Ruehli A.E., Walker S.G. et al. Full-wave PEEC time-domain method for the modeling of on-chip interconnects [J]. IEEE Transactions on CAD of ICS, 2001,20 (7):877-886
    [41]Ruehli A.E., Cangellaris A.C. Progress in the methodologies for the electrical modeling of interconnects and electronic packages [J]. Proceedings of the IEEE. 2002,89 (5):740-771
    [42]Cao Y., Li Z.F., Mao J.F. A PEEC with a new capacitance model for circuit simulation of interconnects and packaging structures [J]. IEEE Transactions Microwave Theory and Techniques,2000,48 (2):281-287
    [43]Ruehli A.E., Garrett J., Paul C. Circuit models for 3D structures with incident fields [A]. Proceedings of 1993 IEEE Symposium on Electromagnetic Compatibility [C]. Texas:IEEE PRESS,1993:28-32
    [44]Ruehli A.E., Pinello W.P., Cangellaris A.C. Comparison of differential and common mode response for short transmission line using PEEC models [A]. Proceedings of IEEE 5th Topical Meeting Electrical on Performance of Electronic Packaging [C]. Napa Valley:IEEE PRESS,1996:169-171
    [45]Ruehli A.E., Cangellaris A.C. Application of the partial element equivalent circuit (PEEC) method to realistic printed circuit board problem [A]. Proceedings of 1998 IEEE International Symposium on Electromagnetic Compatibility [C]. Colorado:IEEE PRESS,1998:182-187
    [46]Ruehli A.E., Papadopoulos G. Solution of a complex via-pin connector problem using the partial element equivalent circuit (PEEC) method [A]. Proceedings of 1999 IEEE International Symposium on Electromagnetic Compatibility [C]. Washington:IEEE PRESS,1999:673-678
    [47]Archambeault B., Ruehli A.E. Analysis of power/Ground-plane EMI decoupling performance using the partial-element equivalent circuit technique [J].2001,43 (4): 437-445
    [48]Matsu N. SI EMI Analysis of analog circuit board combination of PEEC and MOR [A].2004 International Symposium on Electromagnetic Compatibility [C]. Santa Clara:IEEE PRESS,2004:260-265
    [49]Gunter Wollenberg, Andre Gorisch. Analysis of 3-D Interconnect Structures with PEEC Using SPICE [J]. IEEE Transactions on Electromagnetic Incompatibility, 1999,41 (4):412-417
    [50]龙海波.三维全媒质体系的部分元等效电路法及其建模[D].北京:清华大学,2005
    [51]张筱.基于等效原理的PEEC建模研究[D].北京:清华大学,2005
    [52]Xiao Zhang, Wen Hua Chen, Zhenghe Feng. Novel SPICE Compatible Partial-Element Equivalent-Circuit Model for 3-D Structures [J]. IEEE Transactions on Microwave Theory and Techniques,2009,57 (11):2808-2815
    [53]Albert E. Ruehli, Ulla Miekkala, Hansruedi Heeb. Stability of Discretized Partial Element Equivalent EFIE Circuit Models [J]. IEEE Transactions on Antennas and Propagation,1995,43 (6):553-559
    [54]Jan E. Garrett, Albert E. Ruehli, Clayton R. Paul. Accuracy and Stability Improvements of Integral Equation Models Using the Partial Element Equivalent Circuit (PEEC) Approach [J]. IEEE Transactions on Antennas and Propagation, 1998,46 (12):1824-1832
    [55]Jonas Ekman, Giulio Antonini, Antonio Orlandi, Albert E. Ruehli. Impact of Partial Element Accuracy on PEEC Model Stability [J]. IEEE Transactions on Electromagnetic Incompatibility,2006,48 (1):19-32
    [56]Giulio Antonini, Pierdomenico Pepe. Input-to-State Stability Analysis of Partial-Element Equivalent-Circuit Models [J]. IEEE Transactions on Circuits and Systems,2009,56 (3):673-684
    [57]Dong Yue, Qing-Long Han, A Delay-Dependent Stability Criterion of Neutral Systems and its Application to a Partial Element Equivalent Circuit Model [J]. IEEE Transactions on Circuits and Systems—Ⅱ,2004,51 (12):685-689
    [58]Xian-Ming Zhang, Qing-Long Han. A New Stability Criterion for a Partial Element Equivalent Circuit Model of Neutral Type [J]. IEEE Transactions on Circuits and Systems—Ⅱ,2009,56 (10):798-802
    [59]Karen M. Coperich, Albert E. Ruehli, Andreas Cangellaris. Enhanced Skin Effect for Partial-Element Equivalent-Circuit (PEEC) Models [J]. IEEE Microwave Theory and Techniques,2000,48 (9):1435-1442
