惠民凹陷西部古近系沙三段物源特征与沉积体系分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
惠民凹陷西部地区主要包括临南洼陷及其周缘地区,具备有利的油气成藏条件,已发现一批以构造油气藏为主的油气田。本文以沙三段沉积地层为主要目的层系,运用层序地层学、沉积学、石油地质学等理论和方法,对惠民凹陷西部的层序地层、物源体系、砂体成因及分布开展系统性研究,为研究区的隐蔽性油气藏的勘探提供指导。
     在综合分析地震、钻井、测井等资料的基础上,惠民凹陷沙三、沙四段可划分出6个三级层序,其中沙四下为层序1、沙四上(顶部的灰色砂岩段和下部的红色层)为层序2、沙三下(相当于盘河砂体和厚长页岩段)为层序3、沙三中(上下油页岩沉积)为层序4、沙三上的下部为层序5、沙三上的上部-沙二下沉积为层序6。且认为惠民凹陷沙三段与沙四段的分界线位于盘河砂体的顶部合理,区域上也具有良好的对比性。
     惠民凹陷沙三段沉积时期存在南部和北部两大物源体系。在惠民凹陷的西部地区北部物源体系主要来自陵县凸起,物源方向主要为东西向、北北西向,控制了盘河砂体、临邑砂体、商河砂体、基山砂体。南部物源体系在惠民凹陷西部地区主要来自鲁西隆起,控制了南部的双丰砂体、江家店砂体、瓦屋砂体等。
     通过惠民凹陷主要探井的岩芯观察、描述以及相关的测试分析,系统总结了惠民凹陷沙三段沉积地层的相标志特征。认为沙三段沉积时期主要发育了扇三角洲、三角洲、滑塌浊积扇、风暴、滩坝等沉积体系,其中河流三角洲可进一步分为辫状河(或短河流)三角洲、曲流河(或长河流)三角洲,曲流河三角洲又可分为浅水型三角洲、前缘斜坡的深水型三角洲和前缘变陡的深水型三角洲。在编制砂岩百分含量、地层厚度、砂岩厚度等定量图件的基础上,分别研究了沙三下、沙三中、沙三上亚段的沉积体系分布图。沙三段沉积时期南部主要发育了辫状河三角洲和曲流河三角洲,西北部地区发育了曲流河三角洲,中部地区主要为深湖—半深湖沉积,由沙三下至沙三上,西北部三角洲规模逐渐增大,沉积范围逐渐向东、向东南方向推进。
     惠民凹陷沙河街组沉积地层中岩性圈闭以滑塌浊积岩岩性圈闭和地层侧向尖灭型岩性圈闭为主,岩性圈闭的形成和分布主要盆地结构特征、沉积古地貌特征和构造活动强度等因素控制。
The western Huimin depression including linnan sag and its adjacent areas have advantageous conditions for hydrocarbon accumulation. Up to now, many oil and gas fields have been discovered, the main petroleum pools of which are structural petroleum pools. The sequence stratigraphy, provenance system, and the genesis and distribution of sand bodies of the third member of the Shahejie formation(Es3) in the western Huimin depression were systematically studied by application of the theories and methods of sequence stratigraphy, sedimeatology, and petroleum geology. The study promoted the exploration of subtle pools in the western Huimin depression.
     Based on the comprehensive analysis of seismic, well drilling and logging data, the third member and fourth member of Shahejie formation(Es3 and Es4) in Huimin depression can be divided into six the third order sequences. The lower part of Es4 is sequence 1, the upper part of Es4 is sequence 2, the lower part of Es3 is sequence 3, the middle part of Es3 is sequence 4, the underneath of the upper part of Es3 is sequence 5, and the topping of the upper part of Es3 and the lower part of the second member of Shahejie formation is sequence 6. It is more reasonable that the boundary of Es3 and Es4 in Huimin depression lies in the top of Panne sand bodies.
