惠民凹陷古近纪构造与沉积演化及油气成藏模式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对研究区基地构造格局认识不清,地质层位、区域沉积体系认识存在争议,洼陷浊积岩分布情况、中央隆起带及南部斜坡带成藏机理有待深化认识等问题,论文以构造地质学、沉积学、石油地质学等理论为指导,综合利用地质、地球物理和测试分析等资料,开展惠民凹陷古近纪构造与沉积演化特征研究,结合石油地质成果分析油气成藏模式及控制因素,为有效提高研究区勘探成效提供科学依据。
     利用全凹陷连片三维、二维地震资料建立了基干地震剖面网,统一解释了区域标准层,重构了惠民凹陷构造格架与构造演化过程:中生代左旋压扭应力场形成的NNW向“四沟四梁”的构造格局奠定了新生代沉积盆地演化基础,中生代NNE向的陵县-阳信断层、夏口断层和齐河断层在新生代右旋拉张作用下持续活动,形成了惠民凹陷第三系北断南超的沉积盆地雏形;凹陷新生代渐新世强烈断陷期分两个亚期,形成了孔店组、沙四段北厚南薄和沙二段-东营组南厚北薄的双层结构。盘河、商河、沙河街背斜是在古剥蚀面基底残丘山的背景上,基底边隆起、边沉积、边压实的情况下形成的从孔店组到东营组持续发育的顶薄翼厚的披覆背斜构造,是孔店组和沙三段有利的油气聚集单元;二级帚状断裂系控制了临南洼陷沙三时期盆地构造演化、沉积和成藏,三级调节断裂形成的构造坡折带的分布控制了沙三段滑塌浊积砂的发育。
     利用地震、钻井、测井等资料,将古近系沙河街组划分出7个三级层序,通过剖面沉积学分析,以优势相原则绘制不同时期各亚段沉积体系平面分布图:沙四下总体以洪水-漫湖沉积为特征,沙四上沉积时期是在滨浅湖背景之上发育了曲流河三角洲和辫状河三角洲沉积;沙三段沉积时期南部主要发育辫状河、曲流河三角洲,西北部地区发育曲流河三角洲,中部地区主要为深湖—半深湖沉积;由沙三下至沙三上,西北部三角洲规模逐渐增大,沉积范围逐渐向东、东南方向推进;沙二段沉积时期为滨浅湖沉积,在背景之上广泛发育了辫状河三角洲和三角洲沉积;沙一段以滨浅湖滩坝沉积为特征,南部发育了曲流河三角洲和辫状河三角洲沉积;沉积地层中的岩性圈闭以滑塌浊积岩岩性圈闭和地层侧向尖灭型岩性圈闭为主,其形成和分布主要受盆地结构、沉积古地貌和构造活动强度等因素
    控制,北部基山、南部江家店和瓦屋具有发育滑塌浊积扇的良好地质条件。
     充分考虑构造、沉积、输导体系和成藏动力等因素,分析认为:夏口断裂带油气藏聚集属于油气再运聚成藏模式,连通砂体与断层的配置是影响油气运移的主要因素;中央隆起带油气藏聚集属于油气事件成藏模式,划分为断裂活动事件成藏模式、火山活动事件成藏模式和重力流事件油气成藏模式三类,断层活动的旋回性和幕式性是诱发事件成藏的关键因素。
     通过地震综合定量描述预测一批浊积砂体,储量规模在3000×10~4t以上,提出优选营子街-江店地区个体较大的砂体进行钻探。
To the question of unclear base structure framework, the disputed geological horizon and the region deposition system, and under cognition of the distribution of flysch, hydrocarbon reservoir-forming mode of the central uplift belt and south ramp region in the sag, this thesis expatiates the Peleogene structure and the deposition evolution characteristics of the Hhuiming sag, based on the theory of structural geology, sedimentology, petroleum geology, synthetically using the data of geology, geophysics and test analysis, and analyses hydrocarbon reservoir formation mode and it's control factor, connect with the petroleum geology achievement. It gives a scientific reference to enhance the exploration effective in the research area.
    In this thesis key beds were united, and Huimin sag tectonic framework and structure evolutionary evolvement were restructured using the major seismic cross-section grid from three-dimensional, two-dimensional seismic data available . The structure framework of NNW "four valleys four ridges" gave the evolutive foundation of the Cenozoic basin, which formed by CCW rotation stress field in Mesozoic. The embryo shape of " rifting north and overlapping south " of Teriary huiming sag were formed under the action of right hand rotation tensional stress and persistent movement in Cenozoic of the NNE Ling Xian -Yangsin fault, Xiakou fault, and Qihe fault of Mesozoic. Huiming sag main downfaulted period can be divided into two sub-periods in Oligocene,Cenozoic. it formed two-layer structure that the north Ek, Es4 are hicker than thant in the south and the south Es2, Ed are thicker than that in the north . The Pan rive-Shang river-Shahejie anticline was formed on the background of basement residual hill, at that time the basement was taking sediments and compaction while uplifting , and then it became a top-thin and wings-thick buried hill drape-anticline structure in Es2-Ed.It is the favourable hydrocarbon accumulation unit of Ed and Es3. The structure evolution, deposition and Hydrocarbon accumulation were controlled by second order brush rift system, the structure slope belt formed by the third order regulative fracture belts which controled the development of fluxoturbidite in Es3.