    [60]Giulio Antonini, Dirk Deschrijver, Tom Dhaene. Broadband Macromodels for Retarded Partial Element Equivalent Circuit (rPEEC) Method [J]. IEEE Transactions on Electromagnetic Incompatibility,2007,49 (1):35-48
    [61]Giulio Antonini, Dirk Deschrijver, Tom Dhaene. Broadband Rational Macromodeling Based on the Adaptive Frequency Sampling Algorithm and the Partial Element Equivalent Circuit Method [J]. IEEE Transactions on Electromagnetic Incompatibility,2008,50 (1):128-137
    [62]A. Musing, J. Ekman, J. W. Kolar. Efficient Calculation of Non-Orthogonal Partial Elements for the PEEC Method [J]. IEEE Transactions on Magnetics,2009,45 (3): 1140-1143
    [63]A. Musing, J. W. Kolar. Efficient Partial Element Calculation and the Extension to Cylindrical Elements for the PEEC Method [A]. Proceedings of 11th Workshop on Control and Modeling for Power Electronics [C]. Switzerland:IEEE PRESS,2008: 1-6
    [64]William Pinello, Andreas Cangellaris, Albert Ruehli. Transient Electromagnetic Analysis and Model Complexity Reduction Using the Partial Element Equivalent Circuit Formulation [A]. IEEE MTT-S International Microwave Symposium Digest [C]. Colorado:IEEE PRESS,1997:63-66
    [65]Francesco Ferranti, Giulio Antonini, Tom Dhaene. Guaranteed Passive Parameterized Model Order Reduction of the Partial Element Equivalent Circuit (PEEC) Method [J]. IEEE Transactions on Electromagnetic Incompatibility,2010, 52 (4):974-984
    [66]Lap K. Yeung, Ke-Li Wu. Generalized Partial Element Equivalent Circuit (PEEC) Modeling with Radiation Effect [J]. IEEE Transactions on Microwave Theory and Techniques,2011,51 (10):2377-2384
    [67]Peerawut Yutthagowith, Akihiro Ametani, Naoto Nagaoka, et al. Application of a Partial Element Equivalent Circuit Method to Lightning Surge Analyses [A]. proceedings of 2011 7th Asia-Pacific International Conference on Lightning [C]. China, IEEE PRESS,2011:809-812
    [68]P. Yutthagowith, A. Ametani, N. Nagaoka, et al. Application of a Time-domain Partial Element Equivalent Circuit Method to Lightning Surge Analysis [A]. Proceedings of 2010 International Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTI-CON) [C]. Thailand:IEEE PRESS,2010:279-283
    [69]Peerawut Yutthagowith, Akihiro Ametani, Naoto Nagaoka, et al. Application of the Partial Element Equivalent Circuit Method to Analysis of Transient Potential Rises in Grounding Systems [J]. IEEE Transactions on Electromagnetic Incompatibility,2011,53 (3):726-736
    [70]高飞.基于PEEC理论的串补装置中快速暂态过电压时域计算方法[D].北京:中国电力科学研究院,2011
    [71]K. Nabors, J. White, FastCap:A multipole accelerated 3D capacitance extraction program [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,1991,10 (11):1447-1459
    [72]L. Greengard, V. Rokhlin. A fast algorithm for particle simulations [J]. Journal of Computational Physics,1987,73 (1):325-348
    [73]S. Kapur, D. E. Long. Large-scale capacitance calculation [A]. Proceedings of the 37th Conference on Design Automation [C]. Los Angeles:IEEE PRESS,2000, 744-749
    [74]J. R. Phillips, J. White. A precorrected FFT method for capacitance extraction of complicated 3-D structures [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,1997,16 (10):1059-1072
    [75]S. Kapur, D. E. Long. IES3:A fast integral equation solver for efficient 3-dimensional extraction [A].1997 IEEE/ACM International Conference on Computer-Aided Design [C]. California:IEEE PRESS,1997:448-455
    [76]J. Tausch, J. White. A multiscale method for fast capacitance extraction [A]. Design Automation Conference [C]. New Orleans:IEEE PRESS,1999:537-542
    [77]Paul, C.R. Modeling of Electromagnetic Interference Properties of Printed circuit boards [J]. IBM Journal of Research and Development,1989,33 (1):33-50
    [78]C. Hoer, C. Love. Exact inductance equations for rectangular conductors with applications to more complicated geometries [J]. Journal of Research of the National Bureau of Standards,1965,69C (2):127-137