     Both the southern and northern provenance systems in Huimin depression existed during the depositional period of Es3. The northern provenance system in the western Huimin depression mainly comes from Lingxian uplift and the provenance directions include east-west-trending and north-north-west-trending. The northern provenance system controls the Panhe, Linyi, Shanghe, and Jishan sand bodies. The southern provenance system in the western Huimin depression mainly comes from Luxi uplife and controls the Shuangfeng, Jiangjiadian, and Wawu sand bodies, and so on.
     On the basis of core observation and correlative test analysis, the facies indicators of Es3 in Huimin depression was systematically summarized. The fan delta, delta, slump turbidite fan, storm deposits, and beach and bar were mainly developed during the depositional period of Es3 in Huimin depression. The fluvial-delta can be divided into braided river delta and meandering river delta. The meandering river delta also can be divided into shallow water delta and deep water delta. According to sand content chorisopleth, and the distribution of sand thickness and stratigraphic thickness, the distribution of the sedimentary system of the lower, middle, and upper part of Es3 was studied. The south mainly developed braided river delta and meandering river delta, the northwestward developed meandering river delta, and the middle part developed deep-semideep lake facies during depositional period of Es3 in the western Huimin depression, the scale of northwest delta gradually increased, and sedimentary area gradually advanced forward the east and southeast direction.
     The fluxoturbidite lithologic trap and stratum lateral pinchout lithologic trap are the main lithologic traps in the Shahejie formation in Huimin depression. The formation and distribution of lithologic trap are mainly controlled by basin structural characteristics, palaeogeomorphology characteristics and the intensity of multiphase tectonic activity.
引文
1 操应长,姜在兴,王留奇等.1996.陆相断陷湖盆层序地层单元的划分及界面识别标志.石油大学学报,20(4):6~10.
    2 操应长.2000.断陷湖盆层序地层中下降体系域的划分.石油大学学报,24(1):22~25.
    3 池英柳.1996a.可容空间概念在陆相断陷盆地层序分析中的应用.沉积学报,16(4):7~11.
    4 池英柳.1996b.陆相断陷盆地层序成因初探.石油学报,17(3):19~26.
    5 邓宏文,钱凯.1990.沉积地球化学与环境分析.兰州:甘肃科学技术出版社.
    6 邓宏文.1995.美国层序地层研究中的新学派—高分辨率层序地层学.石油与天然气地质,16(2):89~97.
    7 邓宏文,王洪亮,李熙喆.1996.层序地层地层基准面的识别、对比技术及应用.石油与天然气地质,17(3):177~184.
    8 樊太亮,吕延仓,丁明华.2000.层序地层体制中的陆相储层发育规律.地学前缘,7(4):315~321.
    9 樊太亮,徐怀大.1996.新疆塔里木盆地北部应用层序地层学.北京:地质出版社.
    10 顾家裕.1995.陆相盆地层序地层学格架概念及模式.石油勘探与开发,22(4):6~10.
    11 顾家裕,邓宏文,朱筱敏.1997.层序地层学及其在油气勘探开发中的应用论文集.北京:石油工业出版社.
    12 郭建华,宫少波,吴东胜.1998.陆相断陷湖盆T-R旋回沉积层序与研究实例.沉积学报,16(1),8~14.
    13 姜在兴.1996.层序地层学原理及应用.北京:石油工业出版社.
    14 姜在兴,操应长.2000.砂体层序地层及沉积学研究—以山东惠民凹陷为例.北京:地质出版社.
    15 纪友亮、张世奇.1998.层序地层学原理及层序成因机制模式.北京:地质出版社.
    16 林畅松.2000.“构造坡折带”—断陷盆地层序分析和油气预测的重要概念.地球科学,25(3):260~265.
    17 林金逞,邓宏文,田世澄等.2001.应用深度域高分辨率地震反演识别低渗透薄互层储层研究.地学前缘,8(4):1~1.
    18 李思田.1992.鄂尔多斯盆地东北部层序地层及沉积体系分析.北京:石油工业出版社.
    19 刘立,王东坡.1996.陆相地层的层序地层学:层序的特征与模式.岩相古地理,16(5):47~53.