    The Es formation was divided into seven third order sequences based on the seismic, drilling and logging data, and plans deposition system plane distribution maps of different time were plotted by dominance phase principle. The lower Es4 is flood-overlake facies mainly; the upper Es4 is meandering stream and braided river delta deposition above the shore shallow lake background; in the Es3 period, the south mainly developed braided river, meandering stream delta, the northeast area main developed meandering stream delta, the middle area mainly developed semi-deep lake
    an d deep lake sediments. From lower Es3 to upper Es3, the delta scale gradually increased and the depositional area gradually moved to the east and the southeast; the Es2 period was dominated by shore-shallow lake sediments and widely developed braided river delta and delta deposits; the Es1 period was dominated by shore-shallow lake shoal deposits, and in the south developed meandering stream and braided river delta deposits.
    The lothological traps of the Shahejie group are mainly fluxoturbidite and stratum lateral pinch-out, and its formation and the distribution of the lothological trap were controlled mainly by the basin structure characteristic, palaeogeomorphology and tectonic activity and so on. It had a beneficial geological condition to develope sublacustrine slump turbidite fans in Jishan, Jiangjiadian and Wawu.
    Fully considering the factors of structure, deposition, transforming system and Reservoir Forming Dynamics and so on, the paper thought that the reservoirs in Xiakou fracture zone belong to hydrocarbon remigration and secondary accumulation mode, the configuration relationship between the sands and faults is the main factor that affects hydrocarbon migration; reservoir gathers in the central upheaval zone belong to event hydrocarbon migration and accumulation mode, it can be divided into three styles, they are the fracture activity event mode, the volcanic activity event mode, he gravity flows event mode. The key factors of resulting in event reservoir are fault cyclicity and episodic characteristic.
    Reserves of 3000×104t was forecasted in this by seismic synthesis describing and forecasting a great deal of turbidite sands bodies. And the Yingzijie-Jiangdian area bigger sand body was proposed as drilling target.
引文
[1] 吴淦国,张达,陈柏林等.构造地质学现状和进展——第31届国际地质大会构造领域学术成果综述[J].地质论评,2001,47(4):432~447.
    [2] 李思田.论沉积盆地分析领域追踪与创新[J].沉积学报,1992,12(3):10~15.
    [3] 程日辉,林畅松,崔宝森.沉积型式与构造控制研究进展[J].地质科技情报,2000,19(3):90~94.
    [4] 何登发,贾承造,童晓光等.含油气区构造学研究进展[J].石油勘探与开发,2004,31(5):1~7.
    [5] Miall A D. Principles of sedimentary basin analysis[M]. New york: W. Springer-Verlag, 2000, 380~395.
    [6] Miall A D. Collisional-related foreland basin[A]. Tectonics of sedimentary basin[C]. Oxford: Blackwell Science, 1995, 393~424.
    [7] McCann T, Saintot A. Tracing tectonic deformation using the sedimentary record[M]. Geological Society Special Publication No. 208, 2003.
    [8] 于兴河,郑浚茂,宋立衡等.构造、沉积与成岩综合一体化模式的建立——以松南梨树地区后五家户气田为例[J].沉积学报,1997,15(3):8~13.
    [9] 陶晓风,刘登忠,朱利东.陆相盆地沉积作用与构造作用的关系[J].沉积学报.201,19(3):410~414.
    [10] 李思田.盆地动力学与能源资源-世纪之交的回顾与展望[J].地学前缘(中国地质大学,北京),2000,7(3):1~7.
    [11] 陈清华,陈诗望,黄超.渤海湾盆地成因类型评介[J].油气地质与采收率,2004,11(6):1~2.
    [12] Wilgus C K. Sea-Level Changes: an Integrated Approach [M]. [s . 1. ] : SEP M Special Publication, 1988, 42.
    [13] Van wagoner J C, et al. Siliciclastic sequence stratigraphy in well logs, cores and outcrops: concepts for high resolution correlation of time and facies [J]. AAPG Methods in Exploration, 1990 (7): 55
    [14] van Wagoner J C, Mitchum R M, Campion K M , et al. Siliciclastic sequence stratigraphy in well, cores and outcrops: concept for resolution correlation of times and facies[J]. AAPG Methods in Exploration Series, 1999 (7): 1~55.