    [79]M. Kamon, M.J. Tsuk, J.K. White. Fasthenry:A multipole-accelerated 3-D inductance extraction program [J]. IEEE Transactions on Microwave Theory and Techniques,1994,42 (9):216-220
    [80]IEC Standard 60071-4, Insulation Co-Ordination-Computational guide to insulation co-ordination and modeling of electrical networks [S]. UK:British Standards Institution,2004
    [81]Fast Front Transients Task Force of the IEEE Modeling and Analysis of System Transients Working Group. Modeling guidelines for fast front transients [J]. IEEE Transactions Power Delivery,1996,11 (1):493-506
    [82]Clayton R. Paul. Introduction to Electromagnetic Compatibility [M]. Second edition. New Jersey:John Wiley & Sons,2005:299-369
    [83]Henry W. OTT. Electromagnetic Compatibility Engineering [M]. New Jersey:John Wiley & Sons,2009:106-155
    [84]IEEE Std 299TM-2006, IEEE Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures [S]. USA:IEEE Power Engineering Society, 2006
    [85]GB/T 17626.1-2006,电磁兼容试验和测量技术抗扰度试验总论[S].北京:中国标准出版社,2006
    [86]GB/T 17626.2-2006,电磁兼容试验和测量技术静电放电抗扰度试验[S].北京:中国标准出版社,2006
    [87]GB/T 17626.3-2006,电磁兼容试验和测量技术射频电磁场辐射抗扰度试验[S].北京:中国标准出版社,2006
    [88]GB/T 17626.4-2008,电磁兼容试验和测量技术电快速瞬变脉冲群抗扰度试验[S].北京:中国标准出版社,2008
    [89]GB/T 17626.5-2008,电磁兼容试验和测量技术浪涌(冲击)抗扰度试验[S].北京:中国标准出版社,2008
    [90]GB/T 17626.6-2008,电磁兼容试验和测量技术射频场感应的传导骚扰抗扰度[S].北京:中国标准出版社,2008
    [91]GB/T 17626.9-1998,电磁兼容试验和测量技术脉冲磁场抗扰度试验[S].北京:中国标准出版社,1998
    [92]GB/T 17626.12-1998,电磁兼容试验和测量技术振荡波抗扰度试验[S].北京:中国标准出版社,1998
    [93]GB/T 17626.14-2002,电磁兼容试验和测量技术阻尼振荡磁场抗扰度试验[S].北京:中国标准出版社,2002
    [94]Wiggins C.M., Thomas D.E., Nickel F.S., et al. Transient electromagnetic interference in substations [J]. IEEE Transactions on Power Delivery,1994,9(4): 1869-1884
    [95]Montano R., Becerra M., Cooray V., et al. Resistance of Spark Channels [J]. IEEE Transactions on Plasma Science,2006,34 (5):1610-1619
    [96]Zheng Ji-ling, Zhan Hua-mao, Duan shao-feng, et al. Spark model for 1100kV GIS disconnecting switch [A].2011 1st International Conference on Electric Power Equipment Switching Technology (ICEPE-ST) [C]. China:IEEE PRESS,2011: 23-27
    [97]魏洪川,喻文健,杨柳,王泽毅.基于K参数思想的快速三维互连电感电阻提取算法[J].电子学报,2005,33(8):2065-2069
    [98]曾姗,喻文健,张梦生,等.VLSI互连线频变K参数和频变电阻的有效提取算法[J].电子学报,2007,35(11):2072-2077
    [99]Thamm, S., Kochetov, S.V., Wollenberg, G., et al. Alternative PEEC Modeling with Partial Reluctances and Capacitances for Power Electronics Applications [A]. 2007 7th International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology [C]. Russia:IEEE PRESS,2007:56-59
    [100]曾姗,喻文健,杜宇,等.局部K参数模拟方法的稳定性证明[J].计算机辅助设计与图形学学报,2007,19(12):2007
    [101]Hao Ji. Efficient on-chip inductance modeling [D]. USA:California,2005
    [102]Hao Ji, Anirudh Devgan, Wayne Dai. KSim:a sTable and efficient RKC simulator for capturing on-chip inductance effect [A]. Proceedings of the ASP-DAC 2001 [C]. Japan:IEEE PRESS,2001:379-384
    [103]Tanji Y., Watanabe T., Asai H. Generating stable and sparse reluctance/inductance matrix under insufficient conditions [A]. Asia and South Pacific Design Automation Conference (ASPDAC 2008) [C]. Korea:IEEE PRESS,2008: 164-169
    [104]魏洪川,喻文健,杨柳,王泽毅.基于K参数思想的快速三维互连电感电阻提取算法[J].电子学报,2007,33(8):1365-1369
    [105]Anirudh Devgan, HaoJi, WayneDai. How to Efficiently Capture On-Chip Inductance Effects:Introducing a New Circuit Element K [A]. IEEE/ACM International Conference on Computer Aided Design (ICCAD-2000) [C]. California:IEEE PRESS,2000:150-155
    [106]Devgan A., Hao Ji, Dai W. How to efficiently capture on-chip inductance effects: introducing a new circuit element K [A]. IEEE/ACM International Conference on Computer Aided Design (ICCAD-2000) [C]. California:IEEE PRESS,2000: 150-155
    [107]Beattie M., Pileggi L. Efficient inductance extraction via windowing [A]. Design, Automation and Test in Europe [C]. Germany:IEEE PRESS,2001:430-436