    20 罗立民.1999.河湖沉积体系三维高分辨率层序地层学—以准噶尔盆地东部北27井区侏罗系头屯河组为例.北京:地质出版社.
    21 潘元林,张善文,肖焕钦等.2003.济阳断陷盆地隐蔽油气藏勘探.北京:石油工业出版社.
    22 王秉海,钱凯.1992.胜利油区地质研究与探勘实践.东营:石油大学出版社.
    23 王洪亮,邓宏文.1997.地层基准面原理在湖相储层预测中的应用.石油与天然气地质,2:96~102.
    24 王贵文,郭荣坤.2000.测井地质学.北京:石油工业出版社,112~128.
    25 魏魁生,徐怀大.1997.松辽盆地百垩系高分辨率层序地层格架.石油与天然气地质,18(1):7~13.
    26 吴崇筠,薛叔浩.1992.中国含油气盆地沉积学.北京:石油工业出版社,155~201.
    27 解习农,任建业,焦养泉等.1996.断陷盆地构造作用与层序样式.地质论评,42(3):239~244.
    28 徐怀大.1997.从地震地层学到层序地层学.北京:石油工业出版社.
    29 杨香华.1999.惠民凹陷古近系地层、沉积特征与砂体预测.中石化集团公司胜利石油管理局.
    30 杨守业,李从先,张家强.2000.苏北滨海平原冰后期古地理演化与沉积物物源研究.古地理学报,2(2):65~72.
    31 杨守业,李从先,李徐生等.2001.长江下游下蜀黄土化学风化的地球化学研究.地球化学,30(4):402~406.
    32 尹太举,张昌民,陈程等.1999.建立储层流动单元模型的新方法.石油与天然气地质,20(2):170~175.
    33 张志伟,张龙海.2000.测井评价烃源岩的方法及其应用效果.石油勘探与开发,27(3):84~87.
    33 赵承林,杨从笑,刘孟慧.1996.渤海盆地早第三纪陆源碎屑岩相古地理学.北京:石油工业出版社.
    34 郑和荣,宗国洪,李思田等.2000.济阳坳陷第三系沉积、构造及含油性.中石化集团公司胜利石油管理局.
    35 郑荣才.1998.四川盆地下侏罗统大安寨段高分辨率层序地层学特征.沉积学报,16(2):42~49.
    36 郑荣才,吴朝容.1999.西部凹陷深层沙河街组生储盖组合的层序分析.成都理工学院学报,26(4):375~381.
    37 郑荣才,尹世民,彭军.2000.基准面旋回结构与叠加样式的沉积动力学分析.沉积学报,18(3):369~375.
    38 郑小武,邓宏文,徐怀大等.1999.测井高分辨率层序地层自动划分技术与应用.石油与天然气地质,20(4):357~360.
    39 朱筱敏.1998.层序地层学原理及应用.北京:石油工业出版社.
    40 Creaney S and Passey Q R. 1993. Recurring pattems of total organic carbon and source rock quality with a sequence stratigraphic framework.AAPG Bulletin, 77:386~401.
    41 Cross T A. 1988. Controls on coal distribution in transgressive-regressive cycles, Upper Cretaceous, Eastern Interior, U. S. A. In: Wilgus C K, ed. Sea-level Change: An Integrated Approach. SEPM. Spec. Publ, 42: 371~380.
    42 Cross T A. 1994. Applications of high-resolution sequence stratigraphy to reservoir analysis: The Interstate Oil and Gas Compact Commission 1993 Annual Bulletin,24~39.
    43 Cross T A, Lessenger M A. 1996. Sediment Volume Partitioning: Rationale for Stratigraphie Model Evaluation and High—Resolution Stratigraphic Correlation. Accepred for publication in Norwegian Petroleums—Forening Conference Volume,1~24.
    44 Cross T A, Lessenger M A. 1997. Correlation strategies for clastic wedges, in E.B. Coalson, J.C. Osmond, And E.T. Williams, eds., Innovative Applications of Petroleum Technology in the Rocky Mountain Area: Rocky Mountain Association of Geologists, Denver, 183~203.