    [15] 冯有良,李思田,解习农.陆相断陷盆地层序形成动力学及层序地层模式[J].地学前缘(中国地质大学,北京),2000,7(3):119~132.
    [16] Galloway W E. Genetic stratigraphic sequence in basin analysis Ⅰ: architecture and genetics of flooding surface bounded depositional Units[J], APPG bulletin, 1989, 73: 125~142.
    [17] Johnson J G, Klapper G, Sanberg C ADevonian eustatic fluctuations in Euramerica[J].Geological Society of America Bulletin, 1995: 567~587.
    [18] 邓宏文.美国层序地层研究中的新学派—高分辨率层序地层学[J].石油与天然气地质,1995,16(2):89~97.
    [19] Brown L F Jr, et al. Sequence stratigraphy in offshore South African Divergent Basin [J]. AAPG Studies in Geology, 1995, 41:184 Tulsa.
    [20] 池英柳,张万选,张厚福等.陆相断陷盆地层序成因初探[J].石油学报,1996,17(3):19~25.
    [21] Scholz C A, , et al. Coarse-elastic faces and stratigraphic sequence models from lake Malawi and Tanganyika, east Africa[A]. In: B J katz, ed. Lacustrine basin exploration-case studies and modern analogs AAPG Memoir 50[C]. 1991. 151~168.
    [22] Scholz C A, etal. Low lake stands in lakes Malawiand Tang any ilca, east Africa, delineated with multifold seism is data [J]. science, 1988, 240: 1645~1648.
    [23] 徐怀大.典型箕状凹陷的地震地层学分析——以高邮凹陷为例[J].古潜山,1988,1~3.
    [24] 张厚福.陆相断陷盆地区域地震地层学方法探讨[J].石油与天然气地质,1988,9(3):231~241.
    [25] 李思田,林畅松,解习农,等.大型陆相盆地层序地层学研究——以鄂尔多斯中生代盆地为例[J].地学前缘.1995,2(3~4):133~136.
    [26] 顾家裕.陆相盆地层序地层学格架概念及模式[J].石油勘探与开发,1995,22(4):6~10.
    [27] 魏魁生.华北地区典型箕状断陷盆地层序地层学模式及其与油气赋存关系[J].地球科学,1993,18(2):139~150.
    [28] 邓宏文,王洪亮,李熙哲.层序地层基准面的识别、对比技术及应用[J].石油与天然气地质,1996,17(3):177~184.
    [29] 邓宏文,王红亮等.高分辨率层序地层学—原理及应用Lu].地质出版社,2002.9:1~24.
    [30] 邓宏文,王洪亮,宁宁.沉积物体积分配原理—高分辨率层序地层学的理论基础[J].地学前缘(中国地质大学,北京).2000,7(4):305~312.
    [31] 郭建华,朱美衡,刘辰生.陆相断陷盆地湖平面变化曲线与层序地层学框架模式讨论[J].矿物岩石,2005,25(2):87~92.
    [32] AAPG. AAPG Annual meeting abstracts[R]. Dallas: AAPG, 2004.
    [33] Bally A W. Basins and subsidence: a summary[A]. Dynamics of plate interiors, geodynamics Series, Vol. 1[C]. Washington, D. C.: American Geophysical Union and Boulder, CO: Geological Society of American, 1980. 5~20.
    [34] Allen P A, Densmore A L. Sediment flux from uplifting fault Block[J]. Basin Research, 2000, 12: 367-380.
    [35] Dickinson W R. Plate tectonics and sedimentation[A]. Tectonics and sedimentation: society of economic paleontologists and mineralogists special publication 22[C]. 1974. 1~27.
    [36] Busby C J, Ingersoll R V. Tectonics of sedimentary basins[M]. Oxford: Blackwell Science, 1995.
    [37] Shannon P M, Naylor D. Petroleum basin studies[M]. New York: Springer-Verlag, 1989.
    [38] Tissot B. Basin development and petroleum exploration[C]. AAPG Video, 1990.
    [39] Downey M W, Threet J C, Morgan W A. Petroleum provinces ofthe twenty-first century[C]. AAPG Memoir 74, 2002.
    [40] Landon S M. Interior rift basins[C]. AAPG Memoir 59, 1994.
    [41] Macqueen R W, Leckie D A. Foreland basins and fold belts[C]. AAPG Memoir 55, 1992.
    [42] Kevin T Biddle. Active margin basins[C]. AAPG Memoir 52,
    [43] 王根厚,胡玲.第32届国际地质大会构造地质研究进展综述[J].现代地质,2004,18(4):423~428.