    [108]M. W. Beattie and L. T. Pileggi. Modeling magnetic coupling for on-chip interconnect [A]. Asia and South Pacific Design Automation Conference 2001 [C]. Japan:IEEE PRESS,2001:335-340
    [109]Krauter B. and Pileggi L.T. Generating sparse partial inductance matrices with guaranteed stability [A].1995 IEEE/ACM International Conference on Computer-Aided Design 1995 (ICCAD-95) [C]. California:IEEE PRESS,1995: 45-52
    [110]Ansoft Corporation. Q3D Extractor V6 User's Instruction Manual [M]. USA: Ansoft Corporation,2004:351-398
    [111]Tsung-Hao Chen, Clement Luk, and Charlie Chung-Ping Chen. INDUCTWISE: inductance-wise interconnect simulator and extractor [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2003,22(7):884-894
    [112]张永亮.矩阵的非负分解算法及应用[D].浙江:浙江大学,2008
    [113]王松桂,吴密霞,贾忠贞.矩阵不等式[M].第二版.北京:科学出版社,2006:8-26
    [114]P.F. Dubois, A. Greenbaum, and G.H. Rodrigues. Approximating the inverse of a matrix for use in iterative algorithm of vector processors [J]. Computing,1979,22 (3):257-268
    [115]R.A. Horn. Matrix Analysis [M]. Cambridge:Cambridge University Press,1990: 343-378
    [116]B. Gustavsen and A. Semlyen. Rational approximation of frequency domain responses by vector fitting [J]. IEEE Transactions on Power Apparatus and Systems,1999,14 (3):1052-1061
    [117]B. Gustavsen. Improving the pole relocating properties of vector fitting [J]. IEEE Transactions on Power Delivery,2006,21 (3):1587-1592
    [118]B. Gustavsen. Fast Passivity Enforcement for Pole-Residue Models by Perturbation of Residue Matrix Eigenvalues [J]. IEEE Transactions on Power Delivery,2008,23 (4):2278-2285
    [119]B. Gustavsen. Enforcing passivity for admittance matrices approximated by rational functions [J]. IEEE Transactions on Power Delivery,2001,16(1):97-104
    [120]B. Gustavsen. Computer code for rational approximation of frequency dependent admittance matrices [J]. IEEE Transactions on Power Delivery,2002 17 (4): 1093-1098
    [121]Krauter, B., Pileggi, L.T.. Generating sparse partial inductance matrices with guaranteed stability [A].1995 IEEE/ACM International Conference on Computer-Aided Design (ICCAD-95) [C]. California:IEEE PRESS,1995: 45-52
    [122]Vita V., Mitropoulou, A. D., Ekonomou, L., et al. Comparison of metal-oxide surge arresters circuit models and implementation on high-voltage transmission lines of the Hellenic network [J]. IET Generation, Transmission & Distribution, 2010,4 (7):846-853
    [123]F. M.Tesche, M.V. Lanoz, T. Karlson. EMC ANALYSIS METHODS AND COMPUTATIONAL MODELS [M]. New York:John Wiley & Sons,1996: 47-102
    [124]Jian-ming Jin. The Finite Element Method in Electromagnetics [M]. Second edition. New York:John Wiley & Sons,2002:19-40
    [125]John L. Volakis, Arindam Cbatterjee, Leo C. Kempl. Finite Element Method for Electromagnetics [M]. New York:John Wiley and Sons,1998:65-176
    [126]王尔智,赵玉环.电力网络灵敏度分析与潮流计算[M].北京:机械工业出版社,1992:36-85
    [127]IEC 60044-5, Instrument transformers—Capacitor voltage transformers [S]. Switzerland:International Electrotechnical Commission,2004
    [128]GB/Z 24841-2009,1000 kV交流系统用电容式电压互感器技术规范[S].北京:中国标准出版社,2009
    [129]Qingjian Yu. A SPICE model of RLGC transmission line with error control [A]. 7th International Conference on VLSI Design [C]. India:IEEE PRESS,1994: 57-60
    [130]Roychowdhury and Pederson. Efficient Transient Simulation of Lossy Interconnect [A]. Design Automation Conference [C]. California:IEEE PRESS, 1991:740-745
    [131]Cadence Design Systems. PSpice Command Reference Guide [EB/OL]. [2005-7-31]. http://www.cadence.com
    [132]Xu Jianyuan, Wang Liang, Li Shuang. Simulation and Analysis of Enclosure Voltage Transient Characteristic Caused by Disconnector Operator in Ultra High Voltage Gas Insulated Switch [J]. High Voltage Engineering,38 (2):288-294

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700