    45 Cross T A, Lessenger M A. 1998. Sediment volume partitioning: rationale for stratigraphic model evaluation and high-resolution stratigraphic correlation, in F. M. Gradstein, K. O. Sandvik, and N. J. Milton, eds., Sequence Stratigraphy    46 Cross T A, Lessenger M A. 1999. Construction and application of a stratigraphic inverse model, in J.W. Harbaugh, W.L. Watney, E.C. Rankey, R. Slingerland, R.H. Goldstein, E.K. Franseen, eds, SEPM Special Publication 62 Numerical Experiments in Stratigraphy: Recent Advances in Stratigraphic and Sedimentologic Computer Simulations: SEPM (Society for Sedimentary Geology), 69~83.
    47 Deng Hongwen, Wang Hongliang, Cross T A. 1997. Application of high-resolution stratigraphic correlation approaches to fluvial reservoirs: Proceedings of the 30th International Geological Congress, 11: 55~59.
    48 Galloway W E. 1989. Genetic stratigraphic sequences in basin analysis Ⅰ: Architecture and genesis of flooding-surface bounded depositional units: American Association of Petroleum Geologists Bulletin, 73: 125~142.
    49 Hunt D and Tucker M E. 1992. Stranded parasequences and the forced regressive wedge system stract: deposition during base-level fall. Sedimentary Geology, 81: 1~9. 50 Jerver M.T. 1998 Quantitative geological modeling of siliciclastic rock sequence and their seismic expression[J]. In: Vail P.R. et al eds. Sea Level Changes: An Integrated Approach, SEPM Special Publication,42:47~70.
    51 Lessenger M A, Cross T A. 1996. An inverse stratigraphic simulation model Is stratigraphic inversion possible?: Energy Exploration & Exploitation, 14(6):627~637.
    52 Mitchum R M, Vail P R, Thompson S. 1977. Seismic stratigraphy and global changes of sea level, Part 2: The depositional sequence as a basic unit for stratigraphic analysis: American Association of Petroleum Geologists Memoir, Ⅲ, 26:53~62.
    53 Neil E Hurley. 1994. Recognition of Faults, unconformities, and Sequence Boundaries Using Cumulative Dip Plots[J]. AAPG Bulletin, 78(8): 1173~1185.
    54 Passey Q.R. 1990. A practical model for organic richness from porosity and resistivity logs[J]. AAPG Bulletin, 74(12): 1777~1794.
    55 Posamentier H W, Allen G P, James D P and Tesson M. 1992. Forced regressions in a sequence stratigraphic franework: coneepts,exarnples and exploration significance. AAPG Bulletin, 76:1687~1709.
    56 Posamentier F W, Allen G P, James D P. 1992.High Resolution Sequence tratigraphy--the East Coulee Delta, Alberta. Journal of Sedimentary Petrology,62(2):310~317.
    57 Sonnenfeld M D,Cross T A. 1993. Volumetric partitioning and facies differentiation within the Permian Upper San Andres Formation of Last Chance Canyon, Guadalupe Mountains, New Mexico, in R.G. Loucks and J.F. Sarg, eds. Recent advances and applications of carbonate sequence stratigraphy: American Association of Petroleum Geologists Memoir,57:435~474.
    58 Van Wagoner J C. 1988. An overview of the fundamentals of sequence stratigraphy and key definition. In: Wilgus C K, ed. Sea-level changes: An Integrated Approuch. SEPM. Spec. Publ, 42: 39~45.
    59 Van Wagoner J C. et al. 1990. Siliciclastic sequence stratigraphy in well logs, cores, and outcrops. AAPG methods in exploration series 7.
    60 Wagoner J C, Van. Siliciclastic 1990. Sequence Stratigraphy in Well Logs, Cores, and Outcrops: Concepts for High-Resolution correlation of Time and Facies. AAPG Methods in Exploration Series.
    61 Wyllie, M.R.J, Gregory, A.R. and Gardner, L.W.1956. Elastic wava velocities in heterogeneous and porous media. Geophysics,21:41~70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700