    [44] M ckenzie D P. Soma remarks on the development of sedimentary Basins[J]. Earth and Planet Sciences Letter, 1978, (40): 25~31.
    [45] Willim F, Dula J R. Geometric models of listric norm al faults and Rollover flods[J]. AAPG, 1991, 75(10): 1609~1625.
    [46] Leeder M R, Jackson J A. The interaction between normalfaulting and drainage in active ex tensional basins, with examples from the western United States and central Greece[J]. Basin Research, 1993, (5): 79~102.
    [47] 李丕龙,张善文,王永诗等.陆相断陷盆地油气地质与勘探(卷二·陆相断陷盆地沉积体系与油气分布)[M].北京:石油工业出版社,地质出版社.1~155.
    [48] 蔡雄飞.陆相沉积盆地的构造与沉积演化节律耦合关系[J].地学前缘,1997,4(3~4):298.
    [49] 于秀英,程日辉,王璞珺.裂谷盆地构造控制地形—沉积体系演化研究与面临问题[J].世界地质,2004,23(2):123~127.
    [50] Frostick L, Reid I. Is structure the main controls of the river drainage and sedimentation in rifts[J]? Journal of African Sciences (and Middle East), 1989, 8 (2-4): 165~182.
    [51] M agnavita L P, da Silva H T F. Rift border system: the interplay between tectonics and sedimentation in the Reconcavo Basin, Notheastern Brazil[J]. AAPG B, 1995, 79(11): 1590~1607.
    [52] 刘剑平,汪新文,周章保等.伸展地区变换构造研究进展[J].地质科技情报,2000,19(3):27~32.
    [53] Rosendahl B R. Architecture of continental rifts with special reference to East Africa[J]. Annual Review of Earth and Planetary Science Letters, 1987, 15: 445~504.
    [54] Bosworth W. Geometry of propagating continental rifts[J] Nature, 1985, 316: 625~627.
    [55] Bosworth W. Off-axis volcanism in the Gregory rift, East Africa: implications for models of continental rifting[J]. Geology, 1987, 15: 397~400.
    [56] Moustafa A R. Internal structure and deformation of an accommodation zone in the northern part of the Suez rift[J]. Journal of Structural Geology, 1996, 18: 83~108.
    [57] 刘德来,王伟,马莉.伸展盆地转换构造分析——以松辽盆地北部为例[J].地质科技情报,1994,13(2):5~9.
    [58] 宗国洪,李常宝,孙红蕾.断裂体系中的调节带——以济阳坳陷为例[J].复式油气田,1995,6(3):7~10.
    [59] 陈发景,汪新文,陈昭年等.伸展断陷盆地分析[M].北京:地质出版社.2004,1~273.
    [60] 李思田.沉积盐地的动力学分析——盆地研究领域的主要趋向[J].地学前缘(中国地质大学,北京),1995,2(3~4):1~8.
    [61] 朱夏.板块构造与中国石油地质.朱夏论中国含油气盆地构造.北京:石油工业出版社,1986,71~79.
    [62] 刘和甫,李小车,刘立群.地球动力学与盆地层序及油气系统分析[J],现代地质,2003,17(1):80~86.
    [63] 刘和甫.盆地——山岭耦合体系与地球动力学机制[J].地球科学,201,26(6):581~596.
    [64] Allen P A, Allen J R. Basin Analyses [M]. London: Blackwell Sci Publ, 1990. 1~451.
    [65] 王鸿祯,史晓颖,王训练等.中国层序地层研究[M].广州:广东科技出版社,2000,1~457.
    [66] Vail P R, Mitchum, R M Jr, Thompson S. Seismic stratigraphy and global changes of sea level [J] . Seismic Stratigraphy, AAPG Mem, 1977, 26: 83~97.
    [67] 汤良杰,金之钧,贾承造等.叠合盆地构造解析几点思考[J].石油实验地质,201,23(3):251~255.
    [68] 徐旺,姚慧君叠合盆地及其含油性[A].孙肇才,张渝昌.朱夏学术思想研讨文集[C].北京:石油工业出版社,1993.32~46.
    [69] 戴俊生,李理,陆克政等.渤海湾盆地构造对含油气系统的控制[J].地质论评,1999,45(2):202~208.
    [70] 董波.构造作用与济阳坳陷上第三系油气成藏[J].油气地质与采收率,2004,11(3):25~30.
    [71] 史斗,刘文汇.油气形成的构造动力学理论和油气藏勘探的地球动力学方法综述[J].地球科学进展,1996.11(5):460~468.
    [72] Kennedy W Q. The Great Glen Fault. Geol Soc London Quarterly Journal. 1946, 102: 47~76.
    [73] Moody J D. Hill M J. Wrench-fault tectonics. Geol Soc Am Bull. 1956. 67: 1207~1246.
    [74] Wilcox R E. Harding T P. Seely D R. Basic wrench tectonics. Am Assoc Petro Geol Bull. 1973. 57: 74~96.
    [75] Sylvester A G. Wrench fault tectonics. Am Assoc Petro Geol (Reprint Series). 984. (28): 374.
    [76] Sylvester A G. Strike-slip faults. Geol Soc Am Bull, 1988. 100: 1666~1703.
    [77] Freund R. Kinematics of transform and transcurrent faults. Tectonophysics, 1974. 21: 93~134.
    [78] Woodcock N H. The role of strike-slip fault systems at plate boundaries. Royal Society of London Philosophical Tra, Set A. 1986. 317: 13~29.
    [79] Burtman V S. Peice A V. Ruzhentsev S V. The main strike-slip faults of the Tien-Shan and Pamir. In Fault and Horizontal Movements of the Earth's Crust. Issue 80. 1963. 152~171 (in Russian).
    [80] Crowell J C. Displacement along the San Andreas fault. California. Geol Soc Am Special Paper. 1962. 71: 61.
    [81] Tapponier P. Peltzer G. Armijo R. On the mechanics of the collision between India and Asia. In Coward M P. Reis A C eds. Collision Tectonics. Geol Soc. London Special Publication 19. 1986. 115~157.
    [82] Sengor A M C. Plate tectonics and orogenic research after 25 years : a tethyan perspective. Earth-Science Reviews. 1990, (1~2).
    [83] Taira A. Saito Y. Hashimoto M. The role of oblique subduction and strike-slip tectonics in the evolution of Japan . In Geodynamic of the Western Pacific-Indonisian Region. V. 11. Geodynamics Series. Washington D C: Am Geophys Union. 1983. 303~317.
    [84] Utkin V P. On the wrench deformation of the Central Sikhote-Alin. Geology of Far East, Acad. USSR: Vladivostok. 1975. 5~15 (in Russian) .
    [85] 徐嘉炜.论走滑断层作用的几个主要问题[J].地学前缘(中国地质大学,北京),1995,2(1~2):126~136.
    [86] 万天丰,朱鸿.郯庐断裂带的最大左行走滑断距及其形成时期[J].高校地质学报,1996,2(1):14~27.
    [87] 万天丰.中国大地构造学纲要[M].北京:地质出版社,2004,216~250.
    [88] 李四光.旋扭构造.北京:科学出版社,1974.
    [89] 葛建党.郯庐断裂在渤中凹陷的构造特征与油气成藏的关系[J].海洋石油,201,107:14~20
    [90] 郑剑东.当前构造地质研究的某些进展及启示[J].地质科技情报,1996,15(4):15~19.
    [91] Sylvester A G. Strike-slip fault. Geological Society of America Bulletin. 1988. 100: 1666~1703.
    [92] Dickinson W R. Basin Geodynamics. Basin Research, 1993. 5: 195~196.
    [93] Ben-Avraham Z. Zoback M D. Transform-normal extension and asymmetric basins: An alternative to pull-apart models. Geology. 1992. 20: 423~426.
    [94] 陈发景,汪新文.中国中、新生代含油气盆地成因类型、构造体系及地球动力学模式[J].现代地质,1997,11(4):409~424.
    [95] Harding T P. Identification of wrench faults using subsurface structural data: criteria and pitfalls AAPG, 1990, 74 (10): 1590~1609.
    [96] Schlische R W. Geometry and origin of fault related folds in extensional settings. AAPG, 1995, 79(11): 1661~1677.
    [97] 漆家福,陈发景,下辽河——辽东湾新生代裂陷盆地的构造解析.北京:地质出版社,1995,152.
    [98] 刘和甫,李晓清,刘立群.走滑构造体系盆山耦合与区带分析[J].现代地质,2004,18(2):139~150.
    [99] Sylvester A G.Wrench fault tectonics[J].AAPG Reprint Series,1984,(28):1~374.
    [100] 陆克政,漆家福.渤海湾新生代含油气盆地构造模式[M].北京:地质出版社.1997.1~251.
    [101] 李东旭.旋扭构造动力学-理论、方法及应用Lu].北京:地质出版社.1~159.
    [102] 张永鸿.全球扭转构造体系结构要素分析[J].地质力学学报,1998,4(3):9~19.
    [103] 刘泽容.李亚辉.东营凹陷中央隆起带旋扭构造体系与油气聚集[J].地质力学学报,1997,3(1):49,95~96.
    [104] 康玉柱.构造体系控制油气分布的研究[J].石油实验地质,201,23(2):133~140.
    [105] 康玉柱.塔里木盆地构造体系与油气关系[A].地质力学文集(9)[C].北京:地质出版社,1989.
    [106] 徐守余,刘泽容.山东济阳帚状构造体系与油气聚集[J].地质力学学报,201,7(2):155~160.
    [107] 胡望水,吕炳全,毛治国等.中国东部中新生代含油气盆地的反转构造[J].同济大学学报,2004,32(2):182~186.
    [108] 胡望水.松辽盆地北部反转构造与油气聚集[J].天然气工业,1996,16(5):20~24.
    [109] 侯贵廷.冯大晨,王文明.松辽盆地的反转构造作用及其对油气成藏的影响[J].石油与天然气地质,2004,25(1):50~53.
    [110] 陈洁,董冬,邱明文.济阳坳陷内的负反转构造及具石油地质意义[J].石油实验地质,1999,21(3):21~206.
    [111] 郝雪峰,宗国洪,李传华等.济阳坳陷正反转构造初步分析[J].油气地质与采收率,201,8(3):8~10.
    [112] 刘和甫.伸展构造及其反转作用[J].地学前缘(中国地质大学,北京),1995,2(1~2):113~124.
    [113] 陈昭年,陈发景.反转构造与油气圈闭[J].地学前缘(中国地质大学,北京),1995,2(3~4):96~102.
    [114] 褚庆忠,王长江.含油气盆地反转构造与油气关系研究综述[J].天然气勘探与开发,2003,26(2):69~76.
    [115] 褚庆忠.含油气盆地反转构造研究综述[J].西安石油大学学报(自然科学版),2004,19(1):28~33.
    [116] 蔡希源,王根海,迟元林等.中国油气区反转构造[M].北京:石油工业出版社,201,50~90.
    [117] 沈华,陈发景,尹微.伸展构造体系中反转构造研究[J].特种油气藏,2005,12(1):23~26.
    [118] 李大伟.新构造运动与渤海湾盆地上第三系油气成藏[J].石油与天然气地质,2004,25(2):170~174,184.
    [119] 董波.构造作用与济阳坳陷上第三系油气成藏[J].油气地质与采收率,2004,11(3):25~30.
    [120] 龚再升.中国近海含油气盆地新构造运动与油气成藏[J].地球科学—中国地质大学学报,2004,29(5):513~517.
    [121] 张明利,万天丰.含油气盆地构造应力场研究新进展[J].地球科学进展,1998,13(1):38~43.
    [122] 信荃麟,刘泽容.含油气盆地构造岩相分析[M].北京:地质出版社,1993,3~6.
    [123] 刘泽容,信荃麟,朱筱敏等.断陷盆地构造岩相带与油气评价[M].北京:科学出版社,1992.
    [103] 刘泽容,李亚辉.东营凹陷中央隆起带旋扭构造体系与油气聚集[J].地质力学学报,1997,3(1):95~96.
    [124] 田世澄等.临邑洼陷油气资源综合评价与勘探潜力研究[M]2000,(内部资料).
    [125] 陈永进,田世澄,胡春余等.山东滋镇洼陷沙四段有机地化特征及资源潜力[J].地学前缘(中国地质大学,北京),2004,11(4):423.
    [126] 潘元林等.惠民凹陷石油地质基本特征及成油条件[M].1981,(内部资料).
    [127] 李丕龙.富油断陷盆地油气环状分布与惠民凹陷勘探方向[J].石油实验地质,201,23(2):146~148.
    [128] 宋维琪,仝兆歧,信荃麟等.惠民凹陷江家店地区隐蔽油藏储集层预测[J].石油勘探与开发,2000,27(6):6~8.
    [129] 朱芒征,陈建渝.惠民凹陷临南洼陷下第三系烃源岩生烃门限[J].油气地质与采收率,2002,9(2):35~37.
    [130] 张勇,赵密福,宋维琪.惠民凹陷临南斜坡带油气纵向运移及其控制因素[J].石油勘探与开发,2000,27(6):21~22.
    [131] 吕修祥,李训海.济阳坳陷阳信洼陷构造特征及勘探对策[J].石油勘探与开发.1994,21(4):1~5.
    [132] 陈书平,戴俊生,李理.惠民—东营盆地构造特征及控油作用.石油与天然气地质,1999,20(4):345~347.
    [133] 赵密福,刘泽容信荃麟等.惠民凹陷临南地区断层活动特征及控油作用[J].石油勘探与开发,2000,27(6):9~11.
    [134] 王纪祥,陈发景,李趁义.山东惠民凹陷伸展构造及调节带特征[J].现代地质,2003,17(2):203~209.
    [135] 许卫平,田海芹.东营凹陷—惠民凹陷孔店组层序地层学研究与油气勘探[J].石油勘探与开发,2000,27(6):28~30.
    [136] 王建伟,赵勇生,田海芹.东营—惠民凹陷孔店组层序地层学研究[J].石油大学学报(自然科学版),201,25(6):1~5.
    [137] 杨剑萍,许正豪,姜在兴等.山东惠民凹陷中央隆起带古近系沙河街组层序地层特征及控制因素研究[J].沉积学报,2003,21(4):670~674.
    [138] 杨剑萍,姜在兴,陈发亮等.惠民凹陷下第三系湖相沉积密集段特征[J].石油大学学报(自然科学版),1998,22(4):21~24.
    [139] 杨剑萍,操应长.惠民凹陷下第三系沙河街组基山砂体成因及石油地质意义[J].石油大学学报(自然科学版),199923(4):9~12.
    [140] 杨剑萍.惠民凹陷中央隆起带西部下第三系沙河街组三段上部的风暴重力流沉积[J].石油大学学报(自然科学版),2000,24(1):26~29.
    [141] 陈世悦,杨剑萍,操应长等.惠民凹陷西部下第三系沙河街组两种滩坝沉积特征[J].煤田地质与勘探,2000,28(3):1~4.
    [142] 付国强,张国栋,郭锻菊.庙北地区馆陶祖砂岩百分含量预测[J].石油地球物理勘探,2000,35(4):532~535,542.
    [143] 张勇.惠民凹陷西部早第三系沙河街组浊积扇及砂岩体沉积特征研究[J].地球学报,201,22(1):43~48.
    [144] 赵密福,信荃麟,刘泽容.惠民凹陷临南洼陷滑塌浊积岩的分布规律及其控制因素[J].石油实验地质,201,23(3):267~271,284.
    [145] 赵俊兴,田景春,蔡进功.惠民凹陷南坡古中生代沉积体系特征及时空演化[J].沉积与特提斯地质,2002,22(1):46~52.
    [146] 王冠民,鹿洪友,姜在兴.惠民凹陷商河地区沙一段碳酸盐岩沉积特征[J].石油大学学报(自然科学版),2002,26(4):1~4.
    [147] 杨剑萍,操应长.惠民凹陷西部下第三系沙四段下部洪水-漫湖沉积特征[J].石油大学学报(自然科学版),2002,26(6):17~20.
    [148] 袁静,杜玉民,李云南.惠民凹陷古近系碎屑岩主要沉积环境粒度概率累积曲线特征[J].石油勘探与开发,2003,30(3):103~106.
    [149] 尹兵祥,王尚旭,杨国权等.渤海湾盆地东营-惠民凹陷古近系孔店组孔二段地震相与沉积相[J].古地理学报,2004,6(1):49~56.
    [150] 孟祥梅,张万春.阳信洼陷沙四亚段沉积体系研究[J].胜利油田职工大学学报,2004,18(2):4,7.
    [151] 张宇,邱桂强,李趁义等.惠民凹陷沙河街租三段岩性油藏勘探方向[J].石油与天然气地质,2002,23(2):162~165.
    [152] 操应长,姜在兴,李春华等.山东惠民凹陷中央隆起带古近系沙三段层序地层及沉积演化[J].古地理学报,2002,4(3):40~45.
    [153] 杨剑萍,陈发亮,姜在兴.陆相断陷盆地层序地层及控制因素研究—以惠民凹陷下第三系沙河街组为例[J].煤田地质与勘探,2003,31(1):1~4.
    [154] 杜晓峰,范土芝.惠民凹陷流体势分布特征与油气运聚关系[J].天然气地球科学,201,12(3):39~43.
    [155] 覃克,赵密福.惠民凹陷临南斜坡带油气成藏模式[J].石油大学学报(自然科学版),2002,26(6):21~24,32.
    [156] 何瑞武,付金华,杜玉民.临邑洼陷圈闭特征及其对油气分布的控制[J].大庆石油学院学报,2002,26(2):11~104.
    [157] 赵阳,刘晨,戴立昌.惠民凹陷临南地区油气输导系统及油气运移特征[J].西安石油学院学报(自然科学版),2003,18(3):1~3.
    [158] 李春芹,许建华,郝新武等,惠民凹陷中央隆起带西端复式油气成藏特征[J].新疆石油学院学报.2003,15(2):9~12.
    [159] 谭丽娟,蒋有录.渤海湾盆地东营—惠民凹陷油气成藏模式和油气富集控制因素[J].石油实验地质,2003,25(4):366~370.
    [160] 韩天佑,漆家福,杨桥.惠民凹陷临南地区第三系油气运移聚集特征研究[J].油气地质与采收率,2003,10(6):21~23.
    [161] 鲍振兴,沈国华,王小霞等.东营凹陷林樊家地区馆陶祖底部油气成藏条件[J].江汉石油学院学报,2003,25(4):24~26.
    [162] 王吉升,付金华,何瑞武等.惠民凹陷临南斜坡带资源评价及勘探潜力研究[J].油气地质与采收率,201,8(5):18~21.
    [163] 许建华,王思文,周季军等.惠民凹陷孔二段烃源岩综合评价[J].特种油气藏,2003,10(2):31~33.
    [164] 杨剑萍,操应长.惠民凹陷西部下第三系沙四段下部洪水—漫湖沉积特征[J].石油大学学报(自然科学版),2002,26(6):17~20.
    [165] 陈永红,林玉祥,姜慧超.惠民凹陷含煤地层生气潜力分析[J].煤田地质与勘探,2003,31(3):26~29.
    [166] 陈永红,曾庆辉,林玉祥等.惠民凹陷南坡煤型气成藏史数值模拟分析[J].江汉石油学院学报,2003,25(增刊下):132~133.
    [167] 杜玉民,陈永红,林玉祥等.惠民凹陷南坡曲古1井煤成气藏研究[J].天然气工业,2003,23(5):12~15.
    [168] 程有义.济阳坳陷阳信—花沟—平南地区CO_2气藏的储层和盖层[J].沉积学报,201.19(3):405~409.
    [169] 李趁义,樊太亮,郑和荣.阳信—花沟地区二氧化碳气藏成藏模式[J].石油学报,2004,25(1):35~39.
    [170] 郭栋,姚书振,陈红汉等.阳信洼陷火成岩与CO_2气藏关系[J].地质科技情报,2004,23(4):71~75.
    [171] 李春光.山东惠民凹陷火成岩原生油气藏[J].江汉石油学院学报,1994,16(1):8~12.
    [172] 李春光.试论东营、惠民凹陷与火成岩相关油气藏的成因[J].特种油气藏,1997,4(3):10~14.
    [173] 冯有良.阳信洼陷构造岩浆演化与油气聚集[J].石油与天然气地质,1994,15(2):173~179.
    [174] 李丕龙.阳信洼陷火成岩对形成地面化探异常的影响[J].矿产与地质,1994,41(8):221~223.
    [175] 操应长,姜在兴,邱隆伟.山东惠民凹陷商741块火成岩油藏储集空间类型及形成机制探讨[J].岩石学报,1999,15(1):129~136.
    [176] 刘惠民,肖焕钦,韩荣花.临邑洼陷商741火成岩油藏岩相及储集层研究[J].地质论评,2000.46(4):425~430.
    [177] 吴江山,张保银,刘瑞红.惠民凹陷东部火成岩披覆油藏特征及构造描述[J].特种油气藏,2003,10(1):43~46.
    [178] 王金友,张世奇,赵俊青.渤海湾盆地惠民凹陷临商地区火山岩储层特征[J].石油实验地质,2003,25(3):264~268.
    [179] 徐刚,王兴谋,邱隆伟等.惠民凹陷商741井区火成岩储集层研究[J].石油勘探与开发,2003,30(3):99~102.
    [180] 谭明友.渤海湾盆地东营—惠民凹陷孔店期原型盆地分析[J].石油实验地质.2003,25(4):348~352.
    [181] 袁静.山东惠民凹陷古近纪震积岩特征及其地质意义[J].沉积学报,2004,22(1):41~45.
    [182] 郑德顺,吴智平,李凌等.惠民凹陷中生代和新生代断层发育特征及其对沉积的控制作用[J].石油大学学报(自然科学版),2004,28(5):6~12.
    [183] 段双国,高志卫,王顺华.临邑洼陷圈闭类型及成因研究[J].山东地质,2003,19(增刊):56~61.
    [184] 韩天佑,漆家福,林会喜.惠民凹陷西南缓坡带新生代构造演化与油气成藏特征[J].石油与天然气地质,2003,24(3):245~247.
    [185] 杨万芹,蒋有录.惠民凹陷西部油气成藏期分析[J].油气地质与采收率,2004,11(1):20~22.
    [186] 王秉海,钱凯.胜利油区地质研究与勘探实践[M].山东东营:石油大学出版社,1992,23~52.
    [187] 费琪,宗国洪,杨香华等.惠民凹陷第三系沉积构造及含油性研究(内部研究报告).
    [188] 宗国洪,陈洁,郝雪峰.济阳坳陷第三系构造(内部研究报告).
    [189] 潘元林,李思田.大型陆相断陷盆地层序地层与隐蔽油气藏研究—以济阳坳陷为例[M].北京:石油工业出版社,2004,24~81.
    [190] 王小凤,李中坚,陈柏林等.郯庐断裂带[M].北京:地质出版社,2000,1~14